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Eddy diffusivity from hydromagnetic Taylor-Couette flow experiments
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The stability problem of hydromagnetic Taylor-Couette flows with toroidal magnetic fields is considered for
various magnetic Prandtl numbers. Only the most uniform (but not current-free) field has been treated. For high
enough Hartmann numbers, the toroidal field is always unstable due to the magnetic kink-type instability,
which is stabilized by rigid basic rotation. The axial electric current, which drives the instability, is reduced by
the electromotive force induced by the instability itself. Numerical simulations show that this electromotive
force only depends on the molecular magnetic diffusivity rather than the viscosity. The resulting eddy diffu-
sivity should be on the order of the molecular diffusivity for all the considered magnetic Prandtl numbers. If
this is true also for very small magnetic Prandtl numbers (not possible to simulate) then one can use this effect
to measure the eddy diffusivity zp in a laboratory. In a sodium experiment (without rotation), a detectable
potential difference of ~16 mV between top and bottom will result for a container of 1 m length and a gap

width of 10 cm.
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I. INTRODUCTION

Strong enough toroidal fields, which are not current free,
become unstable due to the Tayler instability (TT [1-3]). Be-
cause the source of the energy is the electric current, this
(mainly nonaxisymmetric) instability can exist even without
any rotation. There is no laboratory experiment for this basic
instability so far, and even the numerical simulations of TI
are very rare [4,5]. We shall demonstrate in the present paper
for Taylor-Couette (TC) flows of fluids with various mag-
netic Prandtl numbers how the TI works and how it interacts
with rotation, which can be nonuniform. The theoretical re-
sults are used to suggest experiments for measuring the ef-
fective diffusivity via a TI-induced reduction in the applied
electromotive force (EMF).

The knowledge of the magnetic turbulent diffusivity is
basic for many applications in fluid dynamics. Very often we
have only limited informations about its value. Only a very
small number of experiments have been done in laboratories
(see [6-8]). The same is true for the viscosity, which should
be measurable with the same experiment so that finally the
modified magnetic Prandtl number becomes known from one
and the same instability experiment.

Consider a laminar hydromagnetic TC flow with U as the
velocity, B as the magnetic background field, » as the micro-
scopic viscosity, and 7 as the microscopic magnetic diffusiv-
ity. The basic state in cylindrical geometry is Ur=U,=Bj
=B,=0 and

U¢=RQ=aQR+I;TQ, B¢=aBR+%. (1)
Let
P, =y, B @
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and R;, and R be the radii of the inner and outer cylinders,
Q, and Q,, their rotation rates, and B;, and B, their azi-
muthal magnetic fields at the inner and outer cylinders. In
particular, a field of the form bp/R is generated by an axial
current only through the inner region R <R;,, whereas a field
of the form agR is generated by a uniform axial current
through the entire region R <R, including the fluid.

The magnetic Prandtl number Pm, the Reynolds number
Re, and the Hartmann number Ha,

v QO,.D? B,,D
Pm=—, Re= , Ha=———, (3)
K v \ opvn

are the basic parameters of the problem, where D=R,—R;,.

The stability maps are the result of a linear theory for both
axisymmetric perturbation modes (m=0) and nonaxisymmet-
ric perturbation modes (m=1). Michael [9] and Velikhov
[10] considered axisymmetric disturbances and derived for
Q=0 the stability criterion

i(li‘é>2<0 4)
dR\ R

for magnetic instabilities. Tayler [3] included nonaxisymmet-
ric disturbances and revealed for an ideal fluid the relation

d
d—R(RB%b) <0 (5)

as necessary and sufficient condition for stability. The linear-
ized MHD equations for a TC flow U subject to a magnetic
background field B for the small disturbances #’=u—-U and
b'=b-B are

!

J
% + @' VYU +(UV)u' ==V (p'/p) + vAu' +curlB X b’
+curld’ X B,
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FIG. 1. Conducting walls: the marginal stability curves for m
=0 (dotted, here only existing for un=0) and m=1 (solid). uq as
indicated. un=0 (resting outer cylinder), un=0.25 (Rayleigh
limit), wn=0.35, un=0.45, and pa=1 (rigid rotation). Pm=107>,
wp=1, and 7=0.5.

%:nAb'+curl(u’ XB+UXb'), (6)
with diva’=divb’=0. p’ are the pressure fluctuations. Equa-
tions (6) will be normalized with D as the unit of length,
n/D as the unit of velocity. B;, is the unit of the magnetic
fields. Frequencies including the rotation rate () are normal-
ized with ;.

For the velocity, the hydrodynamic boundary conditions
at the walls are assumed as no slip (u' =0). At the conducting
walls, the radial component of the field and the tangential
components of the current must vanish so that db:f)/ dR
+by/R=bp=0 at both R;, and R

While our linear stability code also works for the very
small Pm of liquid metals, the minimum microscopic Pm,
which can be handled with the nonlinear code, is 1072, The
numerical simulations cannot yet deal with the very small
magnetic Prandtl numbers of the conducting fluids used in
the MHD laboratory (Pm= 107%). Some of our results, there-
fore, can only be obtained with extrapolations.

II. INSTABILITY MAPS FOR LIQUID SODIUM

In order to demonstrate the realizations of the magnetic
instability, we now present maps of marginal instability for
various magnetic profiles and different rotation laws in liquid
sodium (Pm=107>). The nonlinear simulations presented be-
low leading to calculations of the eddy diffusivity are done
only for the most simple realization of a nearly constant
field, i.e., up=1. The container is at rest or rotates differen-
tially with resting (uqn=0) or corotating (uqn=0.35) outer
cylinder. For an aspect ratio of 7=0.5, the latter value mim-
ics the Kepler rotation law.

A. Resting outer cylinder

Figure 1 also shows the results for uz=1 and for resting
outer cylinder, so that for vanishing magnetic field the rota-
tion law is centrifugally unstable if Re>68. We know that
for certain upg, the m=1 mode is unstable while the m=0
mode is stable [3,14]. The values pz=1 and pun=0 in Fig. 1
are a good example. There is always a crossover point at
which the most unstable mode changes from m=0 (dotted) to
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m=1 (solid). Note also that for uq=0, the critical Reynolds
numbers of both modes steadily increase for low Ha, while
the m=1 mode is suddenly decreasing for a sufficiently
strong magnetic field. Hence, weak fields initially can stabi-
lize the flow and stronger fields eventually decay via a non-
axisymmetric instability mode. Beyond Ha=150 the field is
unstable for all Re, i.e., with and without rotation. Except for
the almost current-free profile up=0, all other up are char-
acterized by a critical Hartmann number beyond which the
toroidal magnetic fields cannot be stabilized by rotation
([11]). Let Ha® and Ha» denote these critical Hartmann
numbers for the modes with m=0 and m=1.

B. Flat rotation laws

The situation is more complicated if the rotation law is so
flat that it is hydrodynamically stable. Then there is no criti-
cal Reynolds number at the vertical axis. Instabilities are
always due to the magnetic fields but the form of the rotation
law strongly influences the instability map. In the following
for the most homogeneous magnetic profile with ug=1, this
influence is demonstrated. Figure 1 gives the curves of mar-
ginal stability for wo=0, wun=0.25 (Rayleigh limit), wq
=0.35 (Kepler law), uq=0.45, and pq=1 (rigid rotation).
One finds the TI more and more stabilized by the basic ro-
tation. Note the massive quenching of the TI by rigid rotation
(see [12]). Even a rather slow but rigid rotation stabilizes the
toroidal field for Ha=150. Rigidly, rotating containers can
keep much stronger fields as stable than those without solid-
body rotation.

The rotational stabilization is modified by nonrigid rota-
tion. At the Rayleigh limit (QQxR~2), even a slow rotation
destabilizes the system while it is stabilized again for fast
rotation. Thus, fast rotation stabilizes and slow rotation de-
stabilizes. At medium Hartmann numbers of (say) 50, one
finds for increasing rotation rate at the Rayleigh limit the
regimes stable-unstable-stable. The critical Reynolds num-
bers of this sequence are ~300 and ~ 1800, which easily can
be realized in the laboratory. A similar situation holds for the
(quasi-)Kepler rotation law with pq=0.35, while for rotation
laws with g =0.45 only the rotational stabilization can be
observed. In all cases, the reason for the rotational stabiliza-
tion is the incompatibility of differential rotation and nonaxi-
symmetric magnetic fields.

This, of course, is also true if the magnetic field is current
free (B4 1/R [13]). Fast rotation always suppresses the
magnetic instability but differential rotation with negative
shear is even able to destabilize the system—if it is not too
strong and if the rotation is not too fast (see Fig. 1).

C. Electric currents

For experiments, the available electric currents must not
be too strong. Currents of =15 kA can be considered as an
upper limit. In order to translate the critical Hartman num-
bers into amplitudes of electrical currents, we apply our re-
sults to liquid sodium with density of 0.92 g/cm?, a micro-
scopic magnetic diffusivity of 810 cm?/s, and a magnetic
Prandtl number of 1075. Alternatively, for an alloy of
gallium-indium tin, the necessary currents are stronger by a
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TABLE 1. Characteristic Hartmann numbers and electric cur-
rents for a sodium container (7=0.5) with conducting walls. The
experiment with the almost uniform field ug=1 is indicated in bold.

s T

B Ha©® Ha» (kA) (kA)
-2 19.8 24.8 0.807 —4.04
-1 59.3 63.7 2.42 -7.25
1 ® 151 6.16 6.16
® 35.3 1.44 4.32

factor of 3.15. A wider gap possesses lower critical Hart-
mann numbers and, thus, lower currents are needed for ex-
periments ([11]).

Let 7,,; be the axial current inside the inner cylinder and
I,iq be the axial current through the fluid (i.e., between inner
and outer cylinder). Then the toroidal field amplitudes at the
inner and outer cylinders are

Iaxis Iaxis + Iﬂuid
Bn=_,"> Bou="_ (7)
5Rin 5Rout
measured in cm, Gauss, and Ampere. Expressing /,;, and
Ifuiq in terms of our dimensionless parameters, one finds

Tnia = (2pep = 1) s (8)

Note that for uz=1, both the currents are equal, which con-
stellation is marked in bold in Table I. The table gives the
electric currents needed to reach the minimum of Ha® and
Ha) for #7=0.5, up ranging from —2 to 2 in each case. For
large |upl, the currents /g4 approach constant values.

We favor an experiment with almost uniform field uz=1.
For a container with a gap of #=0.5, parallel currents of 6.16
kA are necessary along the axis and through the fluid. The
experiment does not possess the weakest electric currents,
but both the currents are parallel and have the same ampli-
tudes. Figure 1 shows that in this case a crossing point exists,
where the axisymmetric mode has the same characteristic
Reynolds number and Hartmann number as the nonaxisym-
metric mode with m=1.

Lxis =5\ popvmHa,

III. EDDY DIFFUSIVITY

It is known that the electric conductivity is reduced by
random flows in a conducting fluid or—in other words—that
the fluctuations enhance the magnetic diffusivity. Such a
turbulence-induced magnetic diffusivity is often termed as
the turbulent diffusivity. The diffusivity is also enhanced if
the flow pattern is quasistationary and the averaging proce-
dure concerns a coordinate, where the pattern is small scaled.
The Reynolds rules are the main conditions to be fulfilled. In
our simulations, eddies are concerned averaged over the azi-
muth rather than turbulence with a flat mode spectrum. We
shall call, therefore, the magnetic diffusivity due to the Tay-
ler instability as an “eddy diffusivity.”

In the MHD regime, the eddy diffusivity is a simpler
quantity than the corresponding eddy viscosity by which an-
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gular momentum is transported. The total eddy viscosity is
formed by both a Reynolds stress part and a Maxwell stress
part. This is not the case for the turbulent diffusivity. In the
kinetic quasilinear approximation for a turbulence field with
a correlation time 7.,

2 1(b"?

=210, ©
15 3 pop

results for the eddy viscosity but the much simpler expres-

sion

="' (10)
3
results for the eddy diffusivity [15]. The magnetic fluctua-
tions do not contribute to the magnetic diffusivity. This basic
difference between the diffusion coefficients is not proven so
far by any experiment.

The results (9) and (10) suggest that in (nonrotating)
turbulent-magnetized fluids, the effective magnetic Prandtl
number always exceeds the minimum value 0.4, which was
indeed confirmed by numerical simulations for driven MHD
turbulence with Pm of order unity [16].

The knowledge of the turbulent magnetic Prandtl number
is of extraordinary meaning in fluid mechanics and geo/
astrophysics. For its experimental realization, one has to
measure both quantities simultaneously in one and the same
experiment. In this paper, we start to present an MHD ex-
periment only for the measurement of 7. Later calculations
will also concern the corresponding eddy viscosity vr.

The nonaxisymmetric components of both flow and field
may be used in the following as the “fluctuations,” while the
axisymmetric components are considered as the background
quantities. Then the averaging procedure is simply the inte-
gration over the azimuth ¢.

Because there is no a effect without stratification, it is
standard to express the turbulence-induced EMF as

&=(' X b'y=- prcurlB. (11)

Here the eddy diffusivity #r is considered as a scalar, which
must be positive. Higher-order correlations can be neglected
because of the small size of fluctuations compared to the
mean field. In cylindrical geometry, the mean current curlB
has only a z component. Hence, along the axis

E.=—- mreurl B. (12)

Indeed, the nonlinear simulations provide the amplitudes of
the other components as less than 10% of the amplitude of
E.. After averaging, the mean values are below 1%.

After Table I for up=1, the current through the fluid is
positive. Then only for negative £, the 7 results as positive.
In the following nonlinear simulations for uz=1, the £, in-
deed proves to be negative.

IV. NONLINEAR SIMULATIONS

Absolute values for £, can only be computed with nonlin-
ear simulations. The smallest possible magnetic Prandtl num-
ber of our code yielding robust results is 0.01. In the present
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FIG. 2. (Color online) The normalized axial EMF (12) in the
container. Everywhere, the correlations are negative. up=1, Ha
=200, Re=500, and Pm=0.01.

paper, the results without and with rotation are reported but
only for the fixed value of Ha=200. The used Fourier spec-
tral element code used has been described earlier in detail
[17]. It solves the MHD equations for an incompressible,
viscous, and electrically conducting fluid. Velocity and mag-
netic field are expanded in Fourier modes in azimuthal direc-
tion, and the resulting meridional problems are solved using
a Legendre spectral element method (see [18]). Either M
=8 or M =16 Fourier modes are used, two or three elements
in radius and 12 or 18 elements in axial direction. The poly-
nomial order is varied between N=8 and N=16. The veloci-
ties are (now) normalized with v/D. The cylinder is of the
finite height H=8D. The endplates are chosen to be stress
free to prevent deformations due to otherwise appearing Ek-
man layers. This kind of boundary conditions has no influ-
ence on the instability itself. Without endplate effects, the
data analysis is easier and the height of the cylinder can be
less than with solid endplates. For a real experiment, one
needs to take this into account.

The applied external field with uz=1 becomes unstable if
the Hartmann number is large enough (cf. Fig. 1). The mode
m=1 is the only linearly unstable mode so that higher m only
appear as a result of nonlinear interactions. The spectrum
becomes rather steep. While the energy of the m=1 mode is
about 1% of that of the external field (the m=2 mode con-
tains 0.08%), the energy of the mode with m=6 is already
four orders of magnitude less than that of m=1.

In the rotating case with Re=500 after about 50 rotations,
a steady state is reached. Figure 2 shows the resulting pattern
of the axial EMF for a simulation of the instability with
Ha=200 for the small magnetic Prandtl number Pm=0.01.
The EMF is given in the dimensionless units vB;,/D, it is
negative everywhere. The cells prove to be rather flat for Pm
of order unity. The EMF (=100) averaged over the whole
container is plotted in Fig. 3 as a dot at Pm=0.01.

From Fig. 3, one finds that for various Pm the averaged
EMF runs as E/Pm with E=1.2. The resulting EMF in
physical units is therefore

Bin
E,=-E e (13)
which does not depend on the molecular viscosity v. The
magnetic Prandtl number does not play any role in this ex-
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FIG. 3. (Color online) The negative normalized axial EMF vs
Pm for Ha=200 and for up=1 averaged over the container. The
lower curve is from simulations without rotation; the upper curve
with rotation and shear (Re=500, un=0.35).

pression. This is our chance to work in experiments also with
conducting fluids with small magnetic Prandtl numbers.

A negative EMF leads to positive 7. From Egs. (12) and
(13) follows:

7 sE~138 (14)

Y

for resting cylinders and for all Pm. The voltage difference
6U due to this EMF becomes sU=E7B;,H/D with H as the
container height. Transition to the Hartmann number yields

” H
5U=E77\«‘,u0p1/77§Ha. (15)

For D=10 cm, H=100 cm, and for sodium (vVuypv7n
=8.15) a maximum value of 16 mV as the potential differ-
ence from endplate to endplate results. This value bases on
the scaling with 1/Pm suggested by Fig. 3 and must thus be
considered as an estimation. Even in the case, however, that
the slope of the curve decreases for smaller Pm, the effect
should be observable in the laboratory.

To reach a Hartmann number of 200, a magnetic field of
163 G at the inner cylinder (R;,=10 cm) is required, which
can be produced with an axial current of 8.15 kA for R,
=2Rin'

Note that the resulting potential difference runs with 1/D?
so that for containers with smaller gaps the resulting value
strongly increases. For a gap of only 1 cm (but still %=0.5!),
the potential difference approaches 1.6 V.

For studies of the rotational influence on the TI, also the
theoretical EMF under the presence of a differential rotation,
are given in Fig. 4. It is un=0.35 (quasi-Kepler flow), and
the Reynolds number is Re=500. Note that the influence of
the rotation is only weak; with rotation, the values are
slightly higher than without rotation (7p/7=2.4). This is
understandable as after Fig. 1 for Re=500 a differential ro-
tation with up<<0.45 destabilizes the magnetic field. More
flat rotation laws with w=0.45 lead to the opposite result.
There is no indication that our basic result (13) is modified
by such rotation laws.

Figure 4 gives the values of #p/ 7 resulting from simula-
tions with various magnetic Prandtl numbers Pm. Even for
the case that the very weak trend to smaller values for
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FIG. 4. (Color online) The ratio 7/ 7 vs Pm for Ha=200 and
mp=1. The lower curve is without rotation; the upper curve is with
rotation and shear (Re=500, u=0.35).

smaller Pm is real, the estimated value of #;/# for sodium
or gallium should be much higher than (say) 10%.
Next the magnetic Reynolds number of the fluctuations,

o= max(\{u ))D, (16)
n

is considered. Only a very weak magnetic Prandtl number
dependence of Rm’ is found (Fig. 5). Extrapolation of the
results to Pm=107> gives a value of Rm’ =2.6 without and
with rotation. The corresponding velocity fluctuations for so-
dium are about 1.5 m/s in a gap of 10 cm. The values are
rather similar to those of the Riga “a-yashchik” experiment
[19]. Even with two resting cylinders, it is possible to pro-
duce rather high (azimuthal) velocities in TT experiments.

V. CONCLUSIONS

We have shown by numerical simulations that the nonaxi-
symmetric Tayler instability for nearly homogeneous toroidal
fields in cylindric TC containers produces an axial value of
the EMF, which is almost independent of the fluid’s viscos-
ity. From numerical reasons, the magnetic Prandtl numbers
only covered the range between 0.01 and 1. Hence, if ex-
trapolation to fluids with small magnetic Prandtl numbers is
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FIG. 5. (Color online) The same as in Fig. 4 but for the mag-
netic Reynolds number Rm’ of the fluctuations.

allowed, liquid metals can be used to find this EMF in ex-
periments. The resulting EMF for a container with 10-cm-
gap width equals 16 mV/m corresponding to an eddy diffu-
sivity of 7p on the order of the microscopic diffusivity #.
This value essentially exceeds the numbers observed in other
existing experiments. We did not find a remarkable influence
of differential rotation between the cylinders on the EMF.
The concept of the proposed experiment can thus further be
developed to simultaneous measurements of the eddy viscos-
ity and, therefore, the magnetic Prandtl number.

Also the magnetic Reynolds number of the fluctuations
exhibits rather slight dependencies on both the fluid’s viscos-
ity and the basic rotation (Fig. 5). Interpolation to smaller
Pm leads for sodium to fluctuations of the azimuthal velocity
of about 1 m/s. For smaller gaps, the velocities are even
higher.

With an inner radius of 10 cm, the magnetic field in the
gap is on the order 100 G. It can be produced by a system of
electric currents. For the favored almost uniform radial pro-
file of the magnetic, the currents along the axis of the con-
tainer and through the sodium are parallel and of the same
amplitude of about 6 kA (19 kA for gallium). Magnetic fields
increasing outward (e.g., by a factor of 2) are much more
unstable so that the necessary electric currents are reduced
(see Table I).
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