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Taking the approach via a special variable separation, some features of the (3+1)-dimensional multisolitonic
solutions, including the embedded soliton, the taperlike soliton, the plateau-type soliton, and the rectangle
soliton, were revealed in this study thanks to the intrusion of the appropriate boundary conditions and/or their
initial qualifications. Some physical properties, such as the spatiotemporal evolution, wave form structure, and
interactive phenomena with or without the background waves of multisolitons are discussed, especially in the
two-soliton case. It is found that different interactive behaviors of solitary waves take place under different
parameter conditions of collision in this system. It is verified that the elastic interaction phenomena exist in this
(3+1)-dimensional integrable model. Furthermore, in other types of nonlinear systems, the abundant
(3+1)-dimensional multisolitonic solutions were also investigated.
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I. INTRODUCTION

The development of the nonlinear wave theory clarifies
the role of the “soliton” in various systems [1]. In general,
solitons are stable and the interactions between them only
affect the phase shifts. Therefore, solitons are regarded as the
fundamental structures of the nonlinear integrable systems.
In the past years, the (1+ 1)-dimensional solitons and solitary
wave solutions have been studied extensively both in their
theoretical and experimental aspects [2]. In the
(2+1)-dimensional system, abundant stable localized excita-
tions have also been reported using some significant inte-
grable models, such as the Davey-Stewartson equation, the
Nizhnik-Novikov-Vesselov (NNV) equation, the asymmetric
NNV equation, the Broer-Kaup-Kupershmidt system, and the
general (N+M)-component Ablowitz-Kaup-Newell-Segur
system, in the field of nonlinear physics [3,4].

From a symmetry study of the (2+1)-dimensional inte-
grable model, a quite rich symmetry structure were identified
in comparison with the lower dimensions [5]. This fact indi-
cates that more work can be done regarding the soliton struc-
tures and their interactions among the solitons of the higher
dimensions nonlinear models. It is worthy to note here that
the previous studies demonstrated that there were more
localized excitations in (2+1) dimensions than those in
(1+1) dimensions [3]. Because of the difficulties to find out
the exact solutions with physical significance, information on
excitations in (3+1)-dimensional integrable systems has
been very limited so far. Given that the real physical space
time is in (3+1) dimensions, its localized excitations have
attracted a great attention of many mathematicians and
physicists for years although only insignificant progress has
been made in this direction [6,7]. Moreover, when saying
that a model is integrable, one should emphasize two impor-
tant facts. The first fact is that we should point out in what
special sense(s) the model is integrable. For instance, we say
a model is Painlevé integrable if it possesses the Painlevé
property, and a model is either Lax or IST (inverse scattering
transformation) integrable if it has a Lax pair or it can be
solved by the IST approach. An integrable model under some
special cases may not be integrable under other cases. For
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instance, some Lax integrable models may not be Painlevé
integrable [8]. The second fact is that for the general solution
of a higher-dimensional integrable model, for instance, a
Painlevé integrable model, it possesses some characteristics
with lower-dimensional arbitrary functions. The facts impli-
cate that lower-dimensional solutions may be used to con-
struct exact solutions of some higher-dimensional integrable
models. In other words, the exotic behavior of integrable
models may propagate along the characteristics of the lower-
and higher-dimensional solutions.

Motivated by the reasons above, our laboratory has in-
vested considerable efforts in the subject by taking the fol-
lowing (3+ 1)-dimensional Virasoro integrable model:

Upyr + auxxxuyz + buxxyuxz + Cuxyuxxz + d”xxuxzy + euxxxyz =0 4
(1

where a, b, ¢, d, and e are arbitrary constants. It may be
worthy to point out here that Eq. (1) was originally proposed
by Lin et al. through the means of the realizations of the
generalized centerless Virasoro-type symmetry algebra [6].
As an alternative expression, Eq. (1) could be considered as
the (3+1)-dimensional integrable extension of the
(2+1)-dimensional breaking soliton equation

V= (b+ )00y + (@ + )V + Vg (2)

for z=x,u,=v. The main characteristic feature of the break-
ing soliton equations is that the spectral parameter possesses
the so-called breaking behavior. Frankly speaking, the spec-
tral value of breaking soliton equations may become a mul-
tivalued function under the defined conditions. Hence, the
solution of these equations may also turn into multivalued. In
the literature, Eq. (1) has been used to describe the wave
interactions on the surface of the sea and it has been studied
via an extended homogeneous balance method [9].

In order to get more meaningful solutions from Eq. (1),
the equation could be rewritten as the following potential
form:

©2009 The American Physical Society
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FIG. 1. (Color online) (a) Profile of the embedded solitons for the field v given by Eq. (5a) with the conditions (8a) and (8b). (b) A
sectional view related to (a) at z=0 and tr=—4: solid red line, r=-2: dotted and dashed blue line, r=0: dashed black line, and =0.5: dashed

green line.

b+c
Uyt —4 VoW, +bw v, + COL,, +

b+c
T, F €Uy,

=0, v,=w, (3)
by using v=u,,w=u, [6]. Based on the enlightenment prop-
erties of the Béacklund transformation, we proposed that the
solutions of

v w
v=—0+vl, wzgo+w1, (4)

¢

where {v,w,} is an arbitrary known soliton solution of Eq.
(3), while vy, w, and ¢ could only be determined by substi-
tuting Eq. (4) into Eq. (3). To get significant solutions, the
seed solution was fixed as v;=0, w;=w;(y,z,1) being arbi-
trary function of y,z,t.

By means of a computerized algebra (i.e., Maple), we
obtained

_ Sekl
v= (b+c)1+exp(=kx=N]

(5a)

8e ( Sy

= -1
W_(b+c) 1+exp(—k1x_f)+g gy)"’wl’ (5b)

where b,c,e and k; are arbitrary constants, f=f(y,z,1) is an
arbitrary function of {y,z,#}, and g,w, satisfy

28, ekig,, + k(287 8,8, + f,8. + f-8,) =0,

b+c

Tklwlz +fi+ equyz +fyfz)

+[fi+ek(f,g.+f.8,+8,)]1g " =0, (6)

where g=g(y,z,t) and w,=w,(y,z,1).

After introducing some minor modifications, the follow-
ing formula [the general form of Eq. (5a)] could be pro-
duced:

aB

U v expl- B’

)

This equation was valid for some suitable fields or potential
quantities of a diversity of (3+1)-dimensional physically
models, including the Burgers system, the NNV equation, the
Jimbo-Miwa system, the potential-Yu-Toda-Sasa-Fukuyama
equation, and the Korteweg-de Vries-type equation. In Eq.
(7), f=f(y,z,t) is an arbitrary function of the indicated vari-
able, while «, 8 and y are taken as constants. In the universal
formula (7), the appearance of the arbitrary function f seems
to be closely related to the arbitrary boundary conditions in
some types of quantities for the related models. In some
well-regarded publications, the effects of the arbitrary
boundary  conditions  were  studied using the
(2+1)-dimensional integrable systems [10-14]. We trust that
one of the interesting results obtained by Fokas and Santini
is worthy to be singled out here, in which the localized trav-
eling solutions (e.g., dromions) did not preserve their form
upon interactions and hence exchange their energy, but only
some specified spectral parameters kept the solutions pre-
serve their forms. Similar results were also found in other
(2+ 1)-integrable models.

In this paper, the appropriate selection conditions of the
arbitrary functions were presented in the universal formula
(7) in order to obtain the complete elastic interactions.

Based on the arguments introduced by Fokas and Santini
[10], one could, in principle, investigate the stability proper-
ties of the solutions and their relevance as asymptotic states
for suitable initial boundary-value problems. However, in
this paper, we only studied the interactive behavior among
the localized solutions by analyzing the asymptotic proper-
ties of the universal formula (7), which were valid for more
than one system.

This paper is organized as follows. In Sec. II, some
(3+1)-dimensional solitonic solutions, such as the embedded
soliton, the taperlike soliton, the plateau-type soliton, and the
rectangle soliton, are revealed by introducing the appropriate
boundary conditions and/or initial qualifications. In Sec. III,
the interactive properties of the solitonic solutions are ana-
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FIG. 2. (Color online) (a) Profile of the embedded solitons for the field v given by Eq. (5a) with the condition (9) and x=0,
b=c=e=k;=1. (b) A sectional view related to (a) at z=0 and t=—4: solid red line, r=-2: dotted and dashed blue line, 7=—1: dashed black

line, and r=1.5: dashed green line.

lyzed both analytically and graphically. A brief discussion
and summary is given in the last section.

II. SOLITONIC SOLUTIONS OF THE (3+1)-dimensional
breaking soliton equation

Because of the arbitrariness introduced by f(y,z,?), solu-
tion (5a) may exhibit a number of abundant structures. Dro-
mions, camber-type, ring-shape, and bubblelike solitons had
been reported in the literature [6]. In this paper, we listed and
plotted only some solitons, including the embedded soliton,
the taperlike soliton, the plateau-type soliton, and the rect-
angle soliton, from the exact solution shown by Eq. (5a).

Given that some interesting lower dimensions embedded
solitons were reported in Ref. [15], a natural and important
question may remain on if we can find some types of
(3+1)-dimensional embedded solitons from the “universal”
formula. Fortunately, a positive response can be obtained
based on the arbitrariness of the function f in the universal
formula. For instance, when choosing f to be

f.z,0)==y* =22+ In[sin(y* + % = 7], (8a)

then we could derive an embedded soliton for the physical
field v expressed by Eq. (5a). The corresponding profile is
presented in Figs. 1(a) and 1(b), where Fig. 1(a) is a special
structure of the embedded-soliton type of solution with
x=0 and the parameter selections

b=c=e=k =1, (8b)

at time r=—4. Figure 1(b) showed the sectional structure of
embedded soliton expressed by Eq. (5a) with Eq. (8a) and
the parameter selections are the same as those in Eq. (8b),
except for z=0, where the embedded soliton suggested a
breathe property.

Similarly, if taking f as

f(y,z,1) = In[sech(0.5y* + 0.5z* — )], 9)

then we could derived another kind of embedded soliton for
the physical field v in Eq. (5a), as shown in Figs. 2(a) and
2(b).

When considering f to be

f,2,0) == \y* + 22, (10)

then a taperlike soliton from the physical field v of Eq. (5a)
could be obtained as shown in Fig. 3.
Furthermore, when choosing f to be

-, (11

then we could obtain a plateau-type ring soliton (named by
Lou [16]). From the physical field v in Eq. (5a), as shown in
Fig. 4.

Similarly, when choosing f as

f(y,z,0) =In{2.715 —exp[tanh(y* + z* = )]}, (12)

then we could obtain a rectangle soliton from the physical
field v of Eq. (5a), as shown in Fig. 5.

,2,1) =1n{2.715 — exp[tanh(y* + 72
f(v.z.1) =In{ pltanh(y

III. INTERACTIVE PROPERTIES OF THE
(3+1)-dimensional solitonic solutions

In a previous study from our laboratory, we plotted some
interaction figures for two special types of solitonic solutions
(i.e., the semifolded solitary waves and semifoldons) with or
without complete interactive properties [17]. Subsequently,
the complete interactive properties of the plateau-type, basin-
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FIG. 3. Plot of the taperlike solitons for the field v given by Eq.
(5a) with the condition (10) and x=0, b=c=e=k;=1.
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FIG. 4. Profile of the plateau-type ring solitons for the field v
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FIG. 5. Plot of the rectangle solitons for the field v given by Eq.

given by Eq. (5a) with the condition (11) and x=0, b=c=e=k;=1.  (5a) with the condition (12) and x=0, b=c=e=k,=1.

type, and bowl-type ring solitons of the (2+ 1)-dimensional A. Asymptotic behaviors of the localized solitonic excitations

modified Nizhnik-Novikov-Vesselov system were further
discussed [18]. In this section, as an extension, we discussed
the interactive properties of the solitonic solutions related to

produced from Eq. (7)

In general, if the function f is selected as localized soli-

the (3+1)-dimensional system. tonic excitations with

FIG. 6. (Color online) Time evolutional profiles of the interactions between an embedded soliton and a taperlike soliton for the field v
given by Eq. (5a) with the condition (18) and b=c=e=k;=1 at various time points. (a) t=-3, (b) t=0, (c) =3, and (d) a sectional view
related to (a), (b), and (c) at x=z=0: solid red line (a), dotted and dashed blue line (b), and dashed black line (c).
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FIG. 7. (Color online) Time evolutional profiles of the interactions between an embedded soliton and a plateau-type soliton for the field
v given by Eq. (5a) with the condition (19) and b=c=e=k;=1 at various times points. (a) t=—4, (b) t=0, (c), t=4, and (d) a sectional view
related to (a), (b), and (c) at x=z=0: solid red line (a), dotted and dashed blue line (b) and dashed black line (c).

M
floru= 200 fi=flay—ct+8),  (13)
i=1

where {f;} Vi are localized functions, then the physical quan-
tity U expressed by Eq. (7) can deliver M (3+ 1)-dimensional
localized solitonic excitations with the asymptotic behavior

M

ap
Ut—>:00_> — —
| gf N1 +expl- Bx—(f + F)]}

M M
=D U (nzy—ct+8)=2U7, (14
i=1 i=1

where
F7 =2 fi(F%) + 2 fi(= ), (15)
J<i j>i

assuming there was no loss of generality, ¢;>c; if i>.
Deduced from expression of Eq. (7), the ith localized ex-
citation U, preserves its shape during the interaction if

Fi=F;. (16)

Meanwhile, the phase shift of the ith localized excitation U,
reads as

5 -5 (17)
in the y direction.

The above discussions demonstrated that the localized
solitonic excitations for the universal quantity U could be
constructed without difficulties via the (2+1)-dimensional
localized excitations with the properties in Egs. (13) and
(16). As a matter of fact, all localized solutions (or their
derivatives) with completely elastic, not completely elastic,
or completely inelastic interactive behaviors of any known
(2+1)-dimensional integrable models could be utilized to
construct the (3+ 1)-dimensional localized solitonic solutions
with complete elastic (F; =F7;, for all i), not complete elastic
or complete inelastic (F7 # F7, at least for one of i) interac-
tive properties, respectively. In order to observe the interac-
tive behaviors directly and visually, we investigated some
representing examples by fixing the arbitrary functions f in

046603-5
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FIG. 8. (Color online) Time evolutional profiles of the interactions between an embedded soliton and a plateau-type soliton for the field
v given by Eq. (5a) with the condition (20) and b=c=e=k;=1 at various times points: (a) r7=—4, (b) =0, (c) t=4, and (d) a sectional view
related to (a), (b), and (c) at x=z=0: solid red line (a), dotted and dashed blue line (b), and dashed black line (c).

Eq. (5a). For convenience, we set b=c=e=k;=1 in Eq. (5a)
in the following discussions.

B. Completely elastic interactions among the embedded
solitons and other solitons on a flat background

In this section, some representing examples were studied
on the interactions of the embedded solitons and other soli-
tons. First, we considered interactions between an embedded
soliton and a taperlike soliton. Therefore, when f was shown
to be

f(y,z,0) = In{sech[0.1(y — 1)> + 0.1z> — 4]

+2 exp[—0.5V(y + 50)% + 227}, (18)

an embedded soliton and a taperlike soliton could be derived
for the physical field v in Eq. (5a), while Fig. 6 showed the
interactive property of Eq. (5a) under the proposed condi-
tions (18) with different speeds. In Fig. 6, the interactions
between the embedded soliton and the taperlike soliton were
observed showing complete elastic. After collision, the result
seems to be identical to the complete elastic collisions be-
tween the two classical particles, in terms of their ampli-
tudes, velocities, and wave shapes.

Taking the similar approach above in the second case, the
interactions between an embedded soliton and a plateau-type
soliton were observed. When f was selected to be

f(y,z,1) = In(2 + sech[0.1(y — £)> + 0.12% — 4]
— 0.7 exp{tanh[0.2(y + 5¢)> + 0.2z> = 4]}),
(19)

then an embedded soliton and a plateau-type soliton could be
derived from the physical field v in Eq. (5a). As shown in
Fig. 7, the interactions between the embedded soliton and the
plateau-type soliton were revealed being completely elastic.

In the third case below, the interactions between an em-
bedded soliton and a rectangle soliton were discussed. If f
was chosen to be

f(y,z,0) = In(1.4 + sech[0.1(y — 1)> + 0.1z7 — 4]
- 0.5 exp{tanh[0.01(y + 57)* + 0.01z* — 47}),
(20)

then an embedded soliton and a rectangle soliton could be
derived for the physical field v in Eq. (5a), as shown in Fig.
8. Again, the interactions between an embedded soliton and a

046603-6
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FIG. 9. (Color online) Time evolutional profiles of the interactions between two embedded solitons for the field v given by Eq. (5a) with
the condition (21) and b=c=e=k;=1 at various times points: (a) t=—4, (b) r=0, (c) r=4, and (d) a sectional view related to (a), (b), and (c)
at x=z=0: solid red line (a), dotted and dashed blue line (b), and dashed black line (c).

rectangle soliton were completely elastic, indicating no
changes in their amplitudes, velocities, and wave shapes af-
ter collision.

In this paper, the fourth case focused on the interactions
between two embedded solitons. When f was taken to be

f(y,z,0) = In{sech[0.1(y — 1)* + 0.1z> — 4]
+2sech[0.3(y +50)%+0.322 4]},  (21)

then two embedded solitons were derived for the physical
field v in Eq. (5a) presented in Fig. 9, in which the interac-
tions of the two embedded solitons showed completely elas-
tic properties.

Remark 1. Along the same line of our arguments and the
performance of this study, we derived interactions between
(1) a taperlike soliton and a plateau-type soliton, (2) a taper-
like soliton and a rectangle soliton, (3) a plateau-type soliton
and a rectangle soliton, (4) two taperlike solitons, (5) two
plateau-type solitons, and (6) two rectangle solitons for the

physical field v in Eq. (5a). Those interactions showed com-
plete elastic properties. For the sake of simplicity, we omit-
ted the evolutional profiles of the corresponding times in this
paper.

Finally, when f was chosen to be

f(y,z,t) =In(1.4 + sech[0.1(y — 1)* + 0.1z> — 4]
- 0.5 exp{tanh[0.01(y + 81)* + 0.01z* — 47}

— 0.7 exp{tanh[0.2(y + 47)> + 0.27> = 4]}),
(22)

then the three-soliton solution, including an embedded soli-
tons, a plateau-type soliton, and a rectangle soliton, were
derived for the physical field v in Eq. (5a) presented in Fig.
10. The interactive phenomena are similar to those of the two
solitons described in the above section, showing elastically
interacting with each other.

Remark 2. When we continued the above process, the
others three-soliton solutions, four-soliton solutions, and
even the N-soliton solutions were derived. For the sake of
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FIG. 10. (Color online) Time evolutional profiles of the interactions among an embedded soliton, a plateau-type soliton, and a rectangle
soliton for the field v given by Eq. (5a) with the condition (22) and b=c=e=k;=1 at various times points: (a) t=—4, (b) t=0, (c) r=4, and
(d) a sectional view related to (a), (b), and (c) at x=z=0: solid red line (a), dotted and dashed blue line (b), and dashed black line (c).

simplicity, we would not discuss such evolution and the in-
teractive behaviors in details in this paper.

C. Interactions among embedded solitons and other solitons
on a nonflat background

As far as we understood, localized structures derived from
some solitary wave solutions or rational solutions in (1+1)-
and (2+1)-dimensional system were usually considered to
propagating on a constant background (or an ideal back-
ground), which does not exist actually in the real world since
some background waves are always encountered. In fact, a
lot of physical phenomena need to be described with certain
background waves. Given that the real physical space time is
in (3+1) dimensions, its localized excitations, especially for
those related to propagation on a background wave, have
attracted attention of many mathematicians and physicists for
years, although little progress has been made in this direc-
tion. As a different approach, our focus in this section was on
some evolutional properties of the interactions between the

embedded solitons and other type of solitons that occur in
the nonflat background in this study. First, we considered
interactions between an embedded soliton and a taperlike
soliton on a periodic wave background of trigonometric
function. Therefore, when f was shown to be

f(,2,1) = In{- 0.02 sin(0.05y> + 0.05z% — 1)
+sech[0.1(y —1)> + 0.1z% - 4]

+2 exp[— 0.4v(y + 5)* + 2*1},

an embedded soliton and a taperlike soliton in the periodic
wave background could be derived for the physical field v in
Eq. (5a). Figure 11 showed the corresponding profiles of the
complex wave excitations presenting the propagation of an
embedded soliton moving along the y axis in the positive
direction and a taperlike soliton moving along the y axis in
the negative direction in the determined periodic wave back-
ground [Eq. (23)] with different speeds. As shown in Fig. 11,
during the process of propagation, the amplitude of the com-
plex waves changed due to the superposition of the solitary

(23)
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FIG. 11. (Color online) Time evolutional profiles of the interactions between an embedded soliton and a taperlike soliton in the periodic
wave background for the field v given by Eq. (5a) with the condition [Eq. (23)] and x=0, b=c=e=k,=1 at various time points. (a) r=-3,
(b) =0, (c) r=3, and (d) a sectional view related to (a), (b), and (c) at z=0: solid red line (a), dotted and dashed blue line (b), and dashed

black line (c).

wave and underlying periodic wave. If the background wave
amplitude and the soliton amplitude increased, we could find
the increases in the complex wave amplitude based on wave
superposition theorem. However, the shapes and velocities of
the embedded solitons and the taperlike solitons did not suf-
fer from any changes. The findings were very similar to
many actual physical processes in the natural world, such as
solitary waves in the study of water waves.

Remark 3. Further to the above findings, if we considered
the interactions among the embedded solitons and the other
solitons (e.g., the plateaulike soliton, rectangle soliton, and
embedded soliton) under the periodic wave background, phe-
nomena similar to the above findings in Sec. III C could also
be observed. Moreover, supposing that the background of
these interactions were Jacobi elliptic waves or Bessel func-
tion waves, we could then obtain the same conclusion. To
avoid extensive repeating in this paper, we omitted the cor-
responding content in details here.

Interactions are an important part of the soliton theory;
solitons are actually defined in a traditional way by referring
to their elastic interactions [19]. As mentioned in Sec. IIT A,
there are some kinds of interaction forms. We noticed that
the background of these interactions was the flat plane or the
periodic wave plane. An interesting question may be raised
on how the interactions between solitons occur in the kink
background? For studying such interactive form, we selected

the f in Eq. (5a) as

f(y,z,1) =In(2 = 0.2 tanh(0.5y + z + 20)
+sech[0.1(y — 41)* +0.1z% — 4]

— 0.8 exp{tanh[0.1(y + 31)* + 0.1 — 4]}).
(24)

Figure 12 showed the interactions of the two solitons on the
kink background. At the initial phase, the two solitons were
distant in space. As time passed, the two solitons collided
and then separated. As indicated, all these interactions were
elastic. Further analysis showed that the interactions had rich
behavior because of the kink background. One interesting
aspect was that the two solitons also interacted with the
background kink. To clearly display these interactions, we
plotted the evolution of soliton interactions in Figs. 13-15 at
section z=0.

At the start of the interactions between the embedded soli-
tons and the background kink, the interactions were not elas-
tic (Fig. 13). Gradually, the embedded solitons and the pla-
teaulike solitons met at the lower branch of the background
kink, and their interactions became elastic (Fig. 14). Follow-
ing the separation of the embedded solitons and the plateau-
like solitons, the plateaulike solitons moved to the upper
branch of the kink. The interactions between the plateaulike
solitons and the kink were not elastic (Fig. 15). When the
embedded solitons and plateaulike solitons were in the lower
and upper branches of the kink, they moved independently.
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FIG. 12. Time evolutional profiles of the interactions between an embedded soliton and a plateaulike soliton on the kink background for
the field v given by Eq. (5a) with the condition [Eq. (24)] and x=0, b=c=e=k;=1 at various time points: (a) t=—8, (b) t=—4, (c) t=4, and

(d) r=12.

By viewing the interactions on the kink background from
another perspective, we believed that the background kink
might work as a “reservoir.” When the embedded soliton
interacted with the reservoir kink, it would transfer some
information to the reservoir. However, when the plateaulike
soliton interacted with the reservoir, it would obtain the in-
formation from the embedded solitons based on the interac-
tions with the kink. With a high possibility, such interactions

A

24

22

-100 80 60 -40 -20 0 20 40 60 80 100

(a) ¥

might be useful in the communication based on the soliton. If
the solitons were the carrier of the transferred information
and the interactions between the solitons are elastic, the in-
formation transfer or exchange between the solitons would
be difficult. As for interactions on the soliton background,
the first soliton (the carrier) would initially transfer the infor-
mation to the background. The second soliton would then get
the information by the interactions with the background.

: [
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FIG. 13. The evolutional of the interactions between an embedded soliton and a plateaulike soliton on the kink background for the field
v given by Eq. (5a) with the condition [Eq. (24)] and x=0, b=c=e=k;=1 at various time points: (a) t=—18; (b) t=—4. The interactions

between the embedded soliton and background kink are not elastic.
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FIG. 14. The evolutional of the interactions between an embedded soliton and a plateaulike soliton on the kink background for the field
v given by Eq. (5a) with the condition [Eq. (24)] and x=0, b=c=e=k; =1 at various time points: (a) t=—4; (b) r=4. The interactions between

the embedded soliton and the plateaulike soliton are elastic.

Therefore, the whole process could be completed using the
background soliton for the information relay.

IV. SUMMARY AND DISCUSSION

Overall, it has been a convincing fact that the findings in
the research of solitons provide very interesting prospects in
many fields of the natural science. The interactive properties
of solitons may play an important role in the future develop-
ment of many scientific applications. Although the soliton
structures and their properties of the (1+ 1)-dimensional in-
tegrable nonlinear evolution have been well studied, the un-
derstanding of the soliton structures and their interactions in
the higher spatial dimensions continue to be limited because
of the technical difficulties in finding suitable formulas in the
higher dimensions nonlinear models.

By using a special variable separation approach for a
(3+1)-dimensional model, a formula was established in this

[
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22
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-100  -80 60 -40 -20 0 20 40 60 80 100

(a) y

paper, in which its arbitrary variable-separated functions
were able to be involved. Thanks to the existence of the
arbitrary functions in the universal formula, various special
types of the explicit multiple wave interactions of the solu-
tions on a flat background, including the embedded solitons,
the taperlike soliton, the plateau-type soliton, and the rect-
angle soliton, were explicitly given both analytically and
graphically. Through our study, only some representing cases
to those interaction wave solutions were analyzed using a
suitable selection process for the arbitrary functions accord-
ing to the asymptotic results of Eq. (14). The study demon-
strated that the interactive behaviors among them were elas-
tic. Moreover, the soliton interactions on the periodic wave
background and the kink background were also obtained,
showing the interactions between the two solitons as elastic.
However, the interactions between the solitons and back-
ground kink were not elastic.

2 ﬂ
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FIG. 15. The evolutional of the interactions between an embedded soliton and a plateaulike soliton on the kink background for the field
v given by Eq. (5a) with the condition [Eq. (24)] and x=0, b=c=e=k;=1 at various time points: (a) t=4; (b) t=20. The interactions between

the plateaulike soliton and the background kink are not elastic.
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