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Multiple scattering of slow ions in a partially degenerate electron fluid
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We extend former investigation to a partially degenerate electron fluid at any temperature of multiple slow
ion scattering at 7=0. We implement an analytic and mean-field interpolation of the target electron dielectric
function between T=0 (Lindhard) and 7—  (Fried-Conte). A specific attention is given to multiple scattering
of proton projectiles in the keV energy range, stopped in a hot-electron plasma at solid density.
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I. INTRODUCTION

The purpose of the present paper is to contribute to the
investigation of the basic interaction physics involved in the
recently reoriented U.S. heavy-ion program [1-3] and now
mostly devoted to the production of the so-called warm
dense matter (WMD), i.e., plasmas at ordinary matter density
with a few eV temperature. Toward this goal, it is proposed
[2,3] to accelerate linearly intense ion beams impacting thin
foils.

The given ion-target interaction is also supposed
to take place at moderate or low projectile velocity
(~0.03-3 MeV/a) [3] near Bragg peak, thus featuring a
maximum, as well as mostly homogenous, energy deposition
in a thin foil. We thus focus the attention on the very low
velocity regime for the ion projectile with an oriented veloc-
ity v, =<Uy,, With vy, denoting the target electron thermal
velocity. Relevant ion stopping issues for relatively light pro-
jectile (Z=24) have already been alluded to [1,3]. In this
case, the actual projectile penetration depth [4] should be
routine evaluated through an estimate of multiscattering
(MS) on target ions. Moreover, recent studies dedicated to
the stopping of intense relativistic and PetaWatt (PW) laser-
produced electron beams have also unraveled a non-
negligible contribution to MS due to the target electrons [5].
With these promises in mind, we are thus lead to extend at
any target temperature 7" a recent MS treatment for low ve-
locity ion projectiles in a fully degenerate electron jellium at
T=0 essentially due to Archubi and Arista [6]. The WDM
parameters range puts a strong emphasis on the partial de-
generacy of target electrons with 7=10 eV.

Toward this goal, we heavily rely on the mean-field and
interpolated dielectric function [7-9] &(g,w) between the T
=0 (Lindhard) [10] and the high-temperature (Fried-Conte)
[11] corresponding limits, as worked out by the Orsay group
and others [7-9,12]. Similar efforts have also been focused
on low velocity ion slowing down in partially degenerate
electron fluid through a nonlinear treatment of the T depen-
dence [13].

The sequel is structured as follows. In Sec. II, we stress
the usefulness of pseudoanalytic expressions [8] for the RPA
e(g,w) at any T out of former exact interpolations [7]. From
them, in Sec. III, single-scattering features are derived
through the probability function G(g | ) in terms of transverse
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momentum. In Sec. IV, we turn to multiple scattering and
focus our attention on the half angle at half maximum ¢,
through a parameter investigation in terms of electron target
temperature 7, thickness X, and density number n,, as well as
ion projectile velocity v,,. A numerical and efficient extension
of the Bethe ansatz is in Sec. V. Summaries are briefly out-
lined in Sec. VL.

IL. e(Q,w) AT ANY TEMPERATURE T

Among the several available presentations [7-9] of the
interpolated random-phase approximation (RPA) dielectric
function £(g, w), the one advocated by Arista and Brandt [8]
seems especially suited to the present analysis. In view of the
low ion velocity v, advocated here, we may safely restrict to
a quasistatic approximation (v, =v., Where vy, includes a
Pauli repulsion contribution for T= T}, T being Fermi tem-
perature) such that w—0. Then, explicating the complex
e(q,w) as

e(q,0) = &,(q,0) + ig,(q, ), (1)

we can use the approximation |e,(¢,w)| <|e,(q,w)| to vali-
date the so-called stopping function under the form

I | elg0) _&lgo)
Im{_ (g, ] g o) gXg.0)’ @

yielding the spectrum of plasma excitations in terms of mo-
mentum transfer Zg and energy % w, so in the @ — 0 limit and
with Table II of Ref. [8], we get

S(q’w) =Im| -
e(q,w
2m’e*qw 1
= 2 qz 2" 2 2 > 3)
1 (g +q)) hq
¥ 1+exp -7
8m,T

with 7=Bu pictured on Fig. 1, where 8=(kgT)~! and u the
chemical potential of the partially degenerate electron fluid
(PDEF). qf (see Fig. 2) is obtained from # through

1
‘1.% = E‘I%Fel/zF—uz(ﬂ), (4)

with grr the Thomas-Fermi screening parameter and
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FIG. 1. (Color online) n(:,@-"—T) in terms of 0:%.
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the Fermi function. It should be appreciated that we deleted
the usual Bose factor N(w) in reducing Eq. (3) to the energy-
loss function because N(w) gets finally cancelled in the
(¢,w) quadrature featuring the stopping-power expression
[8].

(i) The extreme limits of % with respect to temperature

1
—(9<1
p0<D

n= 4 (5)
ln< 3V/7_T6’3/2)

are given on Fig. 1 altogether with the exact interpolating
black curve 7 valid at any T (or equivalently 6).

(i1) qf advocate the two 0=T—TF limits
(

2
qdt1r
(6<1)
9¢
1+ —
4

/),

\/ﬁ(0> 1)
Tog
\

and corresponding limit

q; =~

. —w

lim g, = grp=\3—+

) o<1 U
qs =~ 1
limg,=—
1 \p

in terms of PDEF frequency w,, vp=figr/m, the Fermi ve-
locity with Fermi wave number ¢p=(37n,)!"3, and \,, the
classical Debye screening length valid for 6€ > 1. These ex-
pressions altogether with the qf valid for all T are displayed
on Fig. 2.

Then we can express the right-hand side of Eq. (3) in the
two extreme limits by
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FIG. 2. qf, (a.u.) in terms of 0=Tlp.

(1) #<1. Here, altogether with the q? valid for all 7,

S(q.0) 2m’e’qw f <>
q,0) =555, for g=2qp,
m(q* + ‘]%F)z ’
S(q,w) =0, for g>2qp. (6)

(2) 6> 1. Here,

2.2 2 32 2.2
2 h
s = oS ) ol gi) O
(q +1/)\D) mekBT 8mekBT

Equation (6) corresponds to absorption of small amounts of
energy iw<<Tj by a degenerate electron gas. Owing to the
exclusion principle, only those electrons close to the Fermi
surface can participate. Thus, the momentum transfer g can
never be larger than 2¢.

This restriction is relaxed for high temperatures as
shown by Eq. (7), where excitations with small w but large
q values occur—they involve electrons in the tail of the
Maxwell-Boltzmann distribution and thus contribute with
exponentially decaying probability. Yet, this is a characteris-
tic quantum effect, as indicated clearly by the factor
exp(~#2q*/8m,kyT) which replaces the analogous factor
exp(mw?/2kgTq?) arising in classical theories.

III. SINGLE SCATTERING

Adapting the T=0 formalism (cf. [14,6]) for the ion pro-
jectile scattering probability expressed as

d'p__|Fg)l,
Pgdw ¢

mL(q,w ](Wm— fG-o,),  (8)

with a pointlike projectile form factor F(q)=Ze, Z being the
ion charge, and using the splitting d*q=d’q, dg, relative to
initial beam velocity v, we get

&P (&P
= q

dq, ) d’q
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FIG. 3. (Color online) Probability distribution Gyr(g1) at any
temperature T contrasted to its FEG counterpart (7=0). ¢, in aal
and r;=1.5.
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expressing the probability of ion projectile differential scat-
tering, yielding its angular deflections in single-scattering
events through inclusion of the target electrons collective
screening properties. Putting Eq. (3) into the above equation
(9) yields

d_P_ G ( )
dqL - Up vr\q1),
where
Gyrlq.)
4Z264m§ foc 1 1 d
=", 4 q
fitw ), (*+4)7 | ( n )
+exp qg -7
8m,T

(10)
denotes the v,-independent probability function. Equation
(10) thus extends at any T value a former T=0 expression [6]
derived within the framework of the so-called free-electron-
gas (FEG) model.

Figure 3 depicts a typical Gy;{(g,) scatting function con-
trasted to its 7=0 (FEG) homologous for a typical target
density r,=1.5, where 47r/3=1/n,=4.8 X 10 cm™, for a
proton projectile (Z=1). The function G(g,) at T=0 always
features an upper bound for Gyy(g ). The latter slightly de-
creases with increasing 7 at fixed n,, while its range steadily
extends to higher ¢, values. Equation (10) is also contrasted
to its high-temperature Fried-Conte limit [cf. Eq. (7)] on Fig.
3 featuring the lowest black curve.

Focusing attention on the strongly degenerate range 6
=1, one obtains corresponding G curves on Fig. 4, while
extending ¢, to the 6 values displayed on Fig. 3 yields the
more complete G patterns featured on Fig. 5. Then, full de-
generacy (6=0) is signaled by a vertical line.

IV. MULTIPLE SCATTERING

A. General
From the density probability function [Eq. (10)], we can
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FIG. 4. (Color online) Same caption as Fig. 3 for §=1.

access the differential cross section for ion multiple scatter-
ing in a PDEF. At a given transverse momentum transfer
hq |, this quantity writes as

1 1
do=——dP=—Gylq,),
nw, n,

(11)

with angular ion deflection ¢ taken in the small-angle ap-
proximation fig , =M v, with the ion projectile mass M,,.

Following the Sigmund-Winterbon procedure [6,15], we
then turn to the convolution of the multiple-scattering events
as the particle penetrates a distance X within the solid. It is
usually represented by the multiple-scattering (MS) function
f(a,X) which yields the statistical distribution of particles
with a total angular deflection a. So we can express the
electronic multiple-scattering (EMS) function in the form
F(a,X)dQ=f(a,X)dQ/2m, where f(a,X) is given in the
small-angle approximation by [15]

fla,X) = f kd k] ka)exp X0 (12)

0

The function oy(k) is determined from the previously de-
fined scattering function Gy4(q ), for the present case of a
PDEF, which takes the form
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FIG. 5. (Color online) Same caption as Fig. 3 with enlarged gperp

range.
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FIG. 6. (Color online) «,, (in degrees) in terms of 7/Ty in an
electron target with density r,=1.5 and thickness X=800 a.u.
(0.0424 pm). k=1.

O'OVT(K)=J[1—JO(K¢)]CZU

q.h
=_f {1—J0< My )]GVT(qL)dQL’ (13)
P

with ¢, qualifying a classical and nondegenerate upper
bound. In this connection, it is worthwhile to notice that
replacing the given infinite upper limit by the fully degener-
ate 2gy one does not change significantly the () estimate.
Finally, we reach the angular distribution function explained
at Eq. (12) for a given penetration depth X in target.

B. Half width at half maximum angle «;,,

Analysis of quadrature of the previously reached Eq. (12)
essentially relies on aj,,, the half angle at half maximum,
fulfilling f(«,X)=(0,X)/2. The usefulness of this concept is
successively highlighted through its 7" dependence, X depen-
dence, v, dependence, as well as n, (or r,) dependence.

The T dependence is documented on Fig. 6 as a monoto-
nous decay for a PDEF target §=1 with n,~4.8 X 10** and
a thickness X=0.0424 wm (800 a.u.), while the strongly de-
generate regime (<< 1) features a nearly horizontal plateau.
At every 6 value, the thickness dependence follows the
Gaussian-like trend

app * x (14)
already featured at =0 [6].
V. BEYOND THE BETHE APPROXIMATION

Usually, the right-hand side of Eq. (13) is estimated
through the assumption (M, ion projectile mass)

KqL
MV,

with the Bethe ansatz [17]

<1, (15)

PHYSICAL REVIEW E 80, 046408 (2009)

qu qu 2
1-J, = /4| |, (16)
Mlvp Mlvp

which we intend to enlarge here. Usually, one assumes that
for heavy ions with M,>>m, at nonzero v, this ansatz is a
robust one. However, if one has to consider lighter projec-
tiles such as mesons or electrons and arbitrary small projec-
tile velocities as well, one might encounter difficulties, even
if the k—o0 limit is handsomely taken into account by a
sufficiently fast decaying « integrand, while the above com-
puted G(q,) also decreases faster than g* as g, — .

A typical quantity of interest, the mean-free path (mfp) /,
thus writes as (in a.u.)

1 1 & 5, 1 ,-
—=———F == , 17
¢ aMup, 2T rta (17)
where
7. = J q.G(q,)dq, (18)
0
and
)
— /s
=—07, (19)
(Mlvp)2

when one restricts to the Bethe ansatz (16).
Now, we propose to relax the constraint (15) with the
finite and alternate series [18]

x\? x\?* x\®
1 = Jy(x) =4(Z> —4(2) + 1.777 756(2)

X 8 X 10
—0.444 358 4(1) +0.070 925 3(2)

X 12 X 14
-0.007 672 2(1) +0.000 501 441 5(2)
+ &%), (20)

with |gy(x)]=107° for -4 =x=4, which extends the Bethe
ansatz (16) and expression (17) for 1/€ to

E = % 7 - % +1.777 756@ - 0.444 358 44—‘bzqi
11_010 JIIZ
+0.070 925 341057‘1’ 0.007 672 24125712
714
+0.000 501 441 5%6714, (21)
where
‘ﬁp = f qipGVT(qL)dQL~ (22)
0

By inspecting Figs. 3-5, it is obvious that the 2p momenta
(22) remain finite. However, they can reach very high values

for p=6 or 7, which can severely restrict the y-validity
range. Nonetheless, the extension (20) proves useful at not
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TABLE I. ¢ [Eq. (19)] and R [Eq. (28)] in terms of T for T/ Tp=1.

T3=0.29 Tp=1.34 Tp=6.215 T=28.85
N,=10% cm™ N,=10** cm™ N,=10% cm™ N,=10% cm™
W R W R W R ¥ R
0.01 0 0.01 0 0.01 0 0.01 0
0.05 0 0.05 0 0.05 0 0.05 0.02
0.1 0 0.1 0 0.1 0 0.1 0.07
0.5 0.026 0.5 0.1 0.5 1.8 0.5 10.6
1.0 0.1 1.0 0.3 1.0 4.2 1 77154
2.0 0.3 2.0 6.34 2.0 26086
3.0 0.48
4.0 0.54
high a temperature (T=3 T}), while it allows converging
F_ip(n) = (25)

alternate series (21) up to = 1, which already enlarges con-
siderably the validity domain of the initial Bethe ansatz (16).

A deeper insight is also afforded by a direct and analytic
estimate of Eq. (22) with Eq. (10) in atomic units, so that (p€

[1-7])

27* (8T U dy

—2p _
m (p+1) q, W+ uf)z(l + e“z_”)

q:

(23)

after integrating by parts, where (7 in a.u.)

(23a)

with
TF 3/2 1
=l ) (reir)” ey
+

and [8]

TABLE II. Same caption as Table I for 7/Tr=0.1 and Tr
=28.85.

¥ R
0.01 0
0.05 0.002
0.1 0.007
0.5 0.58
1 19

@orom ™ U1,

A more precise albeit involved Padé approximation for
F_;»(7) may alternatively be used [9]. On the other hand,
one can also introduce

0
p=F ;T), (26)

where u(7T) and T are in Ty, with [19] and

2

t
wO(T) = exp|— - + AP+ 2718 > (T)exp(— 1 — Ayt
— A, (27a)
with
t=aT, A;=0.178, A,=1,75, A;=594,
while
- 417
“7=—1n(6n2)+ LS+ oo, (27b)

A first test of the above derivation is performed with 7/Ty
=1 and Tr=3 in a.u, which in the fast ignition scenario (FIS)
for inertial confinement fusion (ICF) [16] yields 0.0475 for

the first term in the right-hand side of Eq. (21) with ¢=1,
although the whole series amounts to 0.0429. On the other
hand, at FIS ignition (7/Tz=1) with n,=10% e cm™ (T}
=29), the series (21) converges only with ¢=0.1 to its first

TABLE III. Same caption as Table II for Tx=0.3.

W R
| 0.0045
2 021
3 0.40
4 0.58
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term which nevertheless significantly improves on the ex-
treme inequality (15).

A wider perspective is offered in Table I at 7/Tr=1 and
for target electron densities of FIS concern, ie., 10%
=N, (cm™?) =10, with 0.29=T,=28.85. Then, we con-
sider the ratio

2
%—[RHS Eq. (21)]
R= 2 (28)
q.
4

in terms of ¢ [Eq. (19)]. Table I shows that for y=0.1, the
restriction to the first term in Eq. (21) remains an excellent
approximation for any T value. It persists as a possible one

up to =1 for Tr=0.3 and 1.34. Above /=1 and for higher
Ty values, the ratio R can demonstrate an explosive increase,
invalidating completely the so-called Bethe ansatz.
Corresponding physical situations primarily highlight
multiple scattering of lighter projectiles such as electrons and
mesons in a strongly degenerate electron target. Switching
attention to strongly degenerate electron targets featuring
T/Tr=0.1, one witnesses contrasting robustness behaviors of
very dense (Table II) and moderately dense targets (Table

D). In the first case, R remains close to zero only with 171

=0.1, while in the second case, one sees that 17/51 fulfills
this requirement.

It should be appreciated that 7/T7=0.01 would produce
nearly identical outputs. On the other hand, in the high-
temperature range 7/Tr= 1, the robustness of the Bethe an-
satz decreases with increasing 7 as evidenced on Table IV.
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TABLE IV. R values [Eq. (28)] for T=0.3 in terms of 7/ Tk.

TIT 1 4 10 100

7
0.01 0 0 0 0
0.05 0 0 0 0.012
0.1 0 0 0.005 0.047
0.5 0.026 0.054 0.11 6.54
1 0.1 0.18 0.3 47700.4
2 0.3 0.0005 156
3 0.48 91.4
4 0.54

VI. SUMMARY

We have extended to any temperature a former 7=0 [6]
FEG multiple-scattering formalism for a low velocity (v,
<vge) ion projectile stopped in a PDEF of potential WMD
concern. The relevant «;,, parameter exhibits a significant
temperature dependence.

These calculations are of relevance to deuterium-tritium
targets with n,=10%#-10?° cm™ at Te[0.5;2] keV submit-
ted to proton beams in the MeV energy range in order to
achieve fast ignition in ICF [16]. They also pave the way to
extending multiple-scattering studies to projectiles with any
mass, not only heavy ions, as far as arbitrary degenerate
electron targets are considered.
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