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Simulation of a Langevin-dynamics model demonstrates emergence of critical fluctuations and anomalous
grain transport which have been observed in experiments on “soft” quasi-two-dimensional dusty plasma clus-
ters. Our model does not contain external drive or plasma interactions that serve to drive the system away from
thermodynamic equilibrium. The grains are confined by an external potential, interact via static Yukawa forces,
and are subject to stochastic heating and dissipation from neutrals. One remarkable feature is emergence of
leptokurtic probability distributions of grain displacements &(7) on time scales 7<< 75, where 7, is the time at
which the standard deviation o(7) =(&*(7))"? approaches the mean intergrain distance A. Others are develop-
ment of humps in the distributions on multiples of A, anomalous Hurst exponents, and transitions from
leptokurtic toward Gaussian displacement distributions on time scales 7> 75. The latter is a signature of
intermittency, here interpreted as a transition from bursty transport associated with hopping on intermediate
time scales to vortical flows on longer time scales. These intermittency features are quantitatively modeled by

a single-particle Itd6-Langevin stochastic equation with a nonlinear drift term.
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I. INTRODUCTION

Since a large aggregate of dust grains embedded in a
plasma can attain virtually all known states of matter [1], the
ability of optical tracking of individual grain trajectories has
made these systems particularly attractive for studying trans-
port properties and emergent complex behavior in soft mate-
rials. In a number of recent dusty plasmas experiments
anomalous properties, such as non-Gaussian displacement
distributions and anomalous diffusion, have been observed.
Yet it is not clear whether this behavior derives from non-
equilibrium physics due to external forcing of the grain ag-
gregate, or whether critical fluctuations [2] and anomalous
transport may emerge in aggregates subject exclusively to
statically screened Coulomb forces and independent stochas-
tic forcing and friction due to collisions with the background
neutral gas. The purpose of this paper is to demonstrate that
the latter is possible and that non-Gaussian statistics does not
have to arise from particular nonequilibrium physics.

So far few molecular-dynamics (MD) or Langevin-
dynamics (LD) simulations of dust transport have been able
to reproduce the anomalous results observed in experiments,
although subdiffusion on short time scales have recently
been reported for a bidispersive disordered assembly of
Yukawa particles [3]. Here we adopt the terminology em-
ployed in [4], where MD refers to simulation of an aggregate
of particles interacting via Yukawa forces and LD refers to a
system that in addition is subject to stochastic forcing and
friction represented by a Langevin thermostat. The latter rep-
resents a heat bath which should allow the system to relax to
thermodynamic equilibrium with the neutral gas.

Under ground-based laboratory conditions dust grains
levitate in electrostatic sheaths, which give rise to plasma
anisotropy and suprathermal ion flows that may act as exter-
nal forcing. Such experiments are referred to as two-
dimensional (2D or quasi-2D) due to the fact that vertical
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motion of particles is severely restricted (monolayers) and/or
particles are vertically aligned due to the ion flow. Dust
transport under such conditions has been extensively studied
both in laboratory [4—16] and simulations [4,13-16]. Anoma-
lous transport exhibiting Gaussian [4,13] as well as non-
Gaussian [7,9,11,12,14] statistics has been reported for both
2D and quasi-2D cases.

In this paper we show that a model that includes only
Yukawa interaction between particles, an externally imposed
confining potential, and stochastic heating and dissipation
from neutrals, is able to demonstrate emergence of non-
Gaussian statistical features associated with observed coop-
erative particle hopping [5,7,9-11] and vortical flow patterns
[12,15]. The simulations also reveal some features for which
we report the experimental footprint here—the development
of humps on the displacement probability distribution func-
tion (PDF) corresponding to integer multiples of the mean
intergrain distance A.

We study quasi-2D systems with varying “stiffness,” with
particular attention paid to the transition in transport charac-
teristics from time scales 7<<7, to 7> 75, Where 7, is the
characteristic time for a dust grain to diffuse a distance A,
i.e., o(1y) =(&(1y))">*=A. For this purpose we analyze data
from ground-based laboratory experiments (quasi-2D) and
perform molecular-dynamics simulations in quasi-2D and 2D
over a range of states, from pure crystal to liquid with par-
ticular focus on soft (viscoelastic or hexatic) states at the
transition between crystal and liquid.

By examining and contrasting these data, the following
picture emerges: the shape of the position displacement dis-
tribution P[&(7)] is Gaussian for times shorter than the grain-
grain collision time 7.. On these short time scales the grain
motion is ballistic and the displacement divided by 7 can be
interpreted as the instantaneous grain velocity. Hence, the
Gaussian displacement PDF reflects the Maxwellian velocity
distribution resulting from the Gaussian stochastic heating
term. On scales 7,<7<7, the PDF develops a leptokurtic
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shape. For stiffer systems, as 7approaches 7, humps develop
on the tail of the PDF at displacements &(7) corresponding to
integer multiples of A. These humps signify that on these
time scales the grain hopping in the imperfect hexagonal
lattice influences the statistical transport characteristics. On
even longer time scales, the kurtosis of the PDFs approaches
that of a Gaussian indicating that multiple hoppings may
represent a sequence of independent transport events [7].

In softer systems the picture on intermediate and longer
time scales is different. The humps due to hopping are
masked by the emergence of large-scale vortical motions and
the PDFs on the hydrodynamical time scales reflect these
vortex motions.

An interesting observation is that Gaussian statistics char-
acterizes both the solidified crystalline state and the pure
liquid state. Non-Gaussian statistics appears when the crystal
is sufficiently soft to allow development of defects and par-
ticle hopping, but sufficiently stiff to restrict free diffusion
on scales larger that A. It appears on spatial displacement
scales from a fraction of A and at least up to those scales
where elasticity dominates over viscosity. The fact that
Gaussian statistics and normal transport is restored in the
purely liquid phase indicates that the anomalous characteris-
tics are associated with critical fluctuations in the form of a
scale-free hierarchy of vortices [15]. The vortices emerge
from the stochastic forcing only if the lattice resides in a soft
viscoelastic transitional state between crystal and liquid.

We also discuss the possible physical origin of non-
Gaussian displacement distributions and anomalous transport
and show how these features derive naturally from a single-
particle Langevin equation with a nonlinear drift (friction)
term modeling the collective effects of dust-dust interaction.

II. DATA SOURCES
A. Laboratory experiments

For this paper a reanalysis has been made of raw data
from the experiment reported in Ref. [11]. This experiment
was performed in a capacitively coupled rf discharge oper-
ated in argon at pressure 1.8 Pa and rf power of 10 W.
A cluster of 120 melamine-formaldehyde monodispersive
spheres with a diameter of 8.9 um was confined by the po-
tential created by a copper ring mounted on the lower elec-
trode. The dust particles were illuminated by a horizontal
laser sheet and 50 000 images were taken by a video camera
at a sampling rate of 30 Hz and spatial resolution of
6.7 um/pixel.

As seen from Fig. 1(b) of Ref. [11], where trajectories of
particles over time lag of 1.7 s are presented, the grains have
limited mobility and we refer to these data as our “stiff clus-
ter” experiment. The reanalysis shows the evolution of radial
displacement PDFs computed with improved statistics com-
pared to that of Ref. [11]. This analysis reveals features of
the PDFs which were not resolved in the earlier data and also
allows us to obtain PDFs of displacements on much longer
time scales.

In Ref. [12] a large circular cluster of 600 dust grains in a
monolayer configuration was studied in a similar experimen-
tal setup. The cluster was brought to a partly ordered state
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allowing large-scale viscoelastic vortex flows (see Figs. 1
and 2 of Ref. [12]). The experiment was operated in argon at
a pressure 4 Pa and rf power of 19 W with melamine-
formaldehyde spheres with diameter of 7.2 wm. The grains
were confined radially by the potential created by a cavity
of 6 cm radius machined into the lower electrode. The
cluster diameter was 16 mm with interparticle distance
A=0.6 mm. In this experiment 30 000 images were taken
by a video camera at sampling rate of 30 Hz and spatial
resolution of 24 um/pixel. We will refer to this data as the
“soft cluster” experiment. We will also connect the results
from our model simulations to the experimental studies
on cold quasi-2D dusty-plasma liquids reported in Refs.
[5,7,9,10].

B. Langevin-dynamics simulations

The simulations are performed for the Yukawa system of
particles embedded into a Langevin thermostat [17] which
simulates the effect of the collisions with the electrically
neutral molecules of the background gas (details are given in
[18]). The pair interaction between the dust particles is de-
scribed by the Debye-Hiickel (Yukawa) potential,

¢(r) = (Q/r)exp(= r/\p), (1)

where Q=eZ,; is the particle charge and Ap is the plasma
screening length. Particle radius, mass and charge, mean in-
terparticle distance, neutral gas density, and temperature are
the parameters of the simulations. Initially N particles having
the charge Q are randomly distributed over a prescribed
simulation volume to reach a value of (average) screening
parameter k=A/\p close to that in the experiments. After a
transient phase, the system relaxes to a statistically stationary
state with the dust velocity distribution in thermal equilib-
rium with the Langevin thermostat. This state does not de-
pend on the initial conditions, which is also the case in the
experiments. Three-dimensional particle dynamics of the ith
particle with mass m evolves according to the equation
d°r; dr;
ey, == 0V ¢e= 0 V() + L0, (2)

J#Fi

where v,=1/7, is the neutral gas friction, ¢, is the confine-
ment potential, and r;;=|r;—r|. The stochastic Langevin
force L;(¢) (thermal noise induced by neutral gas particles) is

defined from the relation
(Li(t) - Lj(t+ 7)) = 2v,mT5;(7), (3)

with the mean zero condition (L,(r))=0, where T is the neu-
tral gas temperature.

We use the standard Langevin thermostat as described,
e.g., in [17]. The time step is chosen to provide a quasistable
(no numerical heating) state of the Yukawa system. It means
that the individual particles acquire the temperature of the
neutrals after some time which of course has been verified in
the code. The exact value of the time step chosen depends on
factors such as the particle charge, neutral density, screening
length, and interparticle distance. However, most important
is that the chosen time step is much less than the ratio be-
tween the mean interparticle distance and mean velocity.
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FIG. 1. (Color online) Grain trajectories from the molecular-
dynamics simulations of the Yukawa-Langevin system. The trajec-
tories are color-coded by the time. Motion of particles during time
1006t in the case of parabolic confinement (a) and the hard-wall
confinement (b). A typical trajectory from the outer region of panel
(a) plotted for time 40005t (c). Close-up on stiff central region of
panel (b); motion of particles is shown for 1005t (d).

Two types of the confinement have been used in the
simulations; parabolic and hard wall. For the parabolic
trap the confinement potential is ¢?(r) & >, For the hard-wall
case the electric field associated with the confinement
exponentially increases to the boundaries, so that
¢}Clw(r)0<exp[(r—rb)/5w]—l at r>r, and ¢12W(r)=0 for
r<ry,, where r, is the size of the system and &, is a stiffness
of the hard-wall potential. In our simulations a value of
Jy=A/3 has been used.

To simulate a quasi-2D configuration the motion in the
vertical (z) direction has been suppressed by a strong con-
finement in this direction. In most of the runs performed, the
particle displacements were restricted to a range smaller than
the mean horizontal interparticle distance A, which is the
typical situation for monolayer experiments. In addition,
simulations of 2D systems (only horizontal x and y compo-
nents considered) have also been run for both types of the
confinement.

The parabolic confinement is in some respects a more
realistic representation of the experiments discussed here
and, as seen from Fig. 1(a), it reproduces flow fields quite
similar to those observed in the experiments. As in the ex-
periment, such confinement results in a nonuniform cluster
with more packed and stiff core and looser boundaries. The
hard-wall potential, see Fig. 1(b), yields a different structure;
particles are more packed at the boundaries (for more details
see [19-21]). Ideally, comparison of these different confine-
ment schemes could help in identifying transport features
which are robust to variations in the confinement.

As one can observe from Fig. 1(a) the resulting equilib-
rium state is a cluster of dust grains in a partially ordered
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(hexatic) phase, similar to those reported from 2D Yukawa
MD simulations on square double-periodic domains in, e.g.,
[22] and in 2D hard-core simulations in [23]. However, our
cluster is of finite size (nonperiodic boundary conditions)
confined by a circular symmetric parabolic potential and is
radially nonuniform. Like in the experiments the simulations
are intended to describe, the transport over large distances
takes place through development and propagation of fivefold
and sevenfold topological crystal defects.

By tuning the input parameters we obtain different states
ranging from pure crystal to pure liquid. As mentioned in the
introduction we are mainly focused on semiordered (vis-
coelastic) states at the transition between crystal and liquid.
To obtain such states, the coupling parameter, defined as
FS=eZZ(21/ (TA)exp(—«), was changed in the range 30-100 by
varying 7. The latter also implies change in the interparticle
distance; the corresponding range of the screening parameter
was k==2-3, which is typical for the experiments. For each
state studied, A was determined as the distance to the first
local maximum of the pair correlation function averaged
over the cluster. This distance varies less than 20% from the
core to the edge for parabolical confinement and is nearly
uniformly distributed in space for hard-wall confinement.

The particle positions have been sampled with a time res-
olution &t chosen to be of the order of grain-grain collision
time scale, ot=7.. The grain-grain interaction time was es-
timated as 7.~ 1/(27Qg), where Q) is the Einstein fre-
quency which characterizes the linear oscillations of indi-
vidual particles in a lattice and is a function of the screening
parameter . For k=2-3 the Einstein frequency is about a
factor of 2 of the dust-plasma frequency Qo=e’Z>/mA3
[16]. The dust-neutral collision time scale was 7, =106t for
all runs. For each state, a simulation of N=1000 particles has
been run during a time =40006¢ thus proving adequate sta-
tistics for study of the system’s evolution on long time
scales.

In both experiments and simulations the nature of the dy-
namics in the regimes where the system is in a semiordered
state is very sensitive to fine tuning of the control parameters
and we have not been able to reproduce all experimental
features quantitatively. One reason for this may be that we
are not able to fine tune parameters to the right state, but it
can also be due to shortcomings of the model. However, the
purpose of this paper is not to reproduce experimental results
quantitatively, but to demonstrate that important qualitative
features emerge from a simple Langevin model which
does not involve other interactions between the dust particles
and the plasma than the Debye screening of the Coulomb
potential.

II1. RESULTS ON GRAIN TRANSPORT

A. Laboratory results

Time evolution of the PDFs of radial displacements
&(7)=r(t+7)—r(¢) in units of interparticle distance A for the
stiff cluster is shown in Fig. 2. The distributions are pre-
sented on a logarithmic scale and the deviation from a
Gaussian shape on small time scales [Figs. 2(a) and 2(b)] is
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FIG. 2. Experimental results from stiff cluster (Ref. [11]). PDFs
of radial displacements &.(7)=r(t+7)—r(t) (dots) in units of
interparticle distance, A, for different time lags; (a) 7=0.033 s, (b)
7=0.53 s, (¢c) 7=8.5 s, and (d) 7=136 s. The full curves are fits of
the stretched Gaussian given by Eq. (4) with p=1.5 [(a)—(d)] and
the thick full curve is a Gaussian fit (d).

evident. On those scales the shape of the PDF is well de-
scribed by the stretched Gaussian

P(&,,7) = A(n)exp[- B(7)|§], (4)

where p=1 corresponds to an exponential distribution and
p=2 to the Gaussian. For the data presented the nonlinear fit
(thin full lines) yields the exponent p=1.5.

A possible, and rather trivial, explanation of the stretched
Gaussian PDFs would be the spatial nonuniformity of the
system. For instance, the dust grains in the laboratory clus-
ters are more mobile close to the edge than in the central
region. Thus, it is conceivable that a more heavy-tailed PDF
could emerge from combining several Gaussian PDFs with
different variances. We have tested this in the laboratory data
by producing separate PDFs for particle displacements in the
core and edge regions, respectively. However, although these
PDFs have different variances, they both retain essentially
the same stretched-Gaussian PDF, and hence this is an intrin-
sic property of the particle dynamics on the short scales both
in core and the edge and is not an artifact due to spatial
nonuniformity.

When a significant number of particle displacements ap-
proach the mean intergrain distance A the PDF starts to de-
velop “shoulders” around A [Fig. 2(c)]. The transition to-
ward a Gaussian [Fig. 2(d); thick line] on the longest time
scales involves a regime where the PDF develops “humps” at
&.~nA, where n is a positive integer.

The humps on the PDFs are most easily explained as an
effect of grain “hopping” due to defects in the hexagonal
crystal structure. The humps can be observed only in rela-
tively stiff systems where the hopping transport is not
masked by the fluid vortical motion. This is clearly illus-
trated if we compare results for the stiff cluster (Fig. 2) with
those for the softer cluster. As seen from Fig. 3 of Ref. [12],
in the latter experiment, PDFs are well described by Eq. (4)
with p=1.3 on the small time scales and a transition to
Gaussian shape is observed already at the scales of &~ A.
On very large scales, ~10A, new humps emerge (Fig. 4(a) of
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Ref. [12]) which are due to large-scale vortical motion
[12,15].

In other experiments on quasi-2D laboratory dusty plasma
similar results have been found. In studies of cold quasi-2D
dusty-plasma liquids, Refs. [5,7,9,10] reported non-Gaussian
PDFs on scales below A. Moreover, we find that the central
portion of the PDF presented in Fig. 3 of Ref. [9] can be
fitted by Eq. (4) with p=1.15. On longer time scales, when
particle diffuse to distances ~A, the PDFs in those experi-
ments approach a Gaussian shape. In the next subsection we
show that the picture described above is consistent with the
results of simulations of the Langevin-dynamics model.

B. Langevin-dynamics simulation results

The simulation for which we show results here have been
performed with dust charge Z;,=3000 elementary charges,
screening length A;=60 wm, and neutral gas number density
in argon n,=1.5X10* m™. In the hard-wall confinement
the average number density of dust grains was chosen to
yield A typical for the laboratory experiments. In the para-
bolic confinement the leading coefficient in the potential was
tuned to give A in this range corresponding to xk~2-3 (note
that A varies somewhat over the nonuniform cluster). With
this choice of simulation parameters, the dynamical phase
of the system was set by adjusting the neutral gas tempera-
ture. In both geometries the system would freeze below ap-
proximately 7=1000 K and melt above 7=3000 K. The
simulation results shown in this paper demonstrate “stiff”
hexatic states for 7=1500 K and “soft” fluidlike states for
T=2000 K.

The effect of the hexagonal lattice structure is, as sug-
gested above, most pronounced in the stiffer states.
Langevin-dynamics simulations with hard-wall confinement
potential reveal this quite clearly. In Fig. 3(d) one observes
humps on the tail of the distribution up to ~4A. Figure 3(a)
shows the PDF of horizontal displacements on time scales o,
which is close to the collision time scale. On these time
scales the grain motion is still ballistic and the Gaussian PDF
reflects the Maxwellian velocity distribution. On longer time
scales the core of the distribution develops into a stretched
Gaussian [see Figs. 3(c) and 3(d) and zoom-in (e) and (f)]
and shoulders (and later—humps) develop on the tail. These
non-Gaussian features are obviously a result of hopping of
some grains from one potential minimum in the crystal lat-
tice to another.

It is interesting to compare these PDFs to those of the
experiment displayed in Fig. 2. The magnified core of the
distribution in Fig. 3(d) corresponds roughly to Fig. 2(c). In
the simulations, however, the statistics is better because of
the larger number of grains in the cluster, so humps on the
far tail can be observed in the zoomed-out image. These
humps cannot be observed in Fig. 2(c) due to limited statis-
tics. They do appear, however, at later times in the experi-
ments, as shown in Fig. 2(c), when the width of the distribu-
tion exceeds A. This figure has not been reproduced in the
simulations so far, because the simulations would have to run
considerably longer.

We have also analyzed the displacement PDFs for a sub-
ensemble of particles in the core of the hard-wall cluster [see
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FIG. 3. (Color online) Langevin-dynamics simulation of
Yukawa system for the case of hard-wall confinement. PDFs of
horizontal displacements &,(7)=x(t+7)—x(r) (dots) in units of A
plotted for different time lags 7 as indicated in the upper corner. The
full curve in (a) is a Gaussian fit and the full curves in the zoom-in
figures [(e) and (f)] are fits by a stretched Gaussian given by Eq. (4)
with values of p as indicated in the upper left corner.

Fig. 1(d)]. These particles are completely trapped in their
potential wells in the lattice. It turns out that in such a purely
crystalline state the displacement PDFs on all time scales are

Gaussian.
Now let us discuss simulations performed for parabolic

potential confinement. As discussed above, to simulate
quasi-2D the motion in the vertical z component is severely
restricted. That results in the behavior of z component of
displacements similar to the hard-wall confinement case as
seen from Fig. 4. The PDFs of horizontal displacements
shown in Fig. 5, however, still exhibit humps though much
less pronounced because of the weaker confinement on (x,y)
plane. As shown in Fig. 5(d) it approaches an overall Gauss-

ian shape on longer time scales.

In simulations of even softer states, though still with pres-
ervation of the regular lattice structure on the smallest time
scales, stretched Gaussian distributions still appear on the
time scales for which the standard deviation of the displace-
ments is less than A, but on longer time scales the PDF tends
to develop humps on spatial scales much larger than A [Fig.
6(d)]. Such features were also observed in the soft experi-
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FIG. 4. (Color online) Langevin-dynamics simulation of
Yukawa system for the parabolic confinement case (stiff cluster).
PDFs of vertical z component of displacements & (7)=z(t+7)—z(t)
(dots) in units of A plotted for different time lags 7 as indicated in
the upper right corner. The full curve in (a) is a Gaussian with the

same standard deviation.

ment [see [12], Fig. 4(a)] and was attributed to the formation
of vortical flows on spatial scales extending from A up to the
cluster size.

This soft state has also been run in a pure 2D configura-
tion, i.e., without z component, with results similar to those
presented in Fig. 6. A preliminary fully 3D simulation of this
state also yields qualitatively similar results and this indi-
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FIG. 5. (Color online) Same as in Fig. 4, but now for the hori-
zontal displacements §,.
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FIG. 6. (Color online) Same as in Fig. 5, but now for the soft
cluster.

cates that dimensionality is not a critical issue. The qualita-
tive features described here are robust and universal for
Langevin dynamics of Yukawa clusters with partial preserva-
tion of crystalline order. These studies will be published in a
forthcoming paper.

Moreover, in these softer states, the system self-organizes
into vortexes, or if stiffer, into rotating hexagonal domains
which continuously break up and merge. The effect, called
“cooperative hopping,” was first reported in 2D dusty plasma
clusters in [7]. Large-scale vortexes driven by stochastic
forcing have been observed experimentally [12] and repro-
duced by the code used in the present study in Ref. [15]. By
plotting the particle positions and their prehistory over a suit-
able short time interval can give an impression of the veloc-
ity field of the vortical flow. If this is done in successive time
frames one can construct movies of this velocity field, which
are very instructive to watch. Such movies for examples of
experimental and simulated flows can be found as auxiliary
material to Ref. [15]. In Refs. [11,12] one can find triangu-
lation diagrams showing the occurrence of fivefold and sev-
enfold defects associated with this hopping.

IV. MEMORY EFFECTS AND INTERMITTENCY

Information about the memory effects in the transport
characteristics can be obtained from the variogram of particle
displacements defined as

N-1/6t
S(=W-ma" 2 &, (5)
J=1
where we have introduced the position increments

5@(7’)=x(j Ot+17)—x(jot) over the time lag 7. For a fractional
Brownian motion (fBm) the PDF of §§’)(T) is Gaussian, and
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S(7)=D7H, where H is the Hurst exponent. Normal diffu-
sion corresponds to Gaussian PDF and H=0.5 (Brownian
motion). H different from 0.5 is usually referred to as sub-
diffusion or superdiffusion and indicates violation of the cen-
tral limit theorem, which implies that either the displace-
ments are not identical and independent random variables
and/or each of them has a heavy-tailed distribution with in-
finite variance. The latter is not the case in our experiments
and simulations. The limit H— 1 corresponds to ballistic mo-
tion.

In interpreting displacement variograms one has to realize
that large-scale motions also influence the variogram on
short time scales, so the Hurst exponent obtained on short-
time scales does not necessarily reflect the nature of the dif-
fusion of a particle relative to its nearest neighbors. Consider,
for instance, the extreme case of a frozen “flake” of dust
grains which are completely fixed relative to each other, but
that the flake itself is subject to transport characterized by a
certain Hurst exponent. Then the variogram of every particle
in the flake is characterized by this exponent, while their
relative diffusion is negligible. In order to study this relative
diffusion we would have to consider the evolution of relative
position between neighboring particles.

Information about H can also be obtained from the power
spectral density of the particle displacement as a function of
time. A power-law form of the spectrum, S(f) ~f#, corre-
sponds to an fBm with H=(8-1)/2. Thus, normal diffusion
requires 8=2.

The main departure from Gaussianity observed in our dis-
placement PDFs is a flatter (more heavy-tailed) appearance
often well presented as a stretched Gaussian. A convenient
measure of the flatness is the kurtosis, which is the ratio
between the fourth moment and the squared variance of the
distribution. For the Gaussian the kurtosis is 3 and is higher
for more heavy-tailed distributions. In the theory of turbu-
lence, the concept of intermittency is used for situations
where the PDFs have higher kurtosis on small than on large
scales [24]. In our context intermittency would require that
the kurtosis of displacement PDFs decreases with increasing
time scale.

A. Laboratory results

For the laboratory data of the stiff cluster, the power spec-
tral density, autocorrelation function, and variogram of par-
ticle displacements are presented in Figs. 3(a) and 3(b) of
Ref. [11]. In this experiment the PDF is non-Gaussian and
self-similar on the short time scales and the transport is su-
perdiffusive with Hurst exponent H=0.6 (Fig. 6(a) of Ref.
[11]). From results presented here, Fig. 2, it is apparent that
on scales 7> 7, the displacement PDF approaches a Gauss-
ian, so the kurtosis declines toward 3 at longer time scales.
This indicates some intermittency—the displacements are
more bursty on small scales than on large scales.

For the softer cluster, the power spectra are presented in
Figs. 4(c) and 4(d) of Ref. [12] and the variogram in Fig.
3(b). The transport is superdiffusive with H=0.84 on time
scale 7<7, and with H=0.68 for 7> 7,. By watching the
movies of the particle motion one cannot avoid noticing that
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FIG. 7. (Color online) Variograms o-(r):v‘% in units of A,
where S(7) is defined in Eq. (5) [top panel (a)]. (@®): boundary
region of hard-wall potential corresponding to PDFs in Fig. 3. (A):
parabolic confinement, the case of stiff cluster, corresponding to
PDFs in Fig. 5. (V¥): parabolic confinement, the case of soft cluster,
corresponding to PDFs in Fig. 6. Kurtosis as function of o(7)
[lower panel (b)]. The symbols represent the same states as in panel

(a).

a common mode of motion the “minimal vortex” consisting
of a stationary dust grain about which its six nearest neigh-
bors rotate. This constitutes a nearly ballistic motion on the
time scale 7, and might be the main contribution to the high
value of H observed on scales 7= 7,. On longer time scales
vortex motions on increasing scales are responsible for this
memory-based superdiffusion. On the time scales one could
follow the displacements in this experiment the PDF devel-
ops some large humps due to long-lived large vortices and
the tails are cut off by the finite size of the cluster. Hence,
this experiment cannot tell us about the fate of the PDF on
very large scale in extended systems. In the experiments on
cold dusty-plasma liquids reported in Ref. [7] superdiffusive
transport with H~ 0.65 is found for 7<< 7, and normal diffu-
sion (H=0.5) on larger scales.

B. Langevin-dynamics simulation results

Variograms for different runs with varying stiffness are
presented in Fig. 7(a). The variogram for the stiff core of
hard-wall confinement is flat after a certain time (H—0),
and on average particles do not travel more than ~0.1A, and
is not plotted in the figure.

The curve represented by the @ symbols is representative
for particles from the looser boundary regions of hard-wall
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FIG. 8. (Color online) Displacement autocorrelation function
(ACF) for the hard-wall confinement case. The symbols represent
the same state as in Fig. 7(a). The sampling interval used is 0.016t.

potential runs. Such particles are able to escape caging, but
the transport is subdiffusive (H—0.3) even for long time
scales. The curve has an “S shape” typical for cases when an
oscillatory component is present in the time series. The same
should be reflected in autocorrelation function of the signal.
Indeed, in Fig. 8 we find a clear periodicity on the relevant
time scale.

For simulations of stiffer states with parabolic potential
[the curve represented by (A) symbols] the caging of par-
ticles is still noticeable for 7=150¢ but for large times the
Hurst exponent is higher, H— 0.4. For simulations of soft
states with parabolic potential the variogram [the curve with
(V) symbols] the effect of caging is less prominent, but in
the limit of large 7 we find also find H— 0.4 for this case.

The general picture for all states simulated (except when
caging is total) is that for 7<<7, the PDFs are stretched
Gaussians (with humps superposed for the stiffer states) and
the diffusion is slightly subdiffusive—more so for the stiffer
states. These distributions exhibit heavier tails than Gauss-
ians and hence kurtosis (flatness) higher than 3. For 7> 7,
the PDFs seem to tend more toward Gaussian again, at least
when they are smoothed to remove the humps. This can be
seen by plotting the kurtosis against the standard deviation as
done in Fig. 7(b). It is observed that in general the flatness
increases with time as long as the standard deviation
o(7)=(&1)">< A, but have a clear descending trend to-
ward the Gaussian value 3 as o(7) exceeds A. For com-
pletely caged particles the kurtosis remains close to 3 con-
firming that the PDF remains Gaussian for these particles.

The concept of intermittency in a signal is loosely defined
as the tendency of a signal to be more bursty on short scales
than on long scales [24]. This implies higher Kurtosis on
small than on large time scales. In our study this is the case
on the “hydrodynamic” scales, 7> 75, but not on the scales
of caging, 7<< 7,.

V. ORIGIN OF NON-GAUSSIAN DISPLACEMENTS

The Langevin thermostat used here models the interaction
of the Yukawa many-body system with a heat bath of tem-
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perature 7 and hence represents a canonical statistical en-
semble. Thus, the simulated system should relax to a ther-
modynamic equilibrium. With proper tuning of control
parameters our system develops strong fluctuations, which in
[15] was shown to exhibit (imperfect) scaling. This makes it
natural to think about this as equilibrium critical behavior.
Since this behavior is observed only when the control param-
eters are in a range where the system is subject to some local
positional order, we believe it is associated with a continuous
solid-liquid phase transition. However, the small size and
strong inhomogeneity of the systems simulated exclude di-
rect comparison with theory [1] and earlier simulations [25]
for such transitions in 2D Yukawa systems.

In extensive systems (systems without long-range interac-
tions), thermodynamic equilibrium implies Gibbs-distributed
microstates of the cluster. This, however, does not exclude
non-Gaussian distribution of particle displacements on vary-
ing time scales. In order to obtain some insight into the ori-
gin of this non-Gaussianity it may be useful to write a
Langevin equation for a single dust grain in the form

dr

L ©)
d —dW
& Z94) + V4,0l + DT )

where ¢(r) is the self-consistent (time-averaged) caging po-
tential well that a partially caged dust grain experiences,
¢,,(r,t) is the additional fluctuating (stochastic) force field
due to the Yukawa forces from the motion of the neighboring
dust grains, v, is the dust-neutral collision frequency,
D=2vT/m represents the diffusion coefficient due the sto-
chastic force arising from collisions with neutrals, and
W=(W,,W,,W,) is the vector of three independent Wiener
processes (Brownian motions).

Let us first recall some results on free diffusion of a dust
grain imbedded in a neutral gas; i.e., let us neglect the term
in square brackets on the right-hand side of Eq. (7). For a
particle starting at rest at the origin at time =0, the equa-
tions can be integrated to yield [26] (r*(t))— (2T/mw, )t for
t>7,= vgl. On time scales 7<<7, the collision term »,v is
unimportant and the velocity is a Wiener process. On these
time scales the position process is the integral of the Wiener
process and is ballistic. The variogram would yield H=1. For
7>17, the velocity increments will be independent and
Gaussian (white noise) and the position increments
(displacements) will be Gaussian and a Brownian motion;
i.e., the slope is H=1/2 in the variogram.

If we introduce a stationary potential structure, but
still neglect the stochastic force due to grain-grain
collisions, there is a well-defined Fokker-Planck equation
formulated in six-dimensional phase space associated
with Eq. (7), which features the Gibbs distribution
P(r,v)~exp{—[%mv2+Q¢(r)]/ T} as a stationary solution,
and in configuration space we have the Boltzmann distribu-
tion p(r)= [P(r,v)d*v ~exp[-Qd(r)/T]. If the caging po-
tential barriers are much higher than the thermal energy of
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the grains, the cluster is in a completely frozen crystalline
state; there is no diffusive transport beyond the mean inter-
particle distance.

The omission of the stochastic force due to grain-grain
collisions is only valid on time scales 7<<7,, where 7, is
essentially the time it takes for a grain to bounce off the
walls in its cage. The typical situation in our experiments and
simulations is that &t~ 7.<<7,. On time scales 7<7,<T,, as
explained above, the motion is ballistic. If the velocities are
Maxwellian due to the Langevin thermostat, the displace-
ments &(7) ~v 7 will be Gaussian distributed for 7<<,. This
is what we observe in the simulations. In the experiments
discussed in this paper we observe non-Gaussian displace-
ments already for 7= ¢, but this is because the sampling time
in the experiment is somewhat longer than the grain-grain
collision time. This is supported by the results reported in
[16], where Gaussian displacements were found for 7=t in
an experiment where particle positions were sampled at 500
Hz.

On time scales 7> 7, a single-particle stochastic equation
makes sense only if the force due to grain-grain interaction is
represented as a stochastic source term. If the issue under
consideration is grain transport, the stochastic equation can
be simplified by averaging the equations over a time scale of
the order 7, and obtain an equation for the averaged position.
This justifies to neglect the inertial term dv/dt in Eq. (7) (the
Smoluchowski approximation), which then reduces to the

dr 0 F,
Z =———V ¢(r)+ -, (8)
1 muv, muv,

where F|, represents the stochastic force due to collisions
with neutrals as well as other dust grains. A problem is of
course that the interaction F; contains long-range spatiotem-
poral dependencies and the statistical distribution of momen-
tum transfers may be non-Gaussian, and hence cannot reli-
ably be represented by a white noise term. One could
certainly make assumptions about the statistical nature of the
interaction, but the standard derivations of the associated
Fokker-Planck equation are no longer valid since the position
is no longer a Markov process.

Another approach would be to assume that the time-
averaged potential ¢ is constant in the interior of the cluster
and to incorporate the effects of the dust-dust interaction in
the friction term and the stochastic term in Eq. (7). The re-
sulting stochastic equation would take the form (for simplic-
ity we write the one-dimensional version)

dv ——dW
— =K D(v)—,
0 (v) +VD(v) 0 9)

where the drift term K(v) represents a generalized friction
due to combined action of the dust-dust collisions and the
dust-neutral collisions, and the second term on the right rep-
resents the stochastic part of these interactions. In the follow-
ing we shall assume that the latter contains no long-range
memory and can be represented as Gaussian white noise. An
equation of this form was studied by Kaniadakis and Quaraty
[27], and by Borland [28] in the context of determining the
conditions K(v) and D(v) must satisfy for the resulting sta-
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tionary velocity PDF to reduce to the Tsallis distribution
[29]. If the stochastic equation is interpreted in the sense of
Itd (see, for instance, [26]), the associated Fokker-Planck
equation for the velocity distribution P(v,?) is

%’;J) _ %[K(x)l’(v,l)] * %(9%[0(”)” ©.0]

(10)

If the drift term has a form that confines the particles to a
range with finite velocities (which will be the case for a
physically meaningful friction term) the stationary solution
to Eq. (10) can be written as

P() =Nexp(Jv L%{K(u) - %agi“)}du), (11)

where N is a normalization constant. In the case of linear
friction K(v)=-v.w and constant diffusion coefficient
D(v)=D, Egs. (9) and (10) represent the well-known
Ornstein-Uhlenbeck problem and solution (11) is the result-
ing Maxwell velocity distribution. Borland [28] shows that a
general criterion for solution (11) to reduce to the Tsallis
distribution [29]

P,(v)=Z,'[1- B(1 - g)v*]""~9 (12)
is that {K(v),D(v)} satisfy the relation
b 19 P
D) [K(”) 2 avD(”)] “ipage

Here B=1/2kT is the inverse temperature and ¢ is the non-
extensivity parameter. For g=1 the distribution reduces to
the Maxwellian and the family of functions that gives this
conventional extensive Gibbs-Boltzmann statistics is given
by the relation

(14)

For constant diffusion coefficient this reduces to
K(v)=-v.v, where v, satisfies the relation v,=D/2kT, which
is a version of the fluctuation-dissipation theorem.

Borland emphasizes that Eq. (13) implies that there is a
whole family of functions {K(v),D(v)} which give rise to
Tsallis statistics, but it should maybe also be mentioned that
there exists an infinitely larger family of functions that do
not. Thus, the ubiquity of Tsallis statistics in this context
relies on the existence of ubiquitous physical situations
where Eq. (13) is fulfilled. The analysis of our experiments
and simulations shows that the displacement PDFs are well
described by stretched Gaussians with p= 1.5 on time scales
in the range 7.<7<7, and by Gaussians in the range
7> 7). In Fig. 9 we demonstrate that the stretched Gaussian
with p=1.5 is practically indistinguishable from the Tsallis
distribution with g=1.1, so there is no information in the
experimental data to prefer one to the other. On the other
hand, the stretched Gaussian provides a very simple and
physically interpretable generalization of the Ornstein-
Uhlenbeck problem, as will be described in the following.
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FIG. 9. (Color online) The red (light grey) curve is a log-plot of
the stretched-Gaussian function exp(—Bx”) vs x> for B=1.2 and
p=1.5. The blue (dark grey) curve is a corresponding plot of the
Tsallis distribution [1+(g— l)xz]‘(‘"l)_1 for g=1.1. The values for p
and ¢ are typical for the experimental results discussed in this
paper.

Let us consider the Ito-Langevin equation [Eq. (9)] with
constant diffusion coefficient D and generalized friction term

(15)

The physical rationale for such a sublinear friction term is
simply to account for the reduced effective dust-dust friction
introduced by those fast particles undergoing cooperative
hopping. It has been shown [22,23] that this hopping takes
place along stringlike structures of defects, and hence it is
more natural to model it as a modification of the directed
friction force than as modification of the diffusion coeffi-
cient.

In Eq. (15) the case p=2 corresponds to the standard
Ornstein-Uhlenbeck problem and p=3/2 would correspond
to a friction that grows as the square root of the velocity
rather than proportional to the velocity. The stationary solu-
tion to the associated Fokker-Planck equation given by Eq.
(11) reduces to the stretched Gaussian

P,(v) =N, exp{ - 2w/p)lv|’]}.

At this point we should keep in mind that the stretched
Gaussian Eq. (4) found in our data are PDFs for the position
displacements at varying time lags 7, not the velocity PDFs.
In order to find the displacement PDFs we have integrated
numerically the stochastic Eq. (9) with the generalized fric-
tion term (and p=1.5) for an ensemble of initial velocities
drawn from the stretched-exponential distribution Eq. (16).
Then we have found the position trajectories by integrating
v(t) and formed the displacement PDFs for different time
lags. The rather obvious result is that the displacement PDF
remains close to the stretched Gaussian for 7~ 7,=v_' and
converges to a Gaussian for 7> 7.. The reason for this is that
the displacements are near ballistic for 7<<7. and hence re-
flect the velocity distribution. On time scales greater than 7,
the velocity process is decorrelated and stationary, and suc-
cessive displacements can be considered as independent
identical random variables. Displacements &, for 7= 7., can
therefore be considered as a sum of identical, independent
random variables, and thus the conditions of the central-limit

K(v) =—sgn(v)v vl

(16)
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theorem are satisfied. Thus, the displacement PDF should be
Gaussian and the diffusion should be normal (Brownian mo-
tion). The variograms produced on the basis of the computed
PDFs show (obviously) that H=1 for 7<7. and H=0.5 for
7> 7,, but also that there is a large transitional regime of
time scales 7,<7<507, where the slope corresponds to
Hurst exponents in the range 0.5<H<1.

This extremely simplified stochastic model reproduces the
stretched exponentials observed for 7.<7< 7, and the con-
vergence to Gaussian for 7> 7, observed in our simulations.
Since the sampling time in the simulations is of the order of
7, the variograms in Fig. 7 do not show the ballistic regime
where H=1, but the behavior of the variograms in the regime
7> 71, can be interpreted as a slow convergence toward a
Brownian motion (H=0.5). It is also noteworthy that the
simulations in [3,23] gave rise to similar variograms when
the system was in the hexatic phase between a solid and a
liquid. Those simulations were performed with periodic
boundary conditions, so the effects of the finite systems size
and the system inhomogeneity did not influence the vari-
ogram at large times as they do in our simulations. Since the
simulation in [23] also displays a leptokurtic distribution on
the scales 7= 7, and a transition to a Gaussian for 7> 7., we
conclude that the stochastic model, and the associated
Fokker-Planck equation, yields a reasonable lowest-order de-
scription of anomalous diffusion in 2D many-body systems
in the hexatic phase.

The linear Fokker-Planck approach discussed above (in-
cluding the cases discussed by Borland) implies Gaussian
displacement distribution in the limit 7— cc. Hence, it cannot
be used to describe anomalous diffusion in the long-time
limit. Another formulation that allows non-Gaussian dis-
placement distributions and anomalous transport is the non-
linear Fokker-Planck equation [30-32]

IP(x,1) B

- _ %[K(X)P(x’t)] + %%[P%q(x,t)]. (17)

In order to describe anomalous displacement diffusion x
should now be interpreted as a spatial variable and we should
focus on time-dependent solutions. For this particular non-
linear diffusion term, and a linearly varying drift term
K(x)=k,+k,x, such a time-dependent solution takes the form
of a Tsallis distribution, Eq. (12), where B(t) and Z,(z) now
are time dependent. In the case of free diffusion k;=k,=0,
the variance 1/B(r) of the distribution has the time-
asymptotic dependence

2
0‘5~ta, a:_s (18)
3-¢q

provided ¢ <5/3. For g>1 the distribution has a power-law
tail P,(x)~x*4"1) and for ¢=5/3 the tail is so heavy that
the variance does not exist. For 1 <g<5/3 we have power-
law tail and > 1 implying superdiffusion. For g=1 the dis-
tribution reduces to a Gaussian and we have normal diffu-
sion, and for ¢ <1 the Tsallis distribution has a cutoff in the
tail (P,(x)=0 for x>[1-B(1)(1-¢)]""?), and the transport is
subdiffusive. Thus, Tsallis relation (18) implies that distribu-
tions with tails heavier than the Gaussian (leptokurtic) must
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be associated with superdiffusion. Our simulations are sub-
diffusive for 7> 7., but the PDFs are leptokurtic and well
described by the Tsallis distribution with g~ 1.1, which ac-
cording to Eq. (18) should give a weakly superdiffusive
transport. This inconsistency indicates that the nonlinear
Fokker-Planck equation is not a good description of the
transport observed in our simulations.

There are also considerable difficulties associated with the
physical interpretation of Eq. (17) for our case. Borland [31]
attempts to provide such an interpretation by considering
Dx P79 as a P-dependent diffusion coefficient that could
replace D in the stochastic Eq. (9) [since we are considering
spatial diffusion, the variable v in that equation should now
be interpreted as a spatial variable, so we are really dealing
with Smoluchowski equation (8)]. If P(x,) could be inter-
preted as a density, there would be no problem to envisage a
density-dependent diffusion coefficient, but the density of
dust grains in our system is almost constant in space and
time, so a spatial diffusion equation for density does not
make sense. P(x,7) will have to be interpreted as a probabil-
ity density for an ensemble of independent particle trajecto-
ries starting out at positions selected from a prescribed initial
distribution P(x,0) in different independent realizations of
the experiment. Since we are interested in the evolution of
particle displacements a natural choice is to consider an en-
semble of particles starting from the same position x, i.e.,
P(x,0)=8(x—x,). The quantity P(x,) obviously depends on
the choice of initial position x,, and therefore D« P'~9(x,t)
cannot be a local physical property of the medium at the
point at (x,7). It is rather a quantity that is valid only for the
particles belonging to this specific ensemble (i.e., the par-
ticles starting out at the position x, at 7=0), and hence such a
model would imply that the diffusion properties of a particle
depend very strongly on its prehistory; i.e., there must be
strong long-range memory in the system [33].

VI. CONCLUSIONS

In this paper we have studied anomalous transport prop-
erties; non-Gaussian particle displacement statistics and
memory effects, in a Langevin-dynamics model, and we
have contrasted these simulations with experimental results
from quasi-2D dust plasma clusters in soft states. We have
demonstrated that in these systems transport is anomalous on
time scales 7.< 7= 7, provided the system is not residing in
the pure crystalline or liquid phases. Moreover, we have
shown that this complex dynamics emerges from stochastic
forcing and dissipation provided by the collisions with the
neutral gas and that no other plasma effects than the static
Debye screening are required.

From the experiments and the Langevin-dynamics simu-
lations we observe that for the systems studied Gaussian dis-
placement distributions are restricted to the following cases:
(i) on time scales less than the collision time 7. in all sys-
tems; (ii) on all time scales for systems that are so stiff that
no hopping takes place (pure crystal); (iii) on all time scales
for systems where no caging occurs (pure liquid or gas); (iv)
for time scales longer than 7, in soft systems.

A result that seems to be robust for both stiff and soft
states is that PDFs evolve from a leptokurtic (heavy-tailed)
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shape for small time lags 7<< 7, toward a Gaussian shape for
larger 7. This feature is usually interpreted as a signature of
intermittency—a spikyness in the flow field which gives rise
to more leptokurtic PDFs of the displacements on the small
scales. Note that intermittency does not prevail to spatial
scales less than A. A simple way to model this intermittency
feature is via single-particle stochastic equation (9), and the
associated linear Fokker-Planck equation (10), with a nonlin-
ear drift term given by Eq. (15).

In Ref. [12] it is pointed out that the dust monolayer
should be perceived as a viscoelastic medium, where the
elastic properties dominate on the smaller scales. Thus, the
transition from stretched-Gaussian to Gaussian PDFs could
correspond to the transition from elastic to viscous flow. One
future goal would be to perform experiments and simulations
on sufficiently large spatial and temporal scales to character-
ize the transport associated with homogeneous, turbulent
flow in such systems. With such extensive simulations one
could clarify, for instance, if energy will cascade to vortices
on infinitely large scales in an infinite system or if there is an
upper limit to the vortex size related to the characteristic
length over which elasticity dominates over viscosity.

The rather imprecise qualifier “soft” has been employed
in this paper to characterize 2D dusty plasma clusters which
preserve local hexagonal order but exhibit loss of such order
on larger scales. Materials displaying such properties are also
classified as “hexatic” and the continuous transition from the
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crystalline to the liquid state might be considered as a con-
tinuous phase transition [2]. In [15] we perform a particular
avalanche analysis of the experimental soft cluster and a
Langevin-dynamics simulation. In this analysis we define
connected space-time regions where the kinetic energy of the
grains exceeds a prescribed threshold and define the activity
in these regions as avalanches. The statistics of avalanche
sizes and durations tend to obey power laws with similar
characteristic exponents for experiment and simulation,
which are properties characteristic of critical phenomena and
higher order phase transitions [2]. Such phenomena have
been studied in strongly idealized models such as the Ising
model [2,34] and the XY model [34], but the Yukawa-
Langevin model studied in this paper exhibits, in spite of its
simplicity with respect to the physical interactions, the pros-
pect of quantitative prediction of dynamics in real physical
systems where the microscopic state of the system can be
tracked to the smallest detail of physical interest.
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