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Binding site models of friction due to the formation and rupture of bonds: State-function
formalism, force-velocity relations, response to slip velocity transients, and slip stability
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We present a model describing friction due to the thermally activated formation and rupture of molecular
bonds between two surfaces, with long molecules on one surface attaching to discrete or continuous binding
sites on the other. The physical assumptions underlying this model are formalized using a continuum approxi-
mation resulting in a class of master-equation-like partial differential equations that is a generalization of a
friction model due to Persson [Phys. Rev. B 51, 13568 (1995)] and is identical to the equations used to
describe muscle contraction, first proposed by A. F. Huxley. We examine the properties of this friction model
in the continuous binding site limit noting that this model is capable of producing both monotonically increas-
ing and an increasing-decreasing force dependence on slip velocity. When monotonically increasing, the force
dependence on velocity is (asymptotically) logarithmic. The model produces a transient increase in friction in
response to a sudden velocity increase, whether or not the steady-state friction force is a decreasing or
increasing function of steady slip velocity. The model also exhibits both stable steady slip and stick-slip-like
oscillatory behavior, in the presence of compliance in the loading machine, even when the steady-state friction

force is a decreasing function of steady-state slip velocity.
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I. INTRODUCTION

A substantial literature exists within the physics and me-
chanics communities attempting to construct theories and
models that capture the molecular, or otherwise microscopic,
origins of friction between solid surfaces (e.g., [1-30]).
While these models have had various degrees of success,
there seems to be a consensus that a relatively complete and
satisfactory understanding of the molecular and mesoscopic
origins of friction is still open [31].

In this paper, we describe a class of microscopic friction
models that model friction as arising from the thermally ac-
tivated formation and rupture of springy molecular bonds
between two rigid surfaces. A number of friction models
have previously been proposed in the friction literature in-
voking similar physical mechanisms but somewhat different
in detail. To clearly distinguish our friction model, we now
review these prior friction models briefly and comment on
our models’ relation to these models.

First, there exists a large class of earthquake models con-
sisting of an elastically coupled chain of masses interacting
with a planar rough surface via some macroscopic friction
model. Most models in this class (e.g., [3,32-35]) are either
modifications or generalizations of the model due to Burr-
idge and Knopoff [36]. These earthquake models are super-
ficially similar to the models described in this paper (due to
the presence of an ensemble of spring-mass systems), but
there are important differences. The intent of these earth-
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quake models is not necessarily to understand the micro-
scopic origins of friction, but to infer the consequences of
specific assumed friction models to earthquake dynamics, or
more generally, the frictional properties at larger spatial
scales given the frictional properties at smaller (but still
much larger than molecular) spatial scales. Also, the friction
laws used in these earthquake models do not have the
chemical-reaction-like features that the models described
here possess. Somewhat related to the earthquake models are
models of asperities (modeled again as masses on springs) on
opposing surfaces, making and breaking contact—the asperi-
ties could be modeled as breaking contact at a specific strain
or at a broad range of strains, with a particular probability
distribution (e.g., [37]).

Persson [19] considers the frictional interaction between
an elastic block sliding on a surface with a thin lubrication
film of molecular thickness. He considers the lubrication
layer to not be a smooth fluid state but containing pinned
stress domains that fluidize and refreeze while sliding. He
models these stress domains as a chain of masses connected
by springs and formulates an integropartial differential equa-
tion that we show here to be a special case of the Lacker-
Peskin continuous binding site model presented in this
paper—we will expand on the relation between the two mod-
els later in this paper. In this sense, the models we describe
in this paper can be considered as generalizations of that due
to Persson [19].

Filippov et al. [7] recently presented a model in which
friction arose from the thermally activated formation and
rupture of (an ensemble of) molecular bonds. The physical
assumptions in their model are also most similar to the so-
called Lasker-Peskin model presented here with minor dif-
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ferences. Their model of bond rupture is essentially identical
to that used here, but their model for bond formation is dif-
ferent from that used here (it is independent of bond length,
but dependent on the “age” of the contact, while our models
assume the converse). While Filippov et al. present only the
simulation results from their model, our continuum approxi-
mation of the physical assumptions enables us to obtain
some analytical results. Given the close relatedness of the
models, it is possible that our formalism could be adapted to
better understand the Filippov et al. model.

Another closely related class of friction models are modi-
fications of that introduced by Tomlinson [24], most recently
used to explain the frictional interaction between the tip of
an atomic force microscope or a friction force microscope
(e.g., [10,38—41]) and an atomically flat surface. Tomlinson-
like models usually consist of a mass on a spring, possibly
thermally activated, interacting with a periodic potential im-
posed by a periodic lattice of surface atoms. One generaliza-
tion of the Tomlinson model is the so-called Frenkel-
Kontorova-Tomlinson (FKT) model in which an interacting
chain of masses connected by springs on one surface inter-
acts with a periodic potential imposed by the other surface
[25,26,40]. An FKT-like model was recently used in the
modeling of the adhesive and frictional interaction between a
biological cell and a substrate [42]. The models in our paper
might be thought of as being a different and somewhat styl-
ized generalization of the Tomlinson models, first replacing
the “periodic potential” by a sequence of “discrete binding
sites” corresponding to the energy wells, and then possibly
taking the limit of arbitrarily closely spaced (Lacker-Peskin
model here) or sparsely spaced binding sites (Huxley model
here). The physical assumptions underlying the models here
are also closely related to the theory of elastomeric friction
due to Schallamach [43], who only considered steady-state
properties; but see [30] for the derivation of a dynamical
PDE describing such friction, different from those derived
here.

Finally, we note that our models are only-slightly-
modified versions of classic molecular models used to de-
scribe the function of skeletal muscles [44-52]. Skeletal
muscles consist of a regular lattice of parallel filaments of
two types, referred to as thick and thin filaments, composed
largely of actin, myosin, and other long-chain protein mol-
ecules. Muscles shorten by the relative sliding of these par-
allel filaments and convert chemical energy into force and/or
mechanical work by the repeated binding and unbinding of
the myosin heads on the thick filament with the actin binding
sites on the thin filaments. This “sliding filament” description
of muscle contraction was proposed in back-to-back Nature
papers in 1954, co-authored independently by two unrelated
Huxley’s [53,54]. In 1957, A. F. Huxley organized these
largely experimental observations into a simple mathematical
model resulting in a partial differential equation (PDE) de-
scribing the mechanics of muscle contraction [47]. This PDE
and generalizations thereof remain the current rational foun-
dation for the understanding of muscle mechanics at the mo-
lecular level. The friction model PDEs we derive here are
identical to the muscle model PDEs—so we sometimes refer
to them here using their muscle mechanician progenitors
(Huxley PDE or Lacker-Peskin PDE). But we must empha-
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size that the binding sites-based friction models described
here stand on their own merits motivated independently by
basic physical mechanisms that are thought to be relevant to
friction and are of interest to friction mechanicians both be-
cause the phenomenology they are capable of and because of
their generalizing relation to some prior friction models.

We now briefly describe the organization of the paper. In
Sec. II, we describe our molecular friction model in two
parts. In Sec. II A we introduce a general binding site model
in which friction is produced by an ensemble of masses on
springs on one surface attaching to a series of binding sites
on the opposing surface. This section mostly follows the cor-
responding muscle exposition in [48]. Then, we specialize
this general binding site model taking the limit of dense
binding sites (the Lacker-Peskin model in Sec. IT A 1) and
the limit of sparse binding sites (the Huxley model in Sec.
IT A 2). In the main body of the paper, we focus on the
Lacker-Peskin continuous binding site model under a few
different conditions, while Appendix A provides analogous
results for the Huxley sparse binding site limit. In Sec. II B,
using reaction rate theory, we briefly derive plausible models
for bond formation and rupture that we use for the rest of the
paper. Coupling these models of bond formation and rupture
to the binding sites models, we perform a variety of analyti-
cal and numerical calculations described in Sec. III. First, in
Sec. III A, we derive expressions for the steady-state force-
velocity relations for these models and obtain some
asymptotic expressions. Then, in Sec. III B, we obtain the
response of the friction force in these models to discontinu-
ous changes in slip velocity and we make a prediction that
there will be an overshoot in the friction force before the
obtaining of steady state. Then, in Sec. III C, we show that
the Lacker-Peskin friction model can exhibit both stable
steady slip (despite the steady-state friction force decreasing
with slip speed) and oscillatory slip (with unstable steady
slip) depending on the stiffness of the loading machine. Fi-
nally, in Sec. IV, we briefly compare our model to the em-
pirically based state-variable laws of Dieterich and Ruina.
We finish this section with a discussion of direct applications
of our model to biological friction.

II. MODEL

Our molecular friction model consists of two large rigid
surfaces capable of sliding relative to each other. Long-chain
molecules on one surface interact with binding sites on the
other surface. In this section, we write a mathematical model
of this system in two steps. First, without specifying the
details of the molecular interactions of the long-chain mol-
ecules, we obtain a partial differential equation model for
long-chain molecules interacting with two sliding surfaces.
Then, invoking Kramers’ reaction rate theory, we derive a
plausible mathematical description for the chemical interac-
tions of the long-chain molecules and their binding sites.

A. General binding site model

The general model [Fig. 1(a)] consists of two blocks,
which are rigid, very long, with their interacting surfaces
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FIG. 1. (a) Model with evenly spaced binding sites, with spacing /&, small enough that any given cross-bridge on the top surface can
interact with more than one binding site on the bottom surface. (b) When 42— 0, the cross-bridge can attach to any point on the bottom
surface; this is the dense or continuous binding sites limit giving the Lacker-Peskin equation. (c) A single cross-bridge attached to its binding
site implies a tensional force F=kx in the filaments. When multiple cross-bridges are attached, the force transmitted by them add (the

cross-bridges are in parallel).

parallel to each other, and attached to the external world at
their extremes. One of the surfaces has numerous springy
elements called “cross-bridges” (long-chain molecules),
which can attach to corresponding binding sites on the op-
posing surface.

For simplicity, we assume that the cross-bridges are al-
ways in one of two states: bound (B) or unbound (U). This
derivation is readily generalized to include multiple states
[55]. Figure 1(a) shows a single cross-bridge capable of
binding to any of the binding sites shown. The binding sites
are indexed by integers. The kth binding site is a
distance x; from the base O of the cross-bridge with
ke{...,-2, =1, 0, 1, 2,...}. The reaction network for
this system is such that the cross-bridges can bind to any of
the binding sites from the unbound state but are unable to
directly go from being bound to one binding site to another.
The binding and unbinding of an ensemble of identical cross-
bridges with the kth binding site are governed by reaction
rates that are dependent on x;:

f(Xk)
U=B8, (1)

glx, k)

where g(x;) is the unbinding rate function and f(x;) is the
binding rate function. The rate functions g and f are assumed
to be the same for all the binding sites.

If none of the cross-bridges are attached to the binding
sites, the total (time-averaged) friction force F between the
two surfaces is zero. The springy cross-bridges, when at-
tached to their binding sites, transmit a force that is a mono-
tonic function of the strain x, for instance, xx [Fig. 1(c)],
where « is a spring constant. The total friction force F is
equal to the sum of the forces due to all the bound cross-
bridges, as shown in Fig. 1(c) for two bound cross-bridges.

Now consider an ensemble of M cross-bridges, all at the
same position relative to the grid of binding sites. The two
surfaces are at rest relative to each other. We define n,(f) to
be the fraction of the M cross-bridges that are bound to the

kth binding site. The rate of change of this fraction dn(r)/dt
is given by the sum of the two following terms. (1) binding
rate: a binding rate function f(x;) times the fraction unbound
(1-Zn;); (2) unbinding rate: an unbinding rate function
g(x;) times the fraction bound to the kth binding site n;,

d”lk

E: (1 —Ek:”k>f(xk)_”kg(xk)' )

We now examine this equation under two extreme limits of &
and generalize it to when the two surfaces slide past each
other.

1. Continuous (dense) binding sites: The Lacker-Peskin model

Lacker and Peskin [49-52], in the context of muscles,
considered the limit of very dense binding sites, letting the
spacing h—0, so that the position of the cross-bridges rela-
tive to the grid becomes irrelevant. This lets us set x(=0,
without loss of generality, so that x,=xy+kh=kh. Then, Eq.
(2) becomes

d”lk

s (1 - % nk) F(kh) = ngg(kh).

Dividing through by /&, we obtain

d(mh) f(kh) — ng(kh)
i _[1—h§(nk/h)] PR (3)

Now, we define a smooth function n(x,?), so that its dis-
cretized version on the grid x,=kh is given by n,(r)/h; that
is, n(kh,t)=ni(t)/h. Then, defining f,(x)=f(x)/h and
gp(x)=g(x), we can treat Eq. (3) as a spatially discretized
version of the partial differential equation:
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# = ll - Jm n(x,t)dx]fp(x) - n(x,1)g,(x).

If the bottom surface was moving to the right relative to the
top surface, at velocity v(z), the PDE is modified by a con-
vective term, giving

on + y(?—n = (1 - J” ndx)fp(X) —ng,(x), (4)

which we call the Lacker-Peskin PDE for the continuous
binding site limit [49-52]. If M is the total number of cross-
bridges, bound or unbound, the total force F produced by the
ensemble of bound cross-bridges is given by

©

F()=M | kxn(x,t)dx. (5)

-0

For the continuous binding limit, the quantity x has mean-
ing only for a bound cross-bridge (and meaningless when the
cross-bridge is unbound). Thus, the function n(x,7) has the
following meaning: the fraction of all the total cross-bridges
that find themselves bound with a strain between x and
x+Ax is given by n(x,f)Ax to first order.

Note that the rate function f,(x) was obtained as the limit
Sf(x)/h. We can interpret this one of two ways. First, if we
imagine the Lacker-Peskin PDE as indeed the limit of
h—0, then to get a finite f,(x), we must scale f(x) with h.
That is, each binding site must become weaker as the binding
sites become denser, so that the “attraction” over unit length
remains bounded. Alternatively, consistent with the deriva-
tion above, we can imagine the Lacker-Peskin PDE as a
continuum approximation for small 4. In this case, the limit
h—0 is not taken and we can simply set f,(x)=f(x)/h. We
prefer the latter perspective.

In the main body of this paper, we will mostly consider
the Lacker-Peskin continuous binding sites model, as it
seems more appropriate for the description of the potential
energy minima induced by an atomic lattice. Also, we show
in Appendix B that the Persson friction model [19] is a spe-
cial case of the Lacker-Peskin model corresponding to the
case when the cross-bridge that gets unbound gets immedi-
ately bound with x=0.

2. Sparse binding sites: The Huxley model

The other limit of potential interest is to assume that the
binding sites are so sparse—h is so great—that the cross-
bridge can interact with only one of the binding sites, say,
with k=0. Then, in Eq. (2), we have n;=0 for k#0. We
have only one equation left:

dn
d_to = (1 = ng)f(xo) = nog(xo)- (6)
If the bottom block moves to the right relative to the top
block, with a relative velocity v(f), the above equation would
be modified by a convective transport term giving the fol-
lowing PDE:
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FIG. 2. (Color online) The smooth rate functions for binding
and unbinding, f(x) and g(x), used in this paper [Egs. (10) and
(11)]. The dotted line is the simpler approximation to g(x) from Eq.
(12).

Do) = (1@ - mg. ()
ot ox

where we have replaced x, with x and n, with n;, (the sub-
script A stands for Huxley). In this equation, n,(x,?) is the
probability that a given cross-bridge, whose base is at a dis-
tance x from the single binding site it can interact with, is
bound to this binding site. Equation (7) is the classic PDE
that Huxley [47] derived for describing the mechanics of
muscle contraction and force production. So we call this
limit the Huxley model, or alternatively, the sparse binding
sites model. The total force due to all the bound cross-
bridges is given by integrating over x:

F(t)= pfw rxny(x,0)dr, (8)

where p is the total number of cross-bridges, bound or un-
bound, per unit x, assumed to be a constant [47]. Note, there-
fore, that this n,(x,7) has a different interpretation from the
n(x,1) for the Lacker-Peskin dense binding site limit.

B. Rate functions for binding and unbinding

For a cross-bridge bound with a strain x, it seems intuitive
that the propensity to unbind would increase with |x|. Con-
versely, for an unbound cross-bridge, the propensity to bind
would decrease with [x|. We now derive rate functions
(shown in Fig. 2) consistent with this intuition. A less rigor-
ous version of this derivation appears in the supplementary
material of [56].

To derive the rate functions, we use the high-damping
limit of Langer’s [57] reaction rate theory expressions for the
escape of Brownian particles from potential wells in many
dimensions, a generalization of Kramers’ theory [58]. Say
V(z) is the potential energy function and E(z,Z) is the total
energy function. The potential energy function has minima at
points B and U and a saddle point S between them. Say H,
and Hy are the Hessians of the energy function E(z,Z) with
respect to [z;Z] at U and S, and A" is the dominant growth
rate near the saddle. Then, in the intermediate to high damp-
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FIG. 3. (a) A two-dimensional model for binding. The top surface has a springy cross-bridge (point mass attached to a spring) that can
“bind” to a binding site B on the bottom surface at a horizontal distance x from the base of the spring. Two surfaces are separated by a small
distance L. The coordinates of the point mass on the cross-bridge is (g;,&,). (b) The contours of the potential energy for the mechanical
model (units of k,7) as a function of the two spatial dimensions &, and &,. The bound (B), unbound (U), and transition (S) state are shown
as gray dots. Two different values of x, the spacing between B and U along &;, are shown: x=L and x=0.

ing limit, the rate constant K., of escape from the potential
energy minimum U is given, approximately, by

At [ det(Hy)
= I EE—— A

k. =
escare = 5 \ |det(Hy)|

_(VS_VU)/ka’ (9)

where k,, is the Boltzmann constant and 7 is the temperature,
as conventional (see [59] for this formula).

We use the above expression [Eq. (9)] in the context of a
simple two-dimensional model for cross-bridge binding
shown in Fig. 3(a). Consider a point mass moving in 2D
attached to a linear, zero-length spring with stiffness « [this
is the “cross-bridge;” see Fig. 3(a)]. The base of the spring is
fixed in space attached to a horizontal surface. Some distance
L away, there is another large flat surface with a binding site
at a distance x from the base of the spring. The 2D position
of the point mass relative to the base of the spring is given by
the vector e=¢gi+¢&,j.

The zero-length spring creates a quadratic potential V.
We model the binding site B as inducing a localized additive
potential well V, (&) that is narrow and deep, so that the total
potential energy V=V, +V,. The potential energy contours
are shown in Fig. 3(b) for two different x values. The total
energy function is E:m(s’%+é§)/2+V(s).

The system can be in one of two states: “bound” B (i.e., in
the basin of attraction of the binding site) or “unbound” U
(i.e., in the basin of attraction of the spring’s potential well).
The critical point on the potential energy surface associated
with the unbound state U is approximately € =~0. Similarly,
e=~g( will be the critical point associated with the bound
state B, where g is the location of the binding site.

For a circular potential well V, the three critical points
of the potential energy surface (the bound, unbound, and
transition states) must lie on a straight line by symmetry.
Noting that the distance w [see Fig. 3(b)] from the bound
state to the transition state, the saddle point S, is approxi-
mately constant with x, the position sszsf(x)i+s§(x)j of the
saddle point is

s wx s wL
gl(x)zx—,= and 82(x)=L—/=
x4+ L2 2+ L2

Using these approximations, we may write the potential Vg at
the transition state as

K
Vg= Vg — E(L —w)?

+K[< wx )2+<L wL )2]

2 * \"m VL + 52 ’
where Vg is the potential energy of the transition state when
x=0.

At the unbound state U, the determinant of the Hessian of
the energy is given by det(H,)=m>«>. At the saddle point S,
the determinant of the Hessian of the energy is given by
det(Hg)=m>\,\,, where \;>0 and \,<0 are the principal
curvatures of the potential energy at S. If the damping coef-
ficient is 7y, writing the linearized dynamics equations for
[e€] near the saddle point S, it can be shown that
the dominant growth rate near the saddle S is
N*=(=1+1+4m|\,|/ y)y/2m, which is well approximated
by |\,|/y for large damping coefficient 7.

Assembling all the pieces in Eq. (9), using V=0, and
neglecting the x dependence of \;, we can show that

f(x) = fy exp[— bx> + a(N? + x> = ¢)], (10)

with b=«/2k,T, a=kw/k,T, and c=L; and f; is the reaction
rate when x=0, i.e., the maximum reaction rate.

Similarly, we may write an expression for the unbinding
rate constant g:

g(x) = gg expla(Ne? +x* - )], (11)

where g(0)=g, is the minimum unbinding rate and
a=kw/k,T and c=L as before.

Figure 2 shows the rate functions for a=1, b=5, ¢=0.1,
fo=4, and gy=1. We use these parameter values throughout
this paper. These parameters are not special in any way and
the qualitative behavior described here generalizes to other
parameter values.

For the Lacker-Peskin model, we use rate functions of the
same form except scaling the binding rate function by the
appropriate  binding site spacing. That is, we use
fy(x)=f(x)/h and g,(x)=g(x), where h is the binding site
spacing. We use £=0.1 in the calculations corresponding to
the Lacker-Peskin model.
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We may simplify these expressions for the rate functions
if we take the limit as k—o°; i.e., the molecular spring be-
comes very stiff. However, in order to have the chemical
reactions occur at a non-negligible rate, we must also adjust
w and L letting them become very small. Recall, w is the
effective radius of the binding well and depends on the de-
tails of the binding well. Therefore, we may pick w and L to
scale as 1/k, w=c,k,T/(€k) and L=c;k,T/(€k), where c,,
and ¢; are nondimensional constants and ¢ is the spacing
between binding sites. Then, plugging into Eq. (10) we find

K)C2
f() = lim £ exp ( —)

e 2k, T
2
Cy chbT) , <k,
—w L7 _ ~ f,8x),
" e{ ( e ) T T ek f19x)

where f,=lim,_,., fo\27k,T/k is a constant (note that, for
finite f|, we need f,— ). Similarly, plugging into Eq. (11):

k,T\? k,T
g(x)=lim g, exp S (CLb ) P
K00 t Kk (K

~ gy exp(alx|),

where g,=g, and a=c, /€ are constants. These simplifica-
tions apply for large b and small c.

In the following, we use the smooth rate functions Egs.
(10) and (11) for the numerical simulations, but use the sim-
pler and less-smooth rate functions

f(x)=£,6(x) and g(x) = g,e M (12)

when attempting analytical approximations.

Both Egs. (10) and (11) and the simplified expressions in
Eq. (12) were derived assuming that the position of the bind-
ing site (x) could vary. In other words, these equations pro-
vide expressions for the strain dependence of rate constants.
Previous researchers have derived expressions for the load
dependence of rate constants by adding a linear function of x
to a two-welled potential energy surface [43,60-65]. The
load-dependent rate constants are similar but not equivalent
to the strain-dependent rate constants. We discuss these dif-
ferences in more detail in Sec. IV.

The mechanical model presented here for binding is not
the only reasonable one (Fig. 3). Here, we have assumed &,
to be a spatial coordinate. Instead, one might consider &, to
be a generic reaction coordinate. This interpretation of &,
would allow us to move the position of the binding well B in
a more general manner in the &;—¢&, plane, perhaps giving
rise to slightly different rate functions.

Finally, the binding site model is nominally one dimen-
sional (Fig. 1) and the rate functions were derived using a
two-dimensional model (Fig. 3). However, we acknowledge
that friction involves, in detail, the three-dimensional inter-
action between not-quite flat surfaces. But the simplifications
here are natural and common in the friction literature.

III. PROPERTIES OF THE DENSE BINDING SITE MODEL

We obtain the response of the dense binding site (Lacker-
Peskin) friction model under three different types of experi-
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a) Steady state n( x, ®)
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FIG. 4. (Color online) Steady slip for the Lacker-Peskin friction
model. (a) The distribution of bound cross-bridges for three differ-
ent slip velocities. (b) The steady-state friction force as a function
of steady slip velocity. The solid dark line is the result of a numeri-
cal solution with smooth rate functions based on Egs. (10) and (11).
The thin solid line is the complete analytical solution [Eq. (19)]
using simplified rate functions [Eq. (12)]. The dashed line is the
large velocity approximation [Eq. (21)] to the analytical solution.

ments. First, we derive analytic expressions for steady-state
friction force at various slip velocities and then obtain sim-
plified expressions for this force-velocity relation in various
limits. Next, we perform numerical simulations of step
changes in sliding velocity and the resulting transient re-
sponse of our model. We argue that one expects a transient
increase in friction force for step increases in slip velocity.
Finally, we consider the classic “stick-slip” setup, in which
there is a compliant element between the applied force and
the sliding block. In these numerical simulations, we found
stable sliding at low velocity; while at high velocity, we
found both stable sliding and oscillatory slip depending on
parameter values. Several of these trends and phenomena
agree qualitatively with some friction experiments.

A. Steady slip

At zero slip velocity and steady state, one obtains the
unique value for n(x,%) to be

n(x,OO):(l—faa ndx)M, (13)
gp(%)

—00

an even function of x, implying zero net force. In this strict
sense, this model exhibits no static friction for the f, and g,
that we use. However, it is possible to construct fp(x) and
g,(x) that do give rise to nonunique n(x,) at v=0 and, there-
fore, true static friction (see Appendix C).

For positive v, the cross-bridges get pulled into positive
strains x>0, so that the steady state n(x) is asymmetric
about x=0. Figure 4(a) shows the asymmetric steady-state
distributions n(x) for a few different steady positive slip ve-
locities, for the Lacker-Peskin model with smooth rate func-
tions f,(x)=f(x)/h and g,(x)=g(x) from Egs. (10) and (11),
with 2=0.1. Figure 4(b) shows the steady-state friction force
as a function of slip velocity. We see that the friction force is
zero for zero velocity, increases very rapidly to a finite force
for small velocities, and then goes to zero as the velocity
goes to infinity. The rapid increase in friction force for small
velocities imply that in an experiment in which the external
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force pulling the two surfaces apart is increased extremely
slowly, the corresponding slip will be very small until a
threshold force is reached. This behavior is reminiscent of
static friction, even though this is not “true” static friction.
(Indeed, when computational mechanicians wish to simulate
Coulomb friction using smooth equations, they sometimes
use functions such as tan~'(v/€) that rapidly rises from zero
for small v and then asymptotes to a constant. See, for in-
stance, [66].)

Using the simplified rate functions of Eq. (12), it is pos-
sible to derive exact analytical expressions for the steady-
state force-velocity relation. Using the simplified rate func-
tions, the Lacker-Peskin PDE becomes

on on

—+v—=(1=N)f,,0x) — ng,e®™, 14
P ( )f1,8(x) —ng, (14)
where N(1)=[*"n(x,t)dx is the fraction of all cross-bridges
that are bound at time #, whatever their strain x. At steady
state, on/dt=0, so that

dn
— =(1=N)f,,8(x) — ng,eM.
I ( )f1,0(x) — ng,
Because there are no attachments for x<0, n(x<<0)=0. The
large binding rate at x=0 produces a jump in n(x) equal to
n(0%)=(1-N)f,,/v. For x>0, the steady-state differential
equation reduces to

dn

— = — gne™. 15
Vo= gne (1)

Solving for n(x), we have
n(x) = n(0%)e B0, (16)

where B=g,/av, a convenient notation. So the total fraction
bound, N, is given by

N= f n(x)dx
0+
e Bax
O+

= HB(1 - N)E,(B)é?, (17)

=ﬁ263(1 -N)
av

where X=ax, H=f,,/g,, and E(B) is the so-called exponen-
tial integral [67], a positive and monotonically decreasing
nonelementary function defined for B>0. E;(B) goes to zero
as B goes to infinity and goes to infinity as B approaches
Zer0.
Solving Eq. (17) for N gives
__ HBE\(B) i as)
HBE|(B) +¢78

and then

a
- 5 ___e
E(B)+¢B/HB

n(x) = ~Be™

The total force F due to the ensemble of attached cross-
bridges is given by

PHYSICAL REVIEW E 80, 046124 (2009)

Mkn(0%)eP foc Yo B gy

F= MJ (kx)n(x)dx = 5
0* a ot
Mk Q®B)

=— 19
a E,(B)+eB/HB (19)

where

* 71’2 In B)?
Q(B):f Xe_BeXdX=—+ﬁ+ylnB+(n )
. 27 2

-BG([1,1,1],[2.2,2],- B),
(20)

where G is the generalized hypergeometric function, also
called the Barnes extended hypergeometric function [68].
Here, y=0.577 215 6... is the Euler-Mascheroni constant,
not to be confused with the damping coefficient in the rate
function derivation. Equation (19) is the thin dashed line in
Fig. 4(b) and compares well with the numerical simulations
(thick dashed line) with the smoother rate functions [Eq.
(12)].

Equation (19) is amenable to further simplification, for
which we define a nondimensional force F=aF/Mx per
cross-bridge and a nondimensional velocity V=1/B. We con-
sider two distinct cases below.

1. Finite attachment prefactor H

For large V and small B, noting that Q(B) ~0.5(In B)? and
E;(B)~In B, we have

o(B)

po =) 2
F= E.(B) + ¢ P/HB 0.5H(In V)7/V. (21)
This expression makes it clear that the force goes to zero as
the velocity goes to infinity, as V dominates (In V)?. Equation
(21) is the dashed line in Fig. 4(b). The large V approxima-
tion for finite H is applicable for “reasonable” velocities
when H is small.

For sufficiently large B (and therefore, for small V),

E\(B)=[1+5+0()]e”?/B [67]. So,

OB)=| E(BeNdX

0+

® e—BeX
= L+ BeX ax
% g—Bu
- fl Bu? du
B

142 o( 1 ) ¢ (22)
=[1+=+0| 5| |—=,

B B’/ | B?
where E,(B) is the so-called exponential integral of order 2
(see [67]). Using these, we get
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FIG. 5. (Color online) (a) Imposed step changes in slip velocity. (b) Force responses to step changes in slip velocity. A step up in velocity
results in a transient increase in force but eventually converges to a lower steady-state force. This convergence, however, is oscillatory rather
than monotonic. A step down in velocity results in the opposite behavior, but the transient decrease in force is smaller than the transient
increase in force associated with a step up. Again, the convergence to the steady-state force is oscillatory. (c) Collapse of the different curves

when plotted appropriately.

o(B) HV

F= ~ .
EB)+e®HB 1+H

(23)

That is, the steady friction force increases linearly from zero
at v=0 for small velocities.

Noting this increase at low velocities [Eq. (23)] and the
decrease at higher velocities [Eq. (21)], we may infer that
there is a maximum in between as seen in Fig. 4(b). This
nonmonotonicity of the force-velocity relationship has been
observed for elastomeric (rubber, polymeric) friction
[28,43,69] for which closely related micromodels have been
posited.

2. Infinite attachment prefactor H

The steady-state force-velocity relation for the Persson
model [19] described in Appendix B may be obtained by
taking the attachment prefactor f; and, therefore, H=f,/ g,
to infinity before obtaining the various velocity limits. A
large H can result from either a large f,, or a dense binding
site limit, #— 0. In this limit, the attachment is so strong that
all the cross-bridges are always bound (N— 1), albeit with
different strains. This can be seen from Eq. (18) for N.

For H—x, the force [Eq. (19)] simplifies to

F=Q(B)/E,(B). For sufficiently small B (and large V> 10
say), E,(B)=-y—In(B) and Q(B)= v In(B)+(In B)?/2, so
that
v In(B) + (In B)*/2
- y—In(B)

v+ (In B)/2

1 + v/In(B)
=~ —[y+ (In B)/2][1 - y/In(B)]

InV

~—vy2+—.
Y T

F=

(24)

We see that the friction force in this limit is simply propor-

tional to In V. This logarithmic dependence of the friction
force on velocity agrees with some friction experiments [38].
He and Robbins [12,13] performed molecular-dynamics
simulations for adsorbed chain molecules caught between
two atomically flat surfaces and they found a roughly linear
increasing dependence between In(V) and F for a few orders
of velocity magnitude. Similarly, various instances of the
Tomlinson model result in a logarithmic dependence of the
force on the velocity [9,10,38]. This logarithmic dependence
of force agrees with that obtained by Persson [19]. All this
agreement is due to the similarity of the underlying physical
assumptions in these various models.

For large B and small V, noting that Q(B)~e 2/B? and
E,(B)=e8/B, we have

F=~ é: V for small V. (25)

Thus, while the force-velocity relation for finite attach-
ment prefactor is nonmonotonic, the force-velocity relation
for the infinite attachment prefactor is monotonic increasing.
Also, note that the limits H—% and V—o are not inter-
changeable here, since ¢e®/HB=~V/H may or may not be
negligible depending on how quickly V and H, respectively,
approach infinity.

B. Transient force response to velocity changes

Measuring the response of the friction force to step
changes in slip velocity has been a staple of rock-friction
mechanicians [70-72] (but less common among those ex-
ploring friction at smaller scales) and provides important in-
formation about the stability of steady slip when the loading
machine has some compliance (see Sec. III C). Of course,
imposing step changes in velocity requires a sufficiently stiff
loading machine, but can be done simply in theory here.

Figure 5 shows the transient friction force response of the
Lacker-Peskin friction model to step changes in velocity. The
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FIG. 6. (Color online) Stability of steady slip. (a) The mass m interacts with the surface through a Huxley friction model. The mass is
dragged on the surface with a spring with stiffness k,, with the force point P pulled at a constant velocity v,. (b) Convergence to stable steady
slip at vy=500 with m=0.001, k,=500, and M=1. (c) Oscillatory instability of steady slip at vo=500 with m=0.001, k;=0.5, and M=1.

friction force increases from the initial steady-state friction
force F{’ at v; to a transient maximum F,,,=F{'+AF, be-
fore decaying to a final steady-state friction force F5' corre-
sponding to v,. Physically, this transient increase in the force
can be understood as the increased stretch of the already-
attached cross-bridges, while the subsequent decrease in the
force is due to a decrease in the fraction of attached cross-
bridges.

Mathematically, if n, is the steady state n at v, when the
velocity is suddenly changed from v, to v,, the instantaneous
rate of change of force is

©

ar =M | (kx)(dn/dt) (26)
dt o

©

ny(x)dx (27)

—0

~(vy-vy)

using the fact that just after the transient, we have dn/dt
=(1=-N)f,(x)=ny(x)g(x)=v,dn;/ dx, just before the tran-
sient, we have 0=(1-N,)f,(x)-n;(x)g(x)-v,dn,/dx, and
then using integration by parts. The friction force here ap-
proaches the steady-state force in an oscillatory manner; note
the slight undershoot below F3’ in Fig. 5(b) when the veloc-
ity was increased from v to v,.

Also, we find that the time scale over which the force
attains steady state is inversely proportional to the new ve-
locity (as can be noted from the PDE’s) implying that there
exists a characteristic distance over which such transients
occur. Such a characteristic distance (as opposed to charac-
teristic time) has been observed in analogous rock-friction
experiments [70-72]. Finally, based on the physical mecha-
nism for the transient force increase, it may be speculated
that some other friction models with ensembles of springy
elements might show such transient force increases

C. Stability of steady slip

When one body is dragged across another, with the two
bodies interacting frictionally, a constant slip speed can be
stable or unstable depending on the details of the frictional
interactions and the loading paradigm. When steady slip is
unstable, oscillatory slip—either smooth sinusoidal-like os-

cillations or relaxation oscillations—can be stable (some-
times called stick-slip [73,74]).

Consider first the situation in which the friction force is a
simple point function of the slip velocity; that is, just a func-
tion of the instantaneous value of slip velocity with no de-
pendence on its history or other state variables. Another
common loading regime is shown in Fig. 6(a), in which the
loading machine has compliance k; and the point of force
application P is moved at a constant velocity v,. Again, if
friction is a point function of slip velocity, a steady slip speed
is stable if and only if the friction force is a locally increasing
function of slip speed (The proof of these two slip stability
results is elementary).

These conclusions are no longer necessarily true when the
friction force ceases to be a point function of slip velocity. In
the binding site friction models described here, the friction
force is not a simple point function of slip velocity but in-
stead depends on the detailed state of interacting surfaces as
characterized by n(x,1).

We performed numerical experiments with the Lacker-
Peskin friction model to examine its response to the follow-
ing: (1) a constant external force and (2) the loading setup
shown in Fig. 6. For a given constant external force, two
steady slip velocities are possible, as in Fig. 4, as long as the
external force is not higher than the maximum friction force
possible. We found, perhaps not surprisingly, that the lower
equilibrium slip speed at which the steady friction force is an
increasing function of slip speed is stable and the higher
equilibrium slip speed is unstable.

The motion of the mass m in Fig. 6(a) is described by the
equation

my=k(z-y)-F, (28)

where z=vt, Z=v(, and F is the Lacker-Peskin friction force.

For low enough slip velocities, the steady-state friction
force for the Lacker-Peskin model is an increasing function
of slip velocity. When vy, is in this range, we generally found
that steady slip with y=7=v, is stable in our numerical simu-
lations of Eq. (28).

For large enough slip velocities, the steady-state friction
force for the Lacker-Peskin model is a decreasing function of
the steady slip velocity. At these speeds, perhaps surpris-
ingly, both stable and unstable steady slips were observed.
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Figure 6(b) shows an example of an asymptotic approach to
stable steady slip and Fig. 6(c) shows an example of diver-
gence from steady slip—both at the same pull velocity v at
which the steady-state friction force decreases with increas-
ing slip velocity.

How can stability at these speeds be understood? Even
though the steady-state friction force decreases with slip ve-
locity (negative “steady-state viscosity”), the friction force
increases transiently when there is a transient increase in slip
velocity as observed in Sec. III B. Thus, if the slip velocity is
changing rapidly enough (which it would at high loading
machine stiffness k), the accompanying transient friction
force oscillations is sufficiently in-phase to stabilize steady
slip.

Somewhat analogously, the state-variable friction laws
due to Ruina [71] had negative steady-state viscosity and
(true) positive instantaneous viscosity. For this friction
model, Rice and Ruina [73] showed similar stable steady slip
at sufficiently high stiffnesses, even though the steady-state
force decreased with steady slip speed. See Sec. IV B.

Filippov et al. [7] noted that they were able to obtain
stick-slip only in the presence of an age-dependent contact
model. In contrast, we find that both steady slip and oscilla-
tory slip can be stable without having to assume age-
dependent contact.

IV. DISCUSSION

We have presented a mathematical formalism for a class
of friction models that describe the behavior of two rigid
surfaces interacting by the formation and rupture of molecu-
lar bonds. These friction models agree qualitatively with
some friction experiments. This model predicts a transient
response to step changes in sliding speed that is in qualitative
agreement with measured force transients in some rock-
friction experiments. Additionally, the model can exhibit
both stable sliding and stick-slip, even when the steady-state
friction force decreases with speed. We now focus on three
specific aspects for further discussion.

First, as promised earlier, we discuss the distinction be-
tween strain-dependent rate functions used here and the load-
dependent rate functions more common in the literature.
Next, we discuss the relevance of our results in the context of
some state-variable friction models. Then, we discuss the
importance of a connection between friction mechanics and
biology, and potential applications of our results in biology.

A. Force vs strain-dependent rate constants

While the load applied to a molecule and the strain expe-
rienced by that molecule are related (in our model they are
related quite simply by F=ke), there are important differ-
ences between expressions for rate constants derived assum-
ing a constant applied load and those derived assuming con-
stant strain. These differences arise because the spring in Fig.
3 does not apply a constant load, and in particular applies a
larger load on the bound state than on the transition or un-
bound state, as explained below.

Load-dependent rate constants may be derived in the fol-
lowing way. Consider a double-well potential in one dimen-
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sion V,,(x). We then add a constant force field so that the
total potential is V=V, (x)—Fx. Note that in writing this
relationship, we assume that force is constant along the re-
action coordinate. If we make the simplistic assumption that
the relative position of the critical points of V, the unbound
state x=0, the transition state x=4,, and the bound state x
= Jy are independent of load, then the unbinding rate is [60]

F(‘SB_ 50))

k,T 29)

k,= kg exp(
This expression is valid in the limit of small F [61,63,64].
Similarly, the binding rate is

~F§,
T ) (30)

k= kY exp(

Using the model in Fig. 3, we can write &,=\x>+L>—w
and Sz=vx’>+L>. However, it is unclear what value we
should choose for F in Egs. (29) and (30). For example,
using F=-«d in Eq. (29), the average spring force at the
bound state (e.g., [7]) yields incorrect expressions for strain-
dependent unbinding rate k,. In fact, in order to get the cor-
rect expressions for strain-dependent &, and k;, (as derived in
Sec. 11 B), we must use F=«(5,+8g)/2 in Eq. (29), the av-
erage value of spring force along the reaction coordinate for
an unbinding reaction, and F=«d4,/2 in Eq. (30), the average
value of spring force along the reaction coordinate for a
binding reaction. Therefore, for these simplest approxima-
tions valid at small F, while it is possible to use the load-
dependent equations to find the correct strain-dependent rate
constants, one must be careful to choose appropriate force
values, namely, the average spring force along the reaction
coordinate.

In our derivation of the binding and unbinding rates as a
function of strain, we assumed that the distance to the tran-
sition state w was independent of strain, as was the curvature
of the potential energy surface at the bound, unbound, and
transition states. We justify these expressions by their sim-
plicity. However, if more exact expressions are required, we
could write Taylor expansions in these variables to obtain a
series of more exact expressions (see [64] for this procedure
applied to the load dependence of rate constants). In general,
there is no simple way to translate between higher-order ap-
proximations derived at variable force and strain. Therefore,
in order to get a consistent picture for both binding and un-
binding rates, it is more rational to derive our rate constants
as a function of strain.

B. Relation to empirical state-variable friction laws

In the models of friction we have described in this paper,
the friction force at any instant is a function of the internal
state of the system characterized by the function n(x,t) and
the evolution of this “state function” is governed by various
partial differential equations as discussed. Thus, we may
term our friction model, a state-function model of friction, in
analogy to the state-variable friction laws proposed by Ruina
and Dieterich [71,72] in which the internal states of the slid-
ing surfaces are characterized by one or more state variables
having their own evolution equations.
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FIG. 7. (Color online) (a) Steady slip with the Huxley friction model. The friction force as a function of steady slip velocity. The solid
black line is from numerical simulations of the Huxley model with a=1, b=5, ¢=0.1, fy=4, go=1, and p=1. The solid gray line is the
analytical solution assuming that the binding rate function is a Dirac delta function and the unbinding rate function is a simple increasing
exponential [Eq. (A3)]. The dashed line is a large velocity approximation to the analytical solution [Eq. (A4)]. The solid gray line and the
dashed line are essentially on top of each other on the scale of the plot. (b) Force responses to step changes in slip velocity. A step up in
velocity results in a transient increase in force but eventually converges to a lower steady-state force. A step down in velocity results in the
opposite behavior, but the transient decrease in force is smaller than the transient increase in force associated with a step up. (c) The transient
increase in force as a function of the In of the velocity change. The relation is close to linear especially for higher v;.

The simplest such state-variable friction law, involving
only one internal variable 6, that was found to agree with
certain rock-friction experiments is the so-called Dieterich-
Ruina equations introduced by Ruina [71] and closely related
to that proposed by Dieterich [70]:

v . v v
F=Fy+60+aln—, 0:——<0+b1n—). (31)
Vo d. Do
Here, we briefly discuss the Dieterich-Ruina equations
[Eq. (31)] in the context of results from our state-function
models of friction. At steady slip v, Eq. (31) implies

6()=0, 6()=-b In(v/v,), and the steady-state friction
force is F*=Fy+(a—b)In(v/vy). Usually in experiments
with macroscopic samples [71], it is found that b>a, so that
the steady-state friction force F** is a decreasing function of
velocity, as is the large velocity limit of both the Lacker-
Peskin and Huxley friction models. (Note that these state-
variable friction laws are not meant to be applicable for ar-
bitrarily large velocities where the steady-state force at
constant slip velocity erroneously evaluates to a negative
quantity.)

Second, Eq. (31) implies a transient increase in force cor-
responding to a step increase in slip velocity. It is easy to see
that AF=a In(v,/v;) is the instantaneous change in friction
force associated with an instantaneous change in velocity
from v, to v, (A having no time to evolve). After this in-
crease, the force slowly decays to a lower steady state F' at
the higher velocity v,. The property that there is a transient
increase in the friction force, despite the steady-state force
decreasing with slip speed, is qualitatively similar to that of
both the friction models presented here.

The discontinuous step change in friction force in re-
sponse to a step change in velocity is due to the explicit
dependence of the friction force on the velocity v (in addi-
tion to the internal variable 6), when a # 0. This is perhaps a
key difference between the state-variable friction laws of
Ruina and Dieterich and our state-function models of fric-

tion. In our Huxley and Lacker-Peskin friction models, the
friction force is not an explicit function of the slip velocity;
so changes in velocity can affect the friction force only
through changes in the state function n(x,r), which can
change only continuously.

Next, in the state-variable friction laws [Eq. (31)], and in
the rock-friction experiments that motivated them, the AF
appear to be simply proportional to In(v,/v,). For both the
Lacker-Peskin and Huxley models, it appears that while AF
is proportional to In(v,/v,) for a specific v,, the proportion-
ality constant is different for different v, [see Figs. 5(b) and
7(c)]. Finally, the Huxley model is perhaps closer qualita-
tively to the state-variable friction laws as the approach to
steady state in the state-variable friction laws is nonoscilla-
tory [Fig. 7(b)]. More generally, it seems likely that friction
models presented here is more applicable directly for poly-
meric friction rather than rock friction.

C. Biological friction

Besides interest among the physics and mechanics com-
munity in deriving simple molecular models for friction,
there is growing interest among the biological and biophysi-
cal community for such friction models. In many biological
applications, aggregations of long-chain molecules (proteins)
form and break molecular bonds between two surfaces that
move relative to each other. For example, live cells growing
on a surface form focal adhesions, local regions of the cel-
lular membrane that bind to the surface. This binding occurs
primarily through proteins called integrins anchored in the
cell membrane that then bind to the extracellular matrix (i.e.,
the surface of a coverslip). Cells apply load to these focal
adhesions, which in turn slide across the surface. Recently, a
number of frictionlike models have been proposed for focal
adhesion dynamics [42,75]. We believe the analysis pre-
sented and the simple analytic expressions developed here
are naturally applicable for such biological friction. The pa-
rameters of these analytic expressions relate to measurable
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properties of the long-chain molecules (i.e., unloaded attach-
ment rate, unloaded detachment rate, and elasticity).

In the models here (especially Sec. II B), for simplicity,
we used the high-damping limit of Kramers’ theory to derive
binding and unbinding rates, which may not be the most
appropriate for molecular interactions between two dry sur-
faces. However, biological friction (for instance, between
two cells, or a cell and a substrate) mostly occurs in solution,
so the high-damping Kramers’ theory limit is quite appropri-
ate. We expect that our analytic expressions, particularly the
small V limits, will be useful in the modeling of biological
friction. Furthermore, for biological friction, the parameters
of the model, such as binding and unbinding rate in the ab-
sence of load and protein elasticity, can be measured with
biochemical or biophysical methods. So we expect that the
assumptions of the friction models can be simply and di-
rectly tested in this context. Also, by pointing out the close-
ness between molecular muscle models and friction models,
we hope to encourage a healthy exchange of ideas between
these two usually vastly separated fields.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a class of friction models, describing
friction arising from the formation and rupture of molecular
bonds, generalizing and providing a formalized setting for
some prior friction models, and having a number of proper-
ties qualitatively similar to general friction phenomenology.
In particular, we have introduced and used a relationship for
how rate constants for the formation and rupture of molecu-
lar bonds should depend on molecular strain in a simple case,
which improves upon the load-dependent rate dependence
usually used in friction models. We have derived as a limit-
ing case, the properties of the Persson friction model, which
gives a monotonically increasing force-velocity relation.
Away from this limiting case, our friction models are capable
of a nonmonotonic increasing-decreasing force-velocity rela-
tion found in some frictional regimes, such as elastomeric.
We obtained simple asymptotic expressions for force-
velocity relations in all these model and velocity regimes.
We examined the response of our friction models to sudden
imposed slip velocity transients and obtained transient in-
creases in friction force even though there is a decrease in
the steady-state friction force, somewhat analogous to the
experimental results of Ruina. Responses to such velocity
transients appear to have not been studied and explained pre-
viously in the context of microscopic friction models. Such
responses to velocity transients also provide insight into the
stability or otherwise of steady slip in the presence of com-
pliance in a constant-velocity loading machine—a common
source of stick-slip oscillations.

Future work will address one of the following many gaps
in our account of these models. The discussion of these mod-
els’ relation to experimental data at various scales has largely
been qualitative here. By small modifications to either the
rate functions f and g or to the models’ basic assumptions,
we hope to obtain fits to data from friction experiments. An
important open problem in friction mechanics is the deriva-
tion of empirically based state-variable friction laws (such as
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[71,72]) from a microscopic theory perhaps such as that de-
scribed here. Toward this end, we propose to construct
Burridge-Knopoff-like models [32,33,76] in which a se-
quence of rigid blocks attached to springs, with each rigid
block interacting with the surface by a Huxley or a Lacker-
Peskin model. For instance, such hybrid models may in-
crease the spatial scale of the force transients in response to
velocity transients in the experiments of [72].

The practical utility of a state-function model might be
questioned, since simulation of such a model requires con-
siderable computational expense. Therefore, for many appli-
cations, a state-variable model would be more useful than a
state-function model, even if an appropriate state-function
model is found. But it is possible to reduce state-function
models to state-variable models using appropriate low-
dimensional projections (e.g., [77]).

ACKNOWLEDGMENTS

M.S. was supported by NSF Grant No. EF-0425878
awarded to Philip Holmes (Princeton University). We thank
Andy Ruina (Cornell University) for first noting the possible
similarity muscle and friction micromodels, organizing an
informal workshop on these topics and inspiring this manu-
script. Thanks to Herbert Hui for kindly listening to some
early ideas. Thanks also to our anonymous referees for many
constructive comments that have improved this paper.

APPENDIX A: HUXLEY FRICTION MODEL PROPERTIES

In this appendix, we briefly describe the properties of the
Huxley sparse binding site model for friction. We discuss the
steady-state dependence of friction force on sliding velocity
and response to slip velocity transients.

At zero slip velocity and steady state (r— ), we get
n,(x,°)=f(x)/[f(x)+g(x)]—an even function, giving zero
steady force at zero velocity. In this sense, the Huxley fric-
tion model here has no static friction (but see Appendix C).
For v>0, bound cross-bridges with negative strains x are
constantly pulled to positive strains. This convective term in
the PDE makes n; asymmetric about x=0 giving nonzero
frictional forces. The steady-state friction force as a function
of steady slip velocities v is shown (black solid line) in Fig.
7(a). We see that the friction force for small velocities
(v>0) is nonzero rising very rapidly from zero force at zero
slip speed. This high force for a range of very small veloci-
ties can be interpreted as being similar to static friction. The
friction force decreases for higher velocities and approaches
zero as v — . In this decreasing-force regime, the fraction of
attached cross-bridges decreases; at such high velocities, the
bound cross-bridges get pulled to higher strains quickly and
therefore get unbound quickly.

Analytical approximations are obtained using simplified
rate functions. Using these simplified rate functions
f(x)=f,8(x) and g(x)=g,e“" [Eq. (12)] in the steady-state
Huxley PDE [Eq. (7)], we have

dn,,

v—=(1-n,)f6x) _nhglealx‘-

dx (A1)

Solving this equation for v >0, we obtain
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n,(x) = n,(0%)exp[— B(e™ - 1)], for x>0, (A2)

and n,(x)=0 for x<0, where B=g;/av and
n,(07)=1-¢7/1*_ The total force F due to the ensemble of
attached molecules is
F=ny09)55e"0(8), (A3)
where Q(B) is given by Eq. (20). This force-velocity relation
is quite close to the force-velocity relation for the Huxley
model with the smoother binding rate function [Egs. (10) and
(11)]. For small B, Q(B) = y In B+(In B)?/2 so that Eq. (A3)
reduces to
F=(1 —e_fl/”)%{'yln3+ %(m B)Z] (A4)
shown as a dotted line in Fig. 7(a). Conversely, for large B
and small v, Q(B) goes to zero, as is consistent with the
friction force vanishing at zero velocity.

Unlike the Lacker-Peskin model, the transients in friction
force from the Huxley model, when subject to sudden slip
velocity changes, do not show ringing. Figure 7(b) shows the
response of the force from the Huxley friction model to step
changes in the imposed slip velocity, from v, to v, and back.
The friction force increases from the initial steady-state fric-
tion force F}® at v to a transient maximum F,, =F{+AF|,
before decaying to a final steady-state friction force F3’ cor-
responding to v,. That is, though the steady-state friction is a
decreasing function of the slip velocity (negative steady-state
viscosity), the friction force increases in response to step
increases in velocity (positive short-time-scale viscosity for
velocity transients). Figure 7(c) shows the transient increase
AF in the force as a function of In(v,/v,) for three different
v;. We see that, for a given v;, AF is close to proportional to
In(v,/v;), somewhat similar to the state-variable friction
laws [72] as discussed in Sec. IV B. Finally we note that the
Huxley friction model also rise to both stable steady slip and
stable oscillatory slip based on the stiffness of the loading
mechanism and the pulling speed.

APPENDIX B: BINDING IMMEDIATELY AFTER
UNBINDING—THE PERSSON MODEL

Persson derives the following equation for his friction
model, which is shown to be a special case of the Lacker-
Peskin model:

o]

91, 500 __ o(o)m+ flo)

+ ! d I’
ot A dor _wg(a)”(r

where the stress o is related to strain € by o=¢gk;/ JA. Here
k, is the spring constant and JA is the small area of a par-
ticular pinned region. For the detachment function g(o), he
uses the following expression for |o| <o

g(0) = vexp[- BAE(a)] = v exp(~ Bel 1 - (a/3,)*]),

where B=1/kgT and v=k,/2mmy. He assumes that detach-
ment is instant for |o|>o,. The attachment function is a
delta function: f(o)=80).
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a) b) n(x,t)
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Fs ax) T If(x) T
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]
c) n(x,t) d) \ N(x.t)
v>0 1 —: If— 1 v<O0
0 ” 0
a a
4( }7
e) n(x,t)
T A2
TN
S

FIG. 8. Coulomb friction as a special case of the Huxley model.
(a) The force-velocity relationship for Coulomb friction. (b) The
binding and unbinding rate functions for the special-case Huxley
model leading to Coulomb friction. The binding function is a Dirac
delta function f,&(x) with fy— 0. The unbinding function is a sum
of two Dirac delta functions go[ S(x—a)+ S(x+a)] with go—o°. (c)
The steady state n(x,7) for steady slip velocity v >0. (d) The steady
state n(x,1) for steady slip velocity v <O0. (e) The steady state n(x,?)
is not unique for v=0. One such steady solution is shown. This
nonuniqueness enables the friction force to be multiple valued at
v=0.

It is not hard to see that the Persson model is a Lacker-
Peskin model

% +vj—:=—g(8)l’l +f(8)(1 _N)

with the following attachment and detachment functions:

80 exp[ﬁe(g/sa)z]: |8| = €a
gle)=

w: |e]=¢,

fle)= Jim 1 50

The assumption here is that attachment is instant and that
attachment occurs at e=0.

It may not be obvious that f(g)(1-N) is equal to the sec-
ond term on the right-hand side of the Persson differential
equation. To see this, we first observe that the total number
of attached cross-bridges is constant in the Persson model
(i.e., /=, n(0")do’'=Np). Then, we use the steady-state ver-
sion of Persson’s differential equation to show that
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SA (7 * A [T
Np=—1 g(o")ndo’ | exp|-—| g(6)dé |do.
ki Jg 0 kiwJg

From the steady-state solution to the Lacker-Peskin equation,
it can be shown that

1

1-N= lim = " 2@) .
f0—>w1+@f exp(—f ‘ﬁdé>ds
U 0 0 v
Therefore,
. 1
1-N=lim N
O fy
Jn g(a")nda’
0

Then, the attachment rate f(g)(1-N) is

%)

g(o")ndo’
. fodlo) . 0
lim N = o) N
foﬂxl - P P
Ja g(a")ndo’
0

APPENDIX C: RATE-INDEPENDENT COULOMB
FRICTION AS A SPECIAL CASE

With somewhat idealized rate functions f(x) and g(x), it is
possible to make both the Huxley and the Lacker-Peskin

PHYSICAL REVIEW E 80, 046124 (2009)

models behave like rate-independent Coulomb friction [Fig.
8(a)], including static friction—that is, ability to resist a
range of external forces at zero slip. We briefly describe a
Huxley-like Coulomb-friction model below. The binding
function is such that every cross-bridge gets bound when it
crosses x=0 [that is, f(x)=f,8(x) with f;— o]. The unbind-
ing function is such that every bound cross-bridge remains
attached until a threshold strain a is reached, at which point
every cross-bridge with that strain unbinds. No cross-bridge
can have a strain |x|>a. For any v>0, the distribution
n(x,) of cross-bridges converges to that shown in Fig. 8(c).
The steady state n(x,f) for negative v is shown in Fig. 8(d),
giving a friction force equal to —F(|v|), making the force-
velocity relation an odd function.

At zero slip velocity (v=0), the steady state n(x,7) is not
unique. Any n(x,) such that n(x,7)<1 when —a=<x=a and
n(x,t)=0 when |x|>a is a steady solution. An example is
shown in Fig. 8(e). This nonuniqueness in n corresponds to
the nonuniqueness in the friction force at v=0 corresponding
to genuine static friction. The necessary and sufficient con-
dition for nonunique steady state n at v=0 is that there is a
region (a,b) over which f=g=0. See [78,79] for an elabo-
ration of these ideas.

More generally, the reader may observe that the steady-
state forces are independent of the velocity if the rate func-
tions are proportional to the velocity; that is, f=vp(x) and
g=vq(x). Then, the Huxley PDE, for instance, at steady state
reduces to dn/dx=(1-n)p(x)—ng(x), an equation that has no
dependence on the velocity (Ruina, personal communica-
tion). The Lacker-Peskin friction model with similar binding
and unbinding functions behaves similarly to the Huxley
Coulomb-friction model here.
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