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Considering a two-dimensional lattice of weakly coupled waveguides, where each waveguide may carry two
orthogonal modes of dipolar character, we present a nonlinear discrete vector model for the study of Kerr
optical solitons with profiles having a reduced symmetry relative to the underlying lattice. We describe ana-
lytically and numerically existence and stability properties of such states in square and triangular lattices and
also reveal directional mobility properties of two-dimensional gap solitons which were recently observed in
experiment. The model also describes one-site peaked discrete vortices corresponding to experimentally ob-
served “second-band” vortex lattice solitons, for which oscillatory instabilities are predicted. We also introduce
a concept of “rotational Peierls-Nabarro barrier” characterizing the minimum energy needed for rotation of
stable dipole modes and compare numerically translational and rotational energy barriers in regimes of good
mobility.
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I. INTRODUCTION

Periodic photonic structures offer novel possibilities to
control the propagation of optical waves in the form of non-
linear localized modes or solitons. In particular, it was theo-
retically predicted in �1,2� that two-dimensional �2D� square
and triangular nonlinear photonic band-gap structures may,
in addition to the well-known fundamental gap solitons hav-
ing the same symmetry as the lattice itself, also support
stable solitary waves with lower symmetry. Such solutions
were found to bifurcate, e.g., from an X point in the first
Brillouin zone, corresponding to a band edge of the second
linear dispersion band, and the breaking of the discrete lat-
tice rotational symmetry appears due to the anisotropic na-
ture of the dispersion curve at this point. Recently, reduced-
symmetry gap solitons were also observed experimentally in
optically induced square �3� and triangular �4� photonic lat-
tices. For square lattices, they were found to exhibit strong
anisotropy also in their mobility properties, being highly mo-
bile in one direction and trapped in the other, while for tri-
angular lattices, no mobility was observed.

In addition, recently, it was predicted �5� and experimen-
tally verified �6� that excitation of a coherent superposition
of two degenerate modes of the second linear band in a
square lattice, associated with points X and X� �90° rotated
with respect to X� in the Brillouin zone and phase-shifted by
� /2, could result in stable localized vortex solitons with the
phase structure of a 2D array of vortices with alternating

rotation between neighboring sites. However, the original
theoretical analysis in Refs. �1,2� was done using the as-
sumption of slowly varying envelopes, which can be justified
only close to the linear band when the soliton has small
amplitude and extends over many lattice sites, so that pure
discreteness effects can be neglected. However, in experi-
ments �3,4,6� strongly localized modes were observed, and to
correctly describe their properties �such as stability, mobility,
etc.�, proper account of the discrete nature of their envelopes
should be taken. More recent theoretical studies �3,4,7� used
numerical techniques to continue small-amplitude solutions
with continuous envelopes into families of solitary waves
bifurcating from band edges, ending in solutions localized
almost at single lattice sites. Very recently, the persistence of
localized gap solitons beyond the small-amplitude limit has
also been rigorously proven for a class of separable symmet-
ric potentials �8�.

In this work, we will use an opposite, “anticontinuous,”
approach for describing second-band solitons in 2D lattices
by continuation of single waveguide modes. We introduce a
set of coupled lattice equations, derived using coupled-mode
theory with the assumption that each individual 2D wave-
guide may carry two degenerate modes of dipolar character,
corresponding to the symmetry of the X and X� points, re-
spectively.

The structure of this paper is as follows. In Sec. II, we
derive the general coupled-mode equations accounting for
linear and nonlinear couplings between the dipole modes of
optical waveguides. We use this model to first consider the
nonlinear modes of a single waveguide in Sec. III. Then, we
perform the detailed classification and analysis of solitons in
square and triangular lattices in Secs. IV and V, respectively.
We study the mobility of such solitons in Sec. VI. Finally, we
summarize our findings in Sec. VII.

*Electronic address: mjn@ifm.liu.se; http://people.ifm.liu.se/
majoh

†Electronic address: ans124@physics.anu.edu.au; http://physics.
anu.edu.au/nonlinear

‡Electronic address: ysk124@physics.anu.edu.au; http://physics.
anu.edu.au/nonlinear

PHYSICAL REVIEW E 80, 046604 �2009�

1539-3755/2009/80�4�/046604�15� ©2009 The American Physical Society046604-1

http://dx.doi.org/10.1103/PhysRevE.80.046604


II. GENERAL MODEL

Consider a single 2D waveguide with two modes �a�x ,y�
and �b�x ,y� corresponding to the same propagation constant
k,

− k�a,b + D
�2�a,b

�x2 + D
�2�a,b

�y2 + V�x,y��a,b = 0, �1�

where V�x ,y��Vs�x ,y� is the normalized refractive index
profile for a single waveguide. We normalize the mode pro-
files, �dxdy��a,b�2=1.

We now consider a lattice consisting of coupled
waveguides with V=�mVs�x−xm ,y−ym� and present the
total field as a sum of modes: �=�m�Am�a�x ,y�
+Bm�b�x ,y��exp�ikz�. Assuming that the modes are weakly
overlapping and taking into account nonlinear interaction of
modes at the same waveguide only, we obtain a set of
coupled equations for the mode amplitudes

i
dAm

dz
+ �

j

Cm,j
AAAj + �

j

Cm,j
ABBj + �A�Am�2Am + ��2�Bm�2Am

+ Bm
2 Am

� � = 0,

i
dBm

dz
+ �

j

Cm,j
BAAj + �

j

Cm,j
BBBj + �B�Bm�2Bm + ��2�Am�2Bm

+ Am
2 Bm

� � = 0. �2�

Here, Cm,m�0,

Cm,j
AA =	 dxdy�a�x − xm,y − ym�V�x − xm,y − ym��a�x − xj,y

− yj� ,

Cm,j
BB =	 dxdy�b�x − xm,y − ym�V�x − xm,y − ym��b�x − xj,y

− yj� ,

Cm,j
AB =	 dxdy�a�x − xm,y − ym�V�x − xm,y − ym��b�x − xj,y

− yj� .

It can be proved that Cm,j �Cj,m and Cm,j
AB =Cm,j

BA . For an iso-
tropic Kerr-type nonlinearity,

�A = �	 dxdy��a�x,y��4,

�B = �	 dxdy��b�x,y��4,

and

� = �	 dxdy��a�x,y��2��b�x,y��2,

where the upper �lower� sign describes a self-focusing �self-
defocusing� medium. Then, it also follows that 0� ���

�
1
2 ���A�+ ��B��. We present a schematic illustration of dipole

modes and their coupling in Fig. 1.
Note that in deriving Eq. �2�, no explicit assumptions

were made regarding the geometry of the lattice, the geom-
etry of the waveguides, or the nature of the modes, more than
that the symmetry has to be sufficiently high to sustain two
orthogonal degenerate modes. The appropriate geometrical
structure is obtained by specifying the parameters C, �, and
�, as illustrated below for several explicit examples, which
are analyzed in some details.

III. SOLITONS AND VORTICES IN A SINGLE
WAVEGUIDE

For a single waveguide, all coupling parameters C�0. As
we wish to describe solutions associated with the second
linear dispersion band for the full lattice, we choose the two
individual waveguide modes �a and �b to have a dipolar
structure, with either a vertical or horizontal nodeline
through the waveguide center. From now, we will assume
that �a describes a mode with horizontal dipole moment and
�b a mode with vertical dipole moment �both directions per-
pendicular to the longitudinal propagation direction z�. For
example, if the single waveguide is circularly symmetric,
then the guided modes have the form �a=cos�����r� and
�b=sin�����r�, where �r ,�� are polar coordinates. It then
follows that �A=�B�� and �=� /3. As another example, we
may consider a square waveguide �sidelength L� and �a


sin2�x
L sin�y

L , �b
sin�x
L sin2�y

L , which again yields �A=�B

�� but �= 4
9�. We will from now assume generally that the

waveguides and modes have sufficient symmetry to yield
�A=�B�� and consider the waveguide geometry to be
specified by the parameter ���� /� taking values between 0
and 1.

For a single waveguide with generic � /�, there are three
fundamental types of stationary solutions:

�I� “Single-mode” dipoles: A=�	 /� exp�i	z�, B=0; or
A=0, B=�	 /� exp�i	z�. These correspond to dipole mo-
ments pointing in the horizontal and vertical directions, re-
spectively.

�II� “Mixed-mode” dipoles: A= �B
=�	 / ��+3�� exp�i	z�. These correspond to dipole moments
pointing in the two diagonal directions.

�III� Vortices: A= � iB=�	 / ��+�� exp�i	z�, where the
two signs correspond to positive and negative charges.

However, in the particular case with � /�=1 /3 �circularly
symmetric waveguide�, the dipole soliton for a single wave-
guide has an arbitrary orientation, so that there is a continu-
ous family of solutions interpolating between the single-

Ψ
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Ψ
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Ψ
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b

FIG. 1. �Color online� Schematic illustration of coupling be-
tween the dipole modes with amplitude profiles �a and �b, char-
acterized by the coupling coefficients CAA, CAB, CBA, and CBB.
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mode and mixed-mode dipoles and characterized by the
angle 
: A=�	 /� cos�
�exp�i	z�, B=�	 /� sin�
�exp�i	z�.

As is well known, the stability of these solutions depends
on the value of the parameter �� �see, e.g., �9� and references
therein and �10–12� for recent results on related models�.
Performing a standard linear stability analysis, we con-
sider small perturbations ���A� ,��B�� to the above exact
stationary solutions �A�0� exp�i	z� ,B�0� exp�i	z�� by writing
A= �A�0�+��A��exp�i	z�, B= �B�0�+��B��exp�i	z�. Ex-
pressing ��A�=c exp�−i�z�+d� exp�i��z�, ��B�= f exp�−i�z�
+g� exp�i��z�, and linearizing yields a 4
4 eigenvalue
problem for the perturbation eigenvectors �c ,d , f ,g�T and
eigenfrequencies � �cf., e.g., �12� for the detailed structure of
the matrix�. Due to the overall gauge invariance, �=0 is
always a doubly degenerate eigenvalue, so the linear stability
is determined by the remaining two eigenvalues. These are
given by:

�I� Single-mode dipoles: �= �	��1−3����1−���, so
they are linearly stable for 0����1 /3 and unstable for
1 /3����1.

�II� Mixed-mode dipoles: �= �2	
�2���3��−1�

1+3��
, so they are

linearly stable for 1 /3����1 and unstable for 0���
�1 /3.

�III� Vortices: �= �2	
�2���1−���

1+��
, so they are always lin-

early stable for 0����1.

IV. SQUARE LATTICE

In a square lattice and for symmetric potential V�x ,y�
=V�y ,x�, taking into account nearest-neighbor �NN� and
next-nearest-neighbor �NNN� �diagonal� couplings only be-
tween individual dipole modes, the general Eqs. �2� take the
form

i
dAm,j

dz
+ C1�Am+1,j + Am−1,j� − C2�Am,j+1 + Am,j−1�

− CAA�Am+1,j+1 + Am+1,j−1 + Am−1,j+1 + Am−1,j−1�

+ CAB�Bm+1,j+1 − Bm+1,j−1 − Bm−1,j+1 + Bm−1,j−1�

+ ��Am,j�2Am,j + ��2�Bm,j�2Am,j + Bm,j
2 Am,j

� � = 0,

i
dBm,j

dz
− C2�Bm+1,j + Bm−1,j� + C1�Bm,j+1 + Bm,j−1�

− CAA�Bm+1,j+1 + Bm+1,j−1 + Bm−1,j+1 + Bm−1,j−1�

+ CAB�Am+1,j+1 − Am+1,j−1 − Am−1,j+1 + Am−1,j−1�

+ ��Bm,j�2Bm,j + ��2�Am,j�2Bm,j + Am,j
2 Bm,j

� � = 0. �3�

We illustrate the dipole coupling in a square lattice geom-
etry in Fig. 2. Here, the lattice is defined by �x ,y�
= �ja ,ma�, where a is the lattice constant �notice that the
meaning of indices j and m is different than in Eq. �2��. Note,
as a consequence of the dipolelike nature of the couplings,
the special way in which the individual coupling terms ap-
pear in Eq. �3� and in particular their signs. We have chosen
the signs so that all coupling constants C1 ,C2 ,CAA ,CAB will
be positive in the physically relevant situations. Although the

NNN coupling constants CAA �self-coupling� and CAB �cross-
coupling� will generally be different, we may assume them to
be of the same order of magnitude and typically some order
of magnitude smaller than the NN coupling constants C1 and
C2, since the individual waveguide modes are assumed to be
exponentially decaying with the waveguide separation. Note
also, C1�C2 generally, so that anisotropy appears in each of
the two equations in Eq. �3� due to the anisotropy of the
dipole waveguide modes, although the full system is isotro-
pic.

The two conserved quantities for Eqs. �3� are the Hamil-
tonian

H = �
m,j
�2C1Re�Am,jAm+1,j

� + Bm,jBm,j+1
� � − 2C2Re�Am,jAm,j+1

�

+ Bm,jBm+1,j
� � − 2CAARe�Am,j�Am+1,j+1

� + Am+1,j−1
� �

+ Bm,j�Bm+1,j+1
� + Bm+1,j−1

� �� + 2CABRe�Am,j�Bm+1,j+1
�

− Bm+1,j−1
� � + Bm,j�Am+1,j+1

� − Am+1,j−1
� �� +

�

2
��Am,j�4

+ �Bm,j�4� + ��2�Am,j�2�Bm,j�2 + Re�Am,j
2 Bm,j

�2 ��
 �4�

and the total power �norm�

P = �
m,j

��Am,j�2 + �Bm,j�2� . �5�

It is also useful to express Eqs. �3� in terms of oppositely
charged vortex modes �“circularly polarized modes,” cf.,
e.g., �13��

Um,j =
1

2
��− 1� jAm,j + i�− 1�mBm,j� ,

Vm,j =
1

2
��− 1� jAm,j − i�− 1�mBm,j� ,

where the staggering factors �−1� j and �−1�m are introduced
due to the negative signs in front of C2 in Eq. �3�. Then, the
equations of motion take the form

1 2 j

1

2

m

(a)

C
1

C
1

(b)

-C
2

(c)

-C
2

-CAA

-CAA

(d) (e)

-CAB

CAB

CAB

-CAB

FIG. 2. �Color online� Schematic illustration of �a� a square
lattice and coupling between dipole modes. ��b� and �c�� Horizontal
and vertical C1, C2. �d� Diagonal between the modes of the same
symmetry CAA. �e� Diagonal between dipoles of different symme-
tries CAB.

DISCRETE REDUCED-SYMMETRY SOLITONS AND… PHYSICAL REVIEW E 80, 046604 �2009�

046604-3



i
dUm,j

dz
+

C1 + C2

2
�Um+1,j + Um−1,j + Um,j+1 + Um,j−1�

+
C1 − C2

2
�Vm+1,j + Vm−1,j − Vm,j+1 − Vm,j−1�

+ CAA�Um+1,j+1 + Um+1,j−1 + Um−1,j+1 + Um−1,j−1�

− �− 1�m+jiCAB�Vm+1,j+1 − Vm+1,j−1 − Vm−1,j+1 + Vm−1,j−1�

+ �� + ����Um,j�2 + 2�Vm,j�2�Um,j + �� − 3��Vm,j
2 Um,j

� = 0,

i
dVm,j

dz
+

C1 + C2

2
�Vm+1,j + Vm−1,j + Vm,j+1 + Vm,j−1�

+
C1 − C2

2
�Um+1,j + Um−1,j − Um,j+1 − Um,j−1�

+ CAA�Vm+1,j+1 + Vm+1,j−1 + Vm−1,j+1 + Vm−1,j−1�

+ �− 1�m+jiCAB�Um+1,j+1 − Um+1,j−1 − Um−1,j+1

+ Um−1,j−1� + �� + ����Vm,j�2 + 2�Um,j�2�Vm,j

+ �� − 3��Um,j
2 Vm,j

� = 0, �6�

the Hamiltonian

H� = �
m,j
��C1 + C2�Re�Um,j�Um+1,j

� + Um,j+1
� �

+ Vm,j�Vm+1,j
� + Vm,j+1

� �� + �C1 − C2�Re�Um,j�Vm+1,j
�

+ Vm−1,j
� − Vm,j+1

� − Vm,j−1
� �� + 2CAARe�Um,j�Um+1,j+1

�

+ Um+1,j−1
� � + Vm,j�Vm+1,j+1

� + Vm+1,j−1
� ��

− 2CAB�− 1�m+jIm�Um,j�Vm+1,j+1
� − Vm+1,j−1

� + Vm−1,j−1
�

− Vm−1,j+1
� �� +

� + �

2
��Um,j�4 + �Vm,j�4� + 2�� + ��


��Um,j�2�Vm,j�2 + �� − 3��Re�Um,j
2 Vm,j

�2 ��
 , �7�

and the total power �norm�

P = �
m,j

��Um,j�2 + �Vm,j�2� . �8�

From this, it follows that in the special case when ��=1 /3
�circular waveguides�, C1=C2 �isotropic NN mode cou-
pling�, and CAB=0 �no NNN cross coupling between indi-
vidual dipole modes�, the two vortex fields Um,j and Vm,j do
not mix, so that we have independent conservation of the
power of each field, PU=�m,j�Um,j�2 , PV=�m,j�Vm,j�2. How-
ever, in the general case, only total power �8� is conserved.

A. NN interactions

We first consider the case where the NNN interactions can
be neglected and thus put CAA=CAB=0 in Eq. �3�. In this
case, it is enough to consider, e.g., ��0, since changing the
sign of � is mathematically equivalent to a staggering trans-
formation combined with z→−z. We should also remark that
in the limit case of �=0 �uncoupled horizontal and vertical

modes�, the model turns into two uncoupled simple discrete
nonlinear Schrödinger �DNLS� equations with anisotropic
dispersion, which has been analyzed, e.g., in �14,15�.

Let us first discuss the linear dispersion relation for the
NN case. Putting

Am,j = A0 exp�i��1
�A�j + �2

�A�m��exp�i	�A�z� ,

Bm,j = B0 exp�i��1
�B�j + �2

�B�m��exp�i	�B�z� ,

with �A0� , �B0��1, and inserting into Eqs. �3� with CAA

=CAB=�=�=0, we arrive at the dispersion relation for the
two uncoupled fields in the small-amplitude limit

	�A� = 2C1 cos �2
�A� − 2C2 cos �1

�A� � 	�A���1
�A�,�2

�A�� ,

	�B� = 2C1 cos �1
�B� − 2C2 cos �2

�B� � 	�B���1
�B�,�2

�B�� . �9�

Note that, since 	�B���1 ,�2�=	�A���2 ,�1�, the two linear
bands associated with A− and B− modes completely overlap.
The dispersion relation has its maximum for �2

�A�=�1
�B�=0,

�1
�A�=�2

�B�=�, and thus solitons are expected to bifurcate
from the corresponding band edge at 	=2�C1+C2� when the
soliton amplitude goes to zero.

Similarly as in, e.g., �12� and references therein, we may
use the three types I, II, and III of stationary solutions for an
isolated waveguide in Sec. III as “anticontinuous” limits
�C1→0,C2→0� for solutions of the full lattice and as is well
known, such solutions are expected to persist for finite cou-
pling under quite general conditions. Explicitly, they may be
numerically calculated using standard Newton-type schemes
and moreover approximate analytical expressions may be ob-
tained, e.g., through perturbation expansions using the cou-
pling constants as small parameters. In this paper, we give a
complete classification of the existence and stability proper-
ties of the fundamental stationary states, obtained as continu-
ations of anticontinuous solutions with only one single wave-
guide excited. As we shall see, all these solutions may be
smoothly continued, for increasing coupling, all the way to
the continuum limit, where the solutions approach standard
vector solitons with well-known envelopes �see, e.g., �9� and
references therein and recent papers �7,8��. In addition, one
may also consider composite states consisting of, e.g., mul-
tiple vortices with different positions and charges or dipoles
with different orientations at different lattice sites at the an-
ticontinuous limit, as well as nonstationary solutions �e.g.,
with periodic power exchange between fields A and B�; how-
ever, these issues will be left for future investigations.

For convenience for the reader, we now wish to relate our
classification of fundamental solutions to the terminology of
other works.

�I� Our single �horizontal or vertical� dipole modes corre-
spond to the “X solitary wave” of �1,2� �Figs. 10 and 11 in
�2��, the “reduced-symmetry gap soliton” of �3�, the “single-
Bloch-mode soliton” of �7� �Figs. 5, 11�a�, and 11�b� in �7��,
and the “ellipsoidal positive soliton” of �8� �Fig. 7�c� in �8��.

�II� Our mixed �diagonal� dipole modes correspond to the
“dipole-array gap soliton” of �7� �Figs. 6�c�, 6�d�, 11�c�,
11�d�, and 11�e� in �7�� and the “symmetric real coupled
soliton” of �8� �Fig. 11 in �8��.
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�III� Our vortex modes correspond to the “second-band
vortex soliton” of �5,6�, the “vortex-array gap soliton” of �7�
�Figs. 6�e�, 6�f�, and 11�f�-11�h� in �7��, and the “� /2-phase
delay coupled soliton” of �8� �Fig. 12 in �8��.

The linear stability analysis for a lattice of N sites now
becomes equivalent to diagonalizing a 4N
4N matrix �cf.
�10,12��, which at the anticontinuous limit has four eigenval-
ues corresponding to the eigenfrequencies for the single-
excited waveguide given in Sec. III and the remaining eigen-
frequencies, corresponding to the N−1 unexcited
waveguides, located as 2�N−1� pairs of eigenfrequencies �
= �	.

1. ��Å1 Õ3.

Let us first discuss the case ���1 /3 �noncircular
waveguides�, for which the situation is rather simple. The
stability properties may be summarized as follows:

�i� Dipole modes �I, II� keep their stability properties from
the anticontinuous limit �and in addition become unstable
through the Vakhitov-Kolokolov �VK� “quasicollapse” insta-
bility close to continuum limit�.

�ii� Vortex modes �III� are stable for weak coupling, but
become oscillatorily unstable for larger coupling due to a
resonance between localized internal-mode oscillations and
extended modes from the linear band �see, e.g., �16� for a
similar scenario�.

The behaviors of the eigenvalues close to the anticontinu-
ous limit have been obtained analytically to second order in
the coupling constants by diagonalization �with help of
Maple� of the 12
12 matrix corresponding to the excited
site and two nearest neighbors in horizontal, respectively,
vertical directions �using appropriate symmetry relations�.
For example, for the vortex modes III, we obtain

� = � 2	
�2���1 − ���

1 + ��
�1 −

2�C1
2 + C2

2�
	2 � + O�C4� .

Equating this to the expression for the edge of the linear
band, �=	−2�C1+C2�, and solving, e.g., for C1 /	 gives an
estimate for the instability threshold as a function of the
other parameters C2 /	 and ��.

2. ��=1 Õ3.

For ��=1 /3 �circular waveguides�, the situation is more
intricate due to the additional degeneracy at the anticontinu-
ous limit. First, in the special �isotropic� case C1=C2, the
degeneracy persists and the dipole modes remain marginally
stable for all values of the coupling constant �except close to
the continuum limit, where quasicollapse instabilities always
appear�.

However, as soon as C1�C2, the degeneracy is broken
and we find that the solutions continued from the single-
mode �horizontal or vertical� dipoles �I� are stable, while
those continued from the mixed-mode �diagonal� dipoles �II�
are unstable. Thus, we recover the physically reasonable re-
sult that the favorable orientation of the individual dipoles is
selected by the lattice directions �cf. experimental and nu-
merical results in �3��. In both cases, the additional eigen-
value pair is found to bifurcate from �=0 to order C1

2 ,C2
2

along the real, respectively, imaginary axis. However, in this
case, it is nontrivial to obtain the correct lowest-order behav-
ior analytically due to the fourfold degeneracy of the eigen-
value �=0 at the anticontinuous limit. This would necessi-
tate taking into account not only three but six main
nonequivalent sites �central site, one nearest and one next-
nearest neighbor in a horizontal and a vertical direction, re-
spectively, and one diagonal site�, leading to the rather for-
midable task of diagonalizing a 24
24 matrix.

For vortex modes �III�, we first note that the nonzero ei-
genvalue pair at the anticontinuous limit is located at �
= �	, i.e., degenerate with the frequency of linear oscilla-
tions for the remaining unexcited sites. As the coupling is
increased, this eigenvalue bifurcates from �= �	, again to
order C1

2+C2
2 and therefore the real part of this eigenvalue

remains inside the band of linear oscillations ����� �	
−2�C1+C2� ,	+2�C1+C2���, where it causes oscillatory in-
stabilities �complex eigenvalues� colliding with extended lin-
ear eigenmodes. Thus, strictly speaking, the vortex mode is
always unstable for ��=1 /3 for infinite lattices �when the
linear band is continuous�, but for small C, the instabilities
are very weak and practically invisible and moreover for a
finite system they appear only in narrow windows due to the
discrete nature of the linear “band” �cf. �16� and references
therein�. This behavior is illustrated in Fig. 3. An exception
to this behavior, which is generic for C2�C1, appears in the
isotropic case C2=C1. In this case, even though the localized
mode exists inside the linear spectrum just as in Fig. 3, no
resonances appear and the vortex mode remains linearly
stable until the quasicollapse regime appears close to the
continuum limit. This is a consequence of the dispersive de-
coupling of the two vortex fields U and V in Eq. �6�. Due to
this, also the corresponding linearized equations decouple
when C1=C2 and V�0 �or U�0�, so that eigenmodes be-
longing to different subspectra do not interact. But as soon as
C2�C1, they interact through the dispersive coupling terms
and instabilities should develop.

B. Effect of NNN interactions

In the case of NNN interactions, to give a complete char-
acterization we must consider independently both signs of
nonlinearity �= �1. However, it is still enough to consider,
e.g., C2�C1, since the transformation Am,j� = �
−1�m+jBm,j ,Bm,j� = �−1�m+jAm,j switches the roles of C2 and
C1.

Our extensive numerical investigations may be summa-
rized as follows:

�i� A sufficiently weak NNN interaction does not change
the stability properties of the NN case, except when stability
is marginal in absence of NNN.

�ii� For stronger NNN interactions, there may be stability
inversions between the two different types of dipole modes
so that for ��=1 /3, the mixed-mode �type II� dipoles �ori-
ented in the diagonal directions� become stable and the
single-mode �type I� dipoles �oriented in the lattice direc-
tions� become unstable. Again, this is physically reasonable,
since strong NNN �diagonal� interactions should favor align-
ment in diagonal directions. This behavior is illustrated in
Fig. 4.
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�iii� When the anisotropy becomes weak �C2 close to C1�,
the strength of NNN interaction needed to invert stability for
��=1 /3 decreases. For example, with C2=0.9C1 and CAA

=CAB=0.15C1, stability is inverted and diagonal �type II�
dipole modes stable for 0.09�C1 /	�0.18 �the latter value
corresponding to VK instability� when �=+1.

�iv� In particular, in the isotropic case C2=C1 where both
types of dipole modes are marginally stable for ��=1 /3 in
absence of NNN interactions, any arbitrary nonzero value of
CAB breaks the marginal stability and makes diagonal �type
II� modes stable and horizontal or vertical �type I� modes
unstable. Note however that this is an effect of the aniso-
tropic nature of the cross-coupling CAB; if CAB=0, marginal
stability survives for all values of the isotropic NNN-
coupling CAA.

�v� Also for vortex �type III� modes, inclusion of the NNN
cross couplings breaks the marginal stability at C1=C2 and
causes weak oscillatory instabilities via phonon resonances.
This happens since the linearized equations corresponding to
Eqs. �6� are no more decoupled even though one of the fields
U or V is zero, since they get coupled by the CAB terms.

�vi� For �=−1, the main qualitative conclusions are the
same as for �=+1. However, the quantitative behavior is
somewhat more intricate, particularly for weak anisotropy
where multiple exchanges of stability between type-I and
type-II dipole modes may appear as illustrated in Fig. 5.

V. TRIANGULAR LATTICE

For describing a triangular lattice, we take into account
only the NN couplings between horizontal and vertical di-

FIG. 3. �a� Real and �b� imaginary parts of eigenfrequencies of linear oscillations for a fundamental vortex �type III� stationary solutions
in a square lattice described by Eq. �3� with �=1 and �=1 /3 as a function of coupling constant C1 with C2=C1 /2, pure NN interactions
�CAA=CAB=0�, 	=4, and system size 11
11 sites. In �a�, the linearly spreading eigenfrequencies represent extended eigenmodes �consti-
tuting the continuous linear band when the system size becomes infinite�, while the eigenfrequency with quadratic behavior corresponds to
the localized internal mode, whose frequency for weak coupling can be approximated as Re���=	−3�C1

2+C2
2� /	 �dashed line in �a��. �b�

illustrates windows of instability �nonzero Im���� which become dense as the system size becomes infinite.
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FIG. 4. Stability threshold for dipole modes in square lattice �3�
with NNN interactions CAA=CAB and NN anisotropy C2 /C1=1 /2,
for �=1 /3, �=+1, and 	=8. Type-I �horizontal/vertical� dipole
modes are stable below the line, while type-II �diagonal� dipole
modes are stable above. For CAA /C1=CAB /C1�0.431, type-I di-
poles are always unstable. In addition, quasicollapse �VK� instabili-
ties appear for C1�1.4 so that type II dipoles are always unstable
for CAA /C1=CAB /C1�0.33.
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FIG. 5. Unstable eigenvalue for type-I dipole modes in square
lattice �3� with NNN interactions CAA=CAB=0.2 and NN anisotropy
C2 /C1=0.99 for ��=1 /3, �=−1, and �	�=8. Note the stable win-
dow for 0.75�C1�0.95, where the otherwise stable �diagonal�
type-II mode instead becomes unstable. In addition, quasicollapse
�VK� instabilities appear for both modes for C1�2.1. The latter is
considerably stronger, with max. Im����1.5 for C1�2.3, and
therefore not visible on the scale of this figure.
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pole modes localized at a given waveguide with the corre-
sponding dipole modes localized at its six nearest neighbors.
�We remark that for the simple DNLS model on an isotropic
triangular lattice, also effects of long-range interactions have
been considered in �17�.� We define lattice indices as

�x,y� = ��j − m/2�a,m�3a/2� , �10�

where a is the lattice constant �notice again that the meaning
of indices j and m is different than in Eq. �2��. In other
words, one lattice direction is assumed to be horizontal and
described by the index j, while the index m describes the
translation in a lattice direction rotated 60° with respect to
the horizontal. Then, as a consequence of the dipolelike na-
ture of the couplings, the general Eqs. �2� take the form

i
dAm,j

dz
− C2�Am,j+1 + Am,j−1� − CAA�Am+1,j + Am−1,j + Am+1,j+1

+ Am−1,j−1� − CAB�Bm+1,j + Bm−1,j − Bm+1,j+1 − Bm−1,j−1�

+ ��Am,j�2Am,j + ��2�Bm,j�2Am,j + Bm,j
2 Am,j

� � = 0,

i
dBm,j

dz
+ C1�Bm,j+1 + Bm,j−1� − CBB�Bm+1,j + Bm−1,j + Bm+1,j+1

+ Bm−1,j−1� − CAB�Am+1,j + Am−1,j − Am+1,j+1 − Am−1,j−1�

+ ��Bm,j�2Bm,j + ��2�Am,j�2Bm,j + Am,j
2 Bm,j

� � = 0. �11�

Here, as before we have chosen the signs so that the self-
coupling constants C1 ,C2 in the horizontal lattice direction
between vertically, respectively, horizontally oriented dipoles
are always positive. In addition, the signs have been chosen
so that also the cross-coupling constant CAB generally is
positive, while the self-coupling coefficients CAA ,CBB in the
other directions may be either positive or negative depending
on the particular geometry of the waveguides and the shape
of the potential V�x ,y� in the physical realization. Thus, for
the most general case, we now have five independent cou-
pling constants �with the above-mentioned sign restrictions�
and the self-coupling and cross-coupling constants will gen-
erally all be of the same order of magnitude. We illustrate the
dipole coupling in a triangular lattice geometry in Fig. 6.

The Hamiltonian for the triangular lattice is

H = �
m,j
�2C1Re�Bm,jBm,j+1

� � − 2C2Re�Am,jAm,j+1
� �

− 2CAARe�Am,j�Am+1,j
� + Am+1,j+1

� �� − 2CBBRe�Bm,j�Bm+1,j
�

+ Bm+1,j+1
� �� + 2CABRe�Am,j�Bm+1,j+1

� − Bm+1,j
� �

+ Bm,j�Am+1,j+1
� − Am+1,j

� �� +
�

2
��Am,j�4 + �Bm,j�4�

+ ��2�Am,j�2�Bm,j�2 + Re�Am,j
2 Bm,j

�2 ��
 . �12�

We will here concentrate on the case of circular symmet-
ric waveguides ���=1 /3� and leave a more complete discus-
sion on effects which may occur if the symmetry of a single
�noncircular� waveguide �e.g., square� differs from the sym-
metry of the triangular lattice to future investigations. Then,
for cylindrical waveguides �or, more generally, for
waveguides having the same �sixfold� rotational symmetry as
the lattice �or higher��, the following relations between the
coupling constants follow by straightforward geometrical ar-
guments from the transformation of the waveguide modes
�a and �b under � /3 rotations

CAA =
1

4
�C2 − 3C1� ,

CAB =
�3

4
�C2 + C1� ,

CBB =
1

4
�3C2 − C1� . �13�

Thus, we see that, while CAB�0 always, CAA�0 only if
C2�3C1, while CBB�0 only if C2�C1 /3. �We remark that
if C1=0, the relations �13� for the linear coupling coefficients
become equivalent to those considered in a model for longi-
tudinal and transverse waves in two-dimensional hexagonal
dusty plasma crystals �18–21�.�

Then, due to the sixfold rotational symmetry of the
lattice+waveguides, three classes of distinct fundamental
stationary solutions appear from the anticontinuous limit:

�i� “Horizontal” dipole modes: Am0,j0
= ��	 /� exp�i	z�;

Bm0,j0
=0. Equivalent solutions pointing in the other lattice

directions, i.e., rotated n ·60°, are obtained for Bm0,j0
= ��3Am0,j0

.
�ii� “Vertical” dipole modes: Am0,j0

=0; Bm0,j0
= ��	 /� exp�i	z�. Equivalent solutions, rotated n ·60°, are
obtained for Bm0,j0

= �
1
�3

Am0,j0
. �Note that vertical dipole

modes are distinct from horizontal for the triangular lattice,
since their dipole moment points in-between two lattice di-
rections.�

�iii� Vortex modes: Bm0,j0
= � iAm0,j0

�invariant under rota-
tion, except for an overall phase change�.

We also note that generally, Eqs. �11� are invariant under
the following transformation �corresponding to 90° rotation�:

1 2 j

(a)

1

2

m

C
1

(b)

-C
2

-C
BB

-C
AA

(c) (d)

-C
AB

C
AB

C
AB

-C
AB

FIG. 6. �Color online� Schematic illustration of �a� a triangular
lattice and coupling between dipole modes. �b� Horizontal �C1 and
C2�. �c� Diagonal between the modes of the same symmetry �CAA

and CBB�. �d� Diagonal between dipoles of different symmetries
CAB.
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Am,j → Bm,j,Bm,j → − Am,j,� → − �,� → − �,z → − z,

C1 ↔ C2,CAA ↔ − CBB.

Therefore, for the special parameter relations defined by Eq.
�13�, we may either restrict our investigations to, e.g., C2
�C1 and �= �1 or to, e.g., �=+1 and no restriction on C2.
We choose the first alternative.

Let us also discuss the linear dispersion relation for the
triangular lattice with the parameter restrictions �13�, which
can be calculated in an analogous way as for the model in
�18–21�. Using Eq. �10� �putting a=1�, we express a lattice
wave propagating in an arbitrary �transverse� direction in
terms of the Cartesian physical components of its wave vec-
tor ��x ,�y� as

Am,j = A0 exp�i�xx + i�yy�exp�i	z�

= A0 exp�i�xj − i��x

2
−

�y
�3

2
�m + i	z� ,

Bm,j = B0 exp�i�xx + i�yy�exp�i	z�

= B0 exp�i�xj − i��x

2
−

�y
�3

2
�m + i	z� ,

with �A0� , �B0��1. Defining the propagation angle � and
magnitude of the wave vector � as �x=� cos �, �y =� sin �,
and inserting into Eqs. �11� with �=�=0, we obtain two
linear dispersion bands for the �in general� coupled A and B
fields, which may be written in the form

	���,�� = �C1 − C2��cos�� cos �� + cos�� cos�� −
�

3
��

+ cos�� cos�� +
�

3
��


�
C1 + C2

�2
��cos�� cos ��

− cos�� cos�� −
�

3
���2

+ �cos�� cos ��

− cos�� cos�� +
�

3
���2

+ �cos�� cos�� −
�

3
��

− cos�� cos�� +
�

3
���2
1/2

. �14�

Note that, due to the symmetry properties of the dispersion
relation �14�, all its nontrivial extrema occur for waves
propagating either in a lattice direction ��=0+n� /3� or in-
between lattice directions ��=� /2+n� /3�. In fact, for the
particular angles �=0 and �=� /2, the equations for the A
and B fields decouple and we obtain two separate dispersion
relations 	�A� and 	�B� corresponding to pure A and B modes,
respectively,

	�A���,� = 0� = − 2C2 cos � + �3C1 − C2�cos
�

2
,

	�B���,� = 0� = 2C1cos � + �C1 − 3C2�cos
�

2
,

	�A���,� = �/2� = − 2C2 + �3C1 − C2�cos
��3

2
,

	�B���,� = �/2� = 2C1 + �C1 − 3C2�cos
��3

2
. �15�

Thus, assuming 0�C2�C1 as above, we may deduce from
these relations that the global minimum of the dispersion
relation is 	=−�3C1+C2�, obtained for a solution with di-
poles pointing in a lattice direction, with constant phases in
this direction and alternating phases in the orthogonal direc-
tion. The location of the global maximum depends on the
value of C2 /C1. For 0�C2 /C1�1 /3, the global maximum is
	=3�C1−C2� and appears for �=0 �i.e., wave with constant
phase, independent on dipole orientation�. For 1 /3�C2 /C1
�1, the global maximum is instead at 	=C1+3C2 and is
obtained for a solution with dipoles oriented orthogonal to a
lattice direction, with constant phases in this lattice direction
and alternating phases in the orthogonal direction. These ex-
trema define the band edges from which solitons are ex-
pected to bifurcate for defocusing and focusing nonlineari-
ties, respectively, in the limit of zero amplitude.

A. C1=C2

We first discuss the case of “isotropic” interactions C1
=C2�C. Note however that although in this case the mag-
nitude of the coupling between individual dipoles is the same
whether they are both oriented in the lattice direction �C2�, or
both oriented perpendicular to the lattice direction �C1�, the
couplings in the 60° directions will still be different and thus
the two equations in Eq. �11� are not themselves isotropic.
Indeed, from Eq. �13�, we get CBB=−CAA=C /2, CAB=

�3
2 C.

Then, we may summarize the results from our numerical
investigations as follows:

�1� For �=+1, vertical dipole modes �type �ii�� are stable
and horizontal modes �type �i�� are unstable. �For �=−1, the
result is opposite due to the above-mentioned symmetry.�
The instability is however extremely weak close to the anti-
continuous limit, with eigenvalues bifurcating from zero as
� /	
�C /	�13/2. This very unusual behavior, which is illus-
trated in Fig. 7, has been confirmed numerically not to be
dependent on boundary conditions �by studying system sizes
ranging between 81 and 289 sites� or on the precision used in
the numerical algorithm �by using quadruple precision FOR-

TRAN allowing determination of stability eigenvalues to a
precision 
10−16�.

�2� Vortex modes are always oscillatorily unstable �but
very weakly for small C and only in narrow windows for
small systems�, similarly as for the square lattice with ��
=1 /3. We should remark that although a transformation into
vortex fields U ,V leading to an equation analogous to Eq. �6�
can be made, the equations for U and V are dispersively
coupled even when C1=C2 and therefore oscillatory insta-
bilities are always present.
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�3� All modes can be continued toward the continuum
limit, where VK �“quasicollapse”� instabilities appear.

B. C2ÅC1

For the general anisotropic case, when the magnitude of
the interactions along lattice directions between horizontally
pointed dipoles is different than between vertically pointed
�C2�C1�, we summarize the main findings from our numeri-
cal investigations:

�1� For C2�C1, vertical �type �ii�� modes are stable and
horizontal �type �i�� modes unstable for both �= �1. �For
C2�C1, the result is opposite due to symmetry.� This is the
physically expected result since vertical modes couple stron-
ger in lattice directions when C1�C2.

�2� The corresponding stability eigenvalues generally bi-
furcate from 0 as �
�C1

3 ,C2
3� along the real, respectively,

imaginary axis for the stable, respectively, unstable dipole
mode.

�3� For most values of the anisotropy parameter C2 /C1,
the above stability properties are kept when increasing C1
until the appearance of VK instabilities. However, for very
weak anisotropy, a region of stability inversion appears be-
fore the VK unstable regime. For C2�C1, this happens only
for �=−1��=+1 for C2�C1�, where, e.g., for C2 /C1
=0.95, horizontal modes are stable and vertical modes un-
stable for 0.205�C1 /	�0.215 �VK instabilities appear at
the latter value�. This can be related to the fact that for the
isotropic case, horizontal modes are stable and vertical
modes unstable when �=−1 as discussed above.

�4� For vortex modes �type �iii��, the result is qualitatively
the same as for C2=C1.

Of particular interest is the fact that there are two sets of
special parameter values �related by the above-mentioned
symmetry transformation� with nongeneric behavior: C2
=C1 /3 �implying CBB=0�, �=+1, and C2=3C1 �implying
CAA=0�, �=−1. At these exceptional values, no VK instabil-
ity is observed. Instead of approaching the unstable solution
of the 2D NLS equation for large coupling, the solution ap-
proaches either a single one-dimensional linear �constant-

amplitude� band-edge mode in the strong-coupling direction
�stable dipole mode�, a superposition of two linear band-edge
modes in the weak-coupling directions �unstable dipole
mode�, or a superposition of all three �vortex mode�. As a
consequence, the stable dipole-mode solution is expected to
become mobile in one particular lattice direction, where it
becomes broad and continuumlike. This is characterized by
the appearance of a spatially antisymmetric localized internal
mode in the eigenvalue spectrum, whose frequency ap-
proaches zero in the linear continuum limit. This behavior
has been confirmed numerically for system sizes up to 29

29 and is illustrated in Fig. 8. On the other hand, although
the VK instabilities disappear also for the vortex modes, they
never gain mobility: no translational mode appears and their
shape never becomes continuumlike since the amplitude of
the central site is larger than that of the other sites in the
linear superposition of three band-edge modes.

The above exceptional parameter values are the only
cases where VK instabilities completely disappear �and, like-
wise, the only cases where the solitons bifurcate from linear
modes with P→0, since generically there is always a power
threshold for creation of solitons in 2D systems with cubic
nonlinearity�. However, for values close to these special val-
ues �e.g., 0.3�C2 /C1�0.4�, the regime of VK instability is
very small and there are stable dipole-mode solutions with
translational internal-mode frequency close to zero, which
are expected also to show directional mobility. Examples are
shown in Fig. 9.

VI. TRANSLATIONAL AND ROTATIONAL MOBILITIES
OF DIPOLE MODES

Let us first briefly discuss the directional mobility of di-
pole modes in square lattices as observed in �3�. For brevity,
we consider here Eq. �3� with only NN interactions �CAA

=CAB=0� and single-mode dipoles �I�, which we know from
Sec. IV A to be stable when 0����1 /3. With these restric-
tions, the study of mobility reduces to that of the one-
component anisotropic DNLS since B�0 �A�0� for hori-
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FIG. 7. �a� Simultaneous plot of Re��� for the stable vertical �type �ii�� �
 � and Im��� for the unstable horizontal �type �i�� �+� dipole
modes in triangular lattice �11� with C1=C2�C and other coupling constants given by Eq. �13� for ��=1 /3, �=+1, and 	=8. Note that
��i�� i��ii� for small C. In addition, quasicollapse �VK� instabilities appear for both modes for C�1.7. The latter is considerably stronger,
with max. Im����1.3 for C�1.85, and therefore not visible on the scale of this figure. �b� Logarithmic plot of the weak-coupling regime
of �a� �points� together with the function 6.35
10−4C13/2 �dashed line�.
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zontal �vertical� dipole modes. This was studied in �15� and
stable solutions mobile in the strong-coupling direction were
found for C2 /C1�0.17 �see Fig. 7�a� in �15��. Similarly as
for the triangular lattice with C2 /C1 close to 1/3 illustrated in
Figs. 8 and 9, we find that for C2 /C1�0.17, a localized
translational mode exists in the VK-stable regime and thus
we should expect good directional mobility in this regime in
agreement with �15�.

A well-known approach to measure �translational� mobil-
ity of discrete modes �22� is to calculate the difference in
energy �Hamiltonian� H at fixed power P between a “one-
site” �centered at a lattice site� and a “two-site” �centered
between lattice sites� mode. This so-called Peierls-Nabarro
�PN� potential barrier then gives an estimate of the minimum
energy needed to translate a stable mode along a lattice di-
rection. As we are here also dealing with the possibility that
dipole modes can be rotated in the lattice, we may analo-
gously investigate their “rotational mobility” by defining a
“rotational PN barrier” as the energy difference between
stable and unstable dipole modes �at fixed power�. This ro-

tational PN barrier should then describe the minimum addi-
tional energy needed for rotation of stable dipole modes.

To be specific, from now we consider only the particular
case ��=1 /3 �circular waveguides�. We first in Fig. 10 show
a comparison between translational and rotational PN barri-
ers for a square lattice �NN interactions only� in a regime of
reasonably good directional mobility �C2 /C1=0.15�. The
structures of the modes used in determining the barriers are
also shown in Fig. 10 for a value of the power where the
rotational and translational PN barriers are approximately
equal. The Hamiltonian and power of the modes are calcu-
lated using Eqs. �4� and �5� and the translational PN barrier
is then calculated as the difference in H for each P between
the stable one-site �Fig. 10�b�� and the unstable two-site �Fig.
10�c�� single-mode dipoles, while the rotational PN barrier is
calculated as the difference in H for each P between the
stable single-mode �Fig. 10�b�� and the unstable mixed-mode
�Figs. 10�d� and 10�e�� one-site dipoles. �Note that the trans-
lational PN barrier here is calculated only in the “good-
mobility” direction of strongest coupling and only for the
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FIG. 8. �Color online� Left figure: Simultaneous plot of the spectrum of Re��� for small � and large coupling for the stable vertical �type
�ii�� dipole mode in triangular lattice �11� with C2=C1 /3 and other coupling constants given by Eq. �13� for ��=1 /3, �=+1, and 	=8 for
four different system sizes: 17
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rotationally stable single-mode state�. As can be seen, the
rotational PN barrier is monotonously decreasing toward
zero for increasing power while the translational barrier is
monotonously increasing and the curves intersect at a power
P�3.28C1.

The general pictures of translational and rotational PN
barriers for different powers and anisotropy ratios C2 /C1 are
illustrated in Fig. 11. As can be seen, the general trends are
that the translational PN barrier is increasing and the rota-
tional PN barrier decreasing with increasing power. A more
quantitative analysis of the decrease of the rotational PN bar-
riers �H�rot� shows an approximate power-law decay for
large P, �H�rot�
 P−�, with ��2 for all 0�C2 /C1�1. This
power-law decay at fixed C1 and C2 may be related to the
power law of the bifurcation of the corresponding internal-
mode eigenvalues from zero when increasing C1 from zero at
fixed 	 as discussed in Sec. IV A, ���
C1

�, with �=2. Based
on general scaling arguments, we may conjecture the relation
�=2�−2 between the exponents �cf. results below for trian-
gular lattice�.

We should also note from Figs. 10 and 11 that the trans-
lational and rotational PN barriers may be of similar magni-
tudes only for strong anisotropy, C2 /C1�0.20, and moderate

power 3� P /C1�3.5. Note also the low-power cutoffs in
the figures, illustrating the power thresholds which as ex-
pected decrease for increasing anisotropy as this means ap-
proaching a more one-dimensional situation. However, the
power thresholds for the different solutions used in calculat-
ing the PN barriers are in general not identical and evidently
the PN barriers are well-defined only for powers when both
relevant solutions exist.

As a direct numerical illustration of the concepts of rota-
tional PN barrier and rotational mobility, we show in Fig. 12
the evolution along z of the A and B parts of the central-site
intensity, when a stable one-site vertical �A�0� dipole mode
is given an initial perturbation at z=0. As an example of a
norm-conserving perturbation which may initiate rotation,
we choose

Am,j� = Am,j cos � + iBm,j sin � ,

Bm,j� = Bm,j cos � + iAm,j sin � . �16�

As is seen from Fig. 12, the perturbed mode will begin to
rotate if � is larger than a threshold value. For these param-
eter values, the theoretically estimated rotational PN barrier
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�cf. Fig. 11� is 6.1
10−3, while the change of Hamiltonian
for the threshold perturbation in Fig. 12�b� is 6.9
10−3. This
reflects the fact that a perturbation of the type �16� in general
is not optimal and will excite several different eigenmodes.
In this sense, the “best” perturbation should be along the
exact eigenvector corresponding to the rotational eigenmode,
but such a perturbation is probably more difficult to realize
experimentally.

We then proceed to discuss the corresponding results for
translational and rotational PN barriers for dipole modes in
the triangular lattice. As discussed in Sec. V, we may still
make the restriction to C2�C1 without loss of generality, but
then we have to treat the self-focusing and self-defocusing
cases �= �1 separately. We first consider �=+1, which is
the only case where there is a regime of good translational
directional mobility of stable dipole modes for C2�C1 �see
Sec. V B�. Figure 13 shows a comparison between transla-
tional and rotational PN barriers for a triagonal lattice in a
regime of reasonably good directional mobility �C2 /C1
=0.35�. The structures of the modes used in determining the
barriers are also shown in Fig. 13 for a value of the power
where the rotational and translational PN barriers are ap-
proximately equal. Analogously to the square lattice, the
Hamiltonian and power of the modes are calculated using
Eqs. �12� and �5� and the translational PN barrier is calcu-
lated as the difference in H for each P between the stable
one-site �Figs. 13�b� and 13�c�� and the unstable two-site
�Figs. 13�d� and 13�e�� vertical dipole modes, while the ro-
tational PN barrier is calculated as the difference in H for
each P between the stable vertical �Figs. 13�b� and 13�c��
and the unstable horizontal �Figs. 13�f� and 13�g�� one-site
dipole modes. �Remember from Sec. V that all modes with
dipoles pointing in lattice directions are equivalent to hori-
zontal modes, while all modes with dipoles pointing between
lattice directions are equivalent to vertical modes.�

As can be seen from Fig. 13, for these parameter values,
the rotational PN barrier is monotonously decreasing toward
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FIG. 12. Evolution along z for an initially perturbed stable one-
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eter values as in Fig. 10 but with P=9. Solid �dashed� lines show
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old and �=0.0113 �b� just above rotation threshold. System size
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FIG. 13. �Color online� Left figure shows translational �solid red line� and rotational �dashed green line� PN barriers as a function of
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zero for increasing power while the translational barrier is
monotonously increasing, just as for the square lattice, and
the curves intersect at a power P�1.65C1. However, a sys-
tematic study of the PN barriers for different anisotropy ra-
tios C2 /C1, summarized in Fig. 14, reveals a more compli-
cated power dependence for the rotational barrier. For 0.5
�C2 /C1�1, the rotational PN barrier has a local �nonzero�
minimum as well as a local maximum at some intermediate
power levels. As for the square lattice, the decrease of the
rotational PN barriers for large power at fixed C1 and C2
shows an approximate power-law decay �H�rot�
 P−� �cf.
the logarithmic plot in Fig. 13�. Here, ��4 for 0�C2 /C1
�1, consistent with the above-mentioned conjecture �=2�
−2 since the corresponding internal-mode eigenvalues were
found in Sec. V B to bifurcate from zero at fixed 	 as ���

C1

� with �=3.
We can also see from Figs. 13 and 14 that the regimes

where the translational and rotational PN barriers for the tri-
angular lattices with �=+1 and 0�C2 /C1�1 have similar
magnitudes are approximately 0.25�C2 /C1�0.40 for pow-
ers 1.5� P /C1�2.5. Note also from Fig. 14 that the power
thresholds go to zero as C2 /C1→1 /3 as discussed in Sec.
V B.

As for the square lattice, we also show a direct numerical
illustration of rotational mobility and rotational PN barrier
for a triangular lattice in Fig. 15. Note that the first barrier to
overcome in this case corresponds to the unstable stationary
solution rotated 30°, for which �Bm0,j0

�2=3�Am0,j0
�2. Once this

barrier has been overcome, the rotational velocity increases
past the next stable stationary solution rotated 60°, with
�Am0,j0

�2=3�Bm0,j0
�2, slows down around the next unstable sta-

tionary solution rotated 90° �horizontal solution, Bm0,j0
=0�,

and so on. In this case, the difference between the theoreti-
cally estimated rotational PN barrier �1.8
10−3, cf. Fig. 13�
and the change of Hamiltonian for the threshold perturbation
in Fig. 15 �7.5
10−3� is larger and one may also observe in
Fig. 15 small oscillations of the intensities on top of the
rotational motion, indicating excitation of other modes car-
rying a non-negligible part of the Hamiltonian.

For comparison, we also show a direct numerical illustra-
tion of translational mobility and PN barrier for a triangular
lattice in Fig. 16. In this case, as a norm-conserving pertur-
bation which may initiate translation in the horizontal
�strong-coupling� direction, we choose

Am,j� = Am,j exp�− i�j� ,

Bm,j� = Bm,j exp�− i�j� . �17�

While the theoretically estimated translational PN barrier
here is only 3
10−5 �cf. Fig. 14�, the change of Hamiltonian
for the threshold perturbation in Fig. 16 is 3
10−4 and it is
evident that many other eigenmodes are also considerably
excited by the perturbation �17�. �For the example in Fig. 16,
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FIG. 15. Evolution along z for an initially perturbed stable one-
site vertical dipole mode in a triangular lattice, with the same pa-
rameter values as in Fig. 13 but with P=3. Solid �dashed� lines
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the solution also gets trapped after moving only two sites in
the lattice.�

We finally discuss the triangular lattice with �=−1 and
0�C2 /C1�1. In this case, there is very poor translational
mobility for the stable vertical dipole modes in all directions;

the translational PN barrier is then so large so it is not really
a meaningful concept. We therefore only discuss the rota-
tional PN barrier illustrated in Fig. 17. For most values of
C2 /C1, the barrier is monotonously decreasing to zero for
increasing power, with exponent ��4 for large power just
as for �=+1. However, a careful investigation reveals a more
intricate behavior in the weak-anisotropy regime. Indeed, we
know from Sec. V B that there is a small regime of stability
inversion where the stable mode is not the vertical but the
horizontal one. This reflects itself in the PN barrier, which
becomes zero at the boundary of this regime. For example,
when C2 /C1=0.95, this regime appears at P /C1�5.23 �the
threshold power for this case is P /C1�5.18�.

Let us finally also remark that for the isotropic case, C2
=C1, the rotational PN barrier is identical for positive and
negative � but with opposite signs in its definition, since for
�=+1 the vertical mode is stable and for �=−1 the horizon-
tal one. In this case, the barrier decreases very rapidly to zero
with increasing power. Although our numerical results here
are not completely quantitatively conclusive due to the
smallness of the barrier, they seem consistent with the hy-
pothesis of a power-law decay with exponent �=11 �corre-
sponding to �=13 /2 according to Sec. V A�.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, our results reveal the essential properties of
discrete optical solitons, which formed as collective excita-
tions of dipole-guided modes in two-dimensional lattices of
coupled optical waveguides. We have derived coupled-mode
equations taking into account linear and nonlinear couplings
between the dipole modes, which enabled us to establish the
generic soliton properties. Our analysis reveals the existence,
stability, and mobility characteristics of fundamental dipole-
mode and vortex solitons in square and triangular lattices,
providing deeper insight into previous numerical and experi-
mental studies of such solitons �3–6�. Additionally, we have
introduced a concept of “rotational Peierls-Nabarro barrier,”
which defines the minimum energy needed for rotation of
stable dipole modes. We found that, in contrast to the com-
monly analyzed translation mobility, the rotational barrier
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FIG. 16. Evolution along z for an initially perturbed stable one-
site vertical dipole mode in a triangular lattice, with the same pa-
rameter values as in Fig. 13 but with P�1.149 545. Solid lines
show the total intensity of the central site �11,11�, dashed lines of its
horizontal neighbor �11,10�, and dotted line of its horizontal next-
nearest neighbor �11,9�. The perturbation is chosen from Eq. �17�
with �=0.012 �a� below translation threshold and �=0.014 �b�
above translation threshold. System size 21
21, periodic boundary
conditions.
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generally decreases for strongly localized states. These re-
sults suggest possibilities for controlling beam shaping in
photonic lattices and waveguide arrays.
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