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Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow
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Alternating laminar and turbulent helical bands appearing in shear flows between counterrotating cylinders
are accurately computed and the near-wall instability phenomena responsible for their generation identified.
The computations show that this intermittent regime can only exist within large domains and that its spiral
coherence is not dictated by endwall boundary conditions. A supercritical transition route, consisting of a
progressive helical alignment of localized turbulent spots, is carefully studied. Subcritical routes disconnected

from secondary laminar flows have also been identified.
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A comprehensive understanding of turbulent phenomena
necessarily requires a previous explanation of the mecha-
nisms that mediate between laminar and fully disordered
fluid motion. One of the most challenging shear flow prob-
lems is the understanding of laminar-turbulent coexistence
phenomena or intermittency, i.e., spatiotemporal coexistence
between laminar and turbulent regions in a fluid flow. Ca-
nonical shear flows such as plane Couette flow between in-
ertially countersliding parallel plates or pipe flow in a very
long straight pipe of circular cross section exhibit localized
turbulence as a prelude to fully developed turbulent flow
[1-6]. Open shear flows share many common drawbacks
when studying the long term behavior of turbulent or inter-
mittent regimes, since localized turbulent spots are often ad-
vected downstream and leave the domain. Computation of
these flows usually assumes streamwise periodicity, over-
looking the real boundary conditions at the entrance and exit
of the domains and potentially leading to artificial interaction
of the leading and trailing edges of localized turbulent spots.
A naturally streamwise-periodic problem such as the Taylor-
Couette system between independently rotating concentric
cylinders solves these difficulties. Furthermore, while transi-
tion in open shear flows is typically subcritical, i.e., bypass-
ing linear stability, Taylor-Couette flow exhibits a huge vari-
ety of secondary supercritical steady, time periodic, or almost
periodic laminar flows before an eventual transition to cha-
otic regimes [7]. This enables to study transition in a super-
critical setting, along with degeneration into subcriticality.
We refer the reader to standard monographs and references
therein [8,9].

Laminar-turbulent coexistence in Taylor-Couette flow was
originally reported by Coles and Van Atta in the 1960s
[10,11]. They observed interlaced laminar-turbulent helical
patterns [see Fig. 1(a)] so-called spiral turbulence [12]. This
pattern has been studied experimentally by many authors
later in the 1980s [7,13] and during the current decade
[1,14]. Spiral turbulence, henceforth termed as SPT, may ex-
hibit hysteretic subcritical behavior, being sustained even in
situations where linear theory predicts stability of the base
laminar flow. Linear nonmodal analysis has shown a strong
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correlation between the hysteretic effects of SPT and tran-
sient growth of infinitesimal perturbations of the basic flow
[15]. Numerical simulations carried out in the 1990s identi-
fied a secondary instability mechanism apparently respon-
sible for bursting phenomena in counter-rotating Taylor-
Couette flow, although the computational aspect ratio used
was too small to capture long range spatial intermittency
[16]. More recent nonlinear computations of counter-rotating
Taylor-Couette flow have provided new families of subcriti-
cal spirals although these structures have a much shorter
axial wavelength than the SPT [17]. Recent experiments
have addressed the similarities between SPT and other inter-
mittent regimes appearing in plane Couette and Taylor-
Couette flows [1]. On those lines, recent numerical explora-
tions have identified parameter ranges in the narrow gap
limit of Taylor-Couette flow where some of the characteris-
tics of the plane Couette flow can be recovered [18].

In this work, a successful computation of SPT between
counterrotating cylinders is reported. It is shown that SPT
can only exist in a large enough apparatus and that it is not a
byproduct of endwall effects emanating from the top and
bottom lids. The simulations also reveal that the instability
mechanism of SPT is based on a breakdown of vorticity
filaments detaching from the inner cylinder. For moderate

FIG. 1. (Color online) Spiral turbulence between counterrotating
concentric cylinders (outer cylinder rotating clockwise). (a) Three
dimensional view of angular momentum distribution. (b) Annular
cross section of axial vorticity distribution. The structure rotates
clockwise (see film in [22]).
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speeds of the outer cylinder, the SPT emerges through a su-
percritical scenario where simple secondary flows become
unstable when increasing the inner cylinder speed. These in-
stabilities lead to localized turbulent spots that eventually
coalesce to form the SPT for higher inner rotations. For high
speeds of the outer cylinder, the SPT regime is shown to be
disconnected from other laminar solutions, retaining stability
even when the base flow is linearly stable.

In Taylor-Couette flow, an incompressible fluid of kine-
matic viscosity v and density @ is contained between two
concentric rotating cylinders whose inner and outer radii and
angular velocities are r, r, and €, (), respectively. The
dimensionless parameters are the radius ratio =r]/r, and
the inner and outer Reynolds numbers R;=dr;();/v and R,
=dr.Q,/v of the rotating cylinders. All variables are ren-
dered dimensionless using the gap d=r,—r! and viscous time
d*/ v as units for space and time, respectively. The dynamics
of the flow is governed by the incompressible Navier-Stokes
equations

v+ (v-V)v==Vp+Av, V .v=0. (1)

In nondimensional cylindrical coordinates (r, 6,z), the azi-
muthal circular Couette flow (CCF) is vz=(ug,vg,wp)
=(0,Ar+B/r,0), with A and B suitable constants so that
vg(r;)=(0,R;,0) and vg(r,)=(0,R,,0) at the inner and outer
radial walls r;=#%/(1-7) and r,=1/(1-7), respectively. The
flow is assumed to be L*-periodic in the axial direction so
that the dimensionless domain is (r,0,z) € D=[r;,r,]
X[0,27) X[0,A), where A=L*/d is the aspect ratio of the
computational box. The Navier-Stokes equations for arbi-
trary perturbations of the basic flow, u=v-vp, are discretised
in space and time with a solenoidal spectral method that
preserves zero net mass-flow in z and with a 4th order lin-
early implicit time marching scheme, respectively [19]. Fol-
lowing former experimental works [7], the computations
presented here were carried out for #=0.883, i.e., r;=7.547
and r,=8.547, with (R,,R;) €[-3000,-1200]%[0,1000]
and A=29.9. The spectral resolution used in our computa-
tions lies within the intervals (N,,Ng,N,) € 20X [100,220]
X [100,220] radial X azimuthal X axial grid points, resulting
in a dynamical system with O(10°) degrees of freedom. In
all cases shown, increasing the resolution did not provide
noticeable changes.

Figure 1(a) shows angular momentum L£=rv isosurfaces
of SPT at (R,,R;)=(-1200,600), conspicuously resembling
the experimental results: £=1900 (laminar) and £=-1900
(turbulent) in white and blue, respectively. The two possible
helical orientations were observed in our simulations with no
apparent preference for any of them. Figure 1(b) shows axial
vorticity distribution on z=0.83A annular cross section (ra-
dially expanded for better visualization) within the range
(VXu), e [-1.4X10%,9.0 X 10°], with negative and positive
vorticity regions in dark and light, respectively. The radial
distribution of the SPT shows a clear trailing edge starting
from the inner cylinder and progressively spreading out-
wards along half a perimeter until the leading edge is formed
in the vicinity of the outer cylinder, as shown in Coles and
Van Atta experiments [20]. Figure 1(b) is a snapshot of a film
showing spanwise (axial) vorticity filaments that are gener-
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FIG. 2. Time series analysis of SPT for (R,,R;)=(-3000,650).
(a) Radial velocity measured at (r,#,z)=(8.1,0,0): time scale in
T,=2m/R,(1-mn) outer cylinder rotation period units. (b) Power
spectra: frequency scale in Q, =R, (1—7) outer cylinder angular
speed units.

ated near the inner cylinder. However, contrary to centrifugal
instabilities in rotating flows, these structures are not con-
fined within the centrifugally unstable radial domain r
e[r,r,], with r,=V-B/A~7.867 being the nodal radius,
i.e., vg(r,)=0. Moreover, these filaments are azimuthally
driven by the outer cylinder, invading the whole radial do-
main and eventually detaching from the inner cylinder and
breaking up near the outer wall. This phenomenon also oc-
curs in subcritical SPT, where the CCF is linearly stable.
This mechanism is remarkably similar to the usually termed
as Klebanoff’s spike instability that appears in flat plate
boundary layers [21].

Computed SPTs rotate with the same orientation as the
outer cylinder and with a well defined phase speed indepen-
dent of R;. Figure 2 shows time series of radial velocity at a
point of the domain and its corresponding spectral power
analysis. The pseudoperiodicity of the signal is apparent just
by bare eye inspection and the Fourier analysis reveals a
fundamental frequency, corresponding to the phase speed w,
of the SPT, and its first harmonic.

The exploration reported here is summarized in the
(Ry,R;) plane shown in Fig. 3. The linear stability boundary
(LSB) corresponding to the theoretical z-invariant CCF may
remarkably differ from the experimental transition thresholds
for high values of R,, nearly 20% for R,=-3000 in this
study. As already pointed out in [7], this discrepancy is as-
cribed to the axial distorsion of the azimuthal flow due to the
pumping of fluid into the Ekman layers adjacent to the top
and bottom lids.

Two parametric paths for R,=-3000 and R,=-1200
(labeled as I'; and I',, respectively) were followed. Both
paths start within the shadowed region of Fig. 3, where ex-
periments [7] reported SPT regimes when increasing R; from
rest. Starting with a random perturbation at (R,,R;)
=(-3000,900) in I'; and (R,,R;)=(~1200,640) in I',, the
time integrations drove the flow toward SPT patterns in less
than one viscous time unit. From those starting points, R;
was quasistatically decreased and the time evolution of the
flow was monitored up to 10 viscous time units afterwards.
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FIG. 3. Explored regions in (R,,R;)-parameter space. Black tri-
angles, gray triangles, gray squares and white triangles correspond
to SPT, INT, ISP, and CCF flows, respectively. See text for
explanation.

Over I',, SPT regimes followed exactly the same supercriti-
cal behavior as the one observed in the experiments [7],
where smooth decreasing of R; sequentially led to intermit-
tency (INT) regimes, characterized by localized turbulent
spots), interpenetrating spirals (ISPs) and relaminarization
to the basic CCF profile. However, over I';, the SPT flow
was found to be sustained even below the LSB curve. The H;
and H, bulleted curves shown in Fig. 3 correspond to experi-
mental hysteretic SPT boundaries when decreasing R; from
above in [10,7], respectively. In particular, we found our
computations to agree with the H; boundary found by Coles,
and this could be ascribed to the aspect ratio of the apparatus
used in his experiments. The computations along the two
paths have been repeated for smaller computational boxes
(A <20), although SPTs were never observed but uniform
turbulent bursts appeared instead, in agreement with [16].
This means that the SPT needs a long enough apparatus to
appear, but it is independent of the boundary conditions at
the lids.

Figure 4 outlines both explorations by showing the norm
(E)'? corresponding to the time-averaged kinetic energy
density of the observed regimes. In the subcritical case (R,
=-3000), the SPT regime was observed within the range
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FIG. 4. Averaged norm (E)"? of the perturbation as a function
of R, and R;. The vertical dotted line of the top curve R,=-3000 is
located at the relaminarization value
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FIG. 5. Radial vorticity (V Xu), at intermediate radial surface
r,=8.21. (a) and (b) showing large and small turbulent spots for
(R,,R;)=(-3000,550). From (c) to (d), same quantity for R,
=-1200. (c) ISP, R;=480; (d) INT, R;=520; (e) INT, R;=530; and
(f) SPT, R;=600 (see films in [22]).

R; €[575,900], i.e., even below the linear instability thresh-
old of CCF at R;=727.7. However, for R;<575, the
SPT flow was no longer sustained and localized turbulent
spots INT took over the dynamics within the range R;
€ [537,562]. Whereas the SPT regimes have a well defined
mean energy value, the energy of the INT flow exhibits large
oscillations and transient visits to regimes with large and
small localized turbulent spots [see Figs. 5(a) and 5(b)].

In the supercritical scenario (R,=—1200), SPT flows were
sustained for R; € [540,640] [Fig. 5(f)], INT localized spots
for R; €[490,530] [Figs. 5(d) and 5(e)] and ISP flows for
R, €[450,480] [Fig. 5(c)]. For R;<450, the flow relaminar-
izes to the CCF basic flow, sometimes with a narrow interval
of appearance of the recently found subcritical Ss spirals
bifurcating from CCF at R;=447.4 (S5 gray curve in Fig. 4),
with its saddle-node located at R;=445.7 [17]. The transition
from ISP to INT is quite abrupt. As soon as turbulent spots
appear, no clear traces of ISP can be identified. Moreover,
the angular advection of the involved flows changes drasti-
cally, i.e., whereas ISP are slowly advected by the inner cyl-
inder, INT turbulent spots clearly follow the outer cylinder
faster dynamics in the opposite direction. However, transi-
tion from INT to SPT was found to be smooth, with a pro-
gressive helical alignment of the localized spots as long as R;
increases. This sequence of transitions is clearly illustrated in
Figs. 5(c)-5(f) and their corresponding films [22].

To summarize, direct numerical simulation of SPT and
localized turbulent spots in a small gap large aspect ratio
Taylor-Couette system has been carried out for the first time.
These flows have been shown to require spanwise and
streamwise extended domains to develop and that they do
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not critically depend on endwall effects from top and bottom
lids. Computations have revealed that SPT originates at the
inner cylinder by means of a detachment of spanwise vortex
filaments that are advected by the outer cylinder, spreading
out over the whole radial gap and eventually leading to a
breakdown in the vicinity of the outer wall. This phenom-
enon clearly resembles other instability mechanisms already
observed in flat plate boundary layer problems. Finally, the
relation of the intermittent states to much simpler flows bi-
furcating from the base state has been evidenced at moderate
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counterrotating speed. Higher speeds switch the bifurcating
scenario from supercritical to subcritical, a unique feature of
Taylor-Couette flow. This opens a promising path to under-
standing subcritical transition in other canonical shear flows
that cannot be studied in the simpler frame of supercriticality.
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