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Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is
the finance industry standard interest rate model for both Libor and Euribor, which are the most important
interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to
a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference
between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from
the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a
Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson
expansion of the Gaussian quantum field .A(#,x) driving the Libors yields a derivation of the Libor drift term
that incorporates imperfect correlations of the different Libors. The logarithm of Libor ¢(z,x) is defined and
provides an efficient and compact representation of the quantum field theory of the Libor market model. The
Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a
derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an
exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM
is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward

interest rates are taken to be exactly correlated.
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I. INTRODUCTION

Interest rates are the return earned on cash deposits. The
two main international currencies are the United States dollar
and the European Union euro. Cash fixed deposits in these
currencies account for almost 90% of the simple interest
rates that are traded in the capital markets. Cash deposits in
U.S. dollar as well as the British pound earn interest at the
rate fixed by Libor and deposits in euro earn interest rates
fixed by Euribor. A brief discussion of these instruments is
given below for motivating the study of interest rates [1].

A. Libor

The interest rates offered by commercial banks for cash
time deposits are often based on Libor, the London interbank
offered rate [2]. Libor is one of the main instruments for
interest rates in the debt market and is widely used for mul-
tifarious purposes.

Libor was launched on 1 January 1986 by British Bank-
ers’ Association. Libor is a daily quoted rate based on the
interest rates at which commercial banks are willing to lend
funds to other banks in the London interbank money market.
The minimum deposit for a Libor has a par value of
$1 000 000. Libor is a simple interest rate for fixed bank
deposits and the British Bankers’” Association has daily Libor
quotes for loans in the money market of the following dura-
tion: overnight (24 h); one and two weeks; and 1, 3, 4, 5, 6,
9, and 12 months. Libors of longer duration are obtained
from the interest rate swap market and are quoted for future
loans of duration from 2 to 30 years. A Libor zero coupon
yield curve is constructed from the swap market and is
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quoted by vendors of financial data. The Libor market is
active in maturities ranging from a few days to 30 years,
with the greatest depth in the 90 and 180 day time deposits.

Libor is defined for duration of cash deposits that are
integral multiples of €, where € is called the tenor of the
deposit; in particular, L(¢,7,) is the forward simple interest
rate, fixed at time ¢, for a future cash deposit from time 7, to
T,+{. Libor time is defined by T,=n¢; both calendar time
and future time are defined on a time lattice as shown
in Fig. 1.

The three-month Libor is the benchmark rate that forms
the basis of the Libor derivative market. All Libor swaps,
futures, caps, floors, swaptions, and so on are based on the
three-month deposit. The term Libor will be taken to synony-
mous with the three-month Libor.

In 1999 the open positions on Eurodollar futures had a par
value of about U.S. $750 billion and had grown tremen-
dously since then. The Chicago Mercantile Exchange (CME)
Libor futures represent one-month Libor rates on a $3 mil-
lion deposit. In 2008, CME had Eurodollar futures and op-
tions on Libor with open interest of over 40 million Libor
contracts and an average daily volume of 3.0 million. Libor
is among the world’s most liquid short term interest rate
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FIG. 1. Libor calendar and future time lattice; the tenor (future
time lattice spacing) is given by €=90 days.
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FIG. 2. Daily Libor forward interest rates L(r,z+7 years),
L(t,1+6 years), ... L(r,t+1 year), and L(¢,7+0.25 years) with cal-
endar time being ¢ € [1996,1999].

future contracts. Interest rate swaps, with Libor taken as the
floating rate, currently trade on the interbank market for ma-
turities of up to 50 years.

Market data on Libor futures are given for daily time ¢ in
the form of L(¢,T;—t), with fixed dates of maturity 7;
(March, June, September, and December) and are shown in
Fig. 2.

B. Euribor

Euribor (euro interbank offered rate) is the benchmark
rate of the euro money market, which has emerged since
1999. Euribor is simple interest on fixed deposits in the euro
currency; the duration of the deposits can vary from over-
night, weekly, monthly, and three monthly out to long dura-
tion deposits of 10 years and longer. Euribor is sponsored by
the Financial Markets Association and by the European
Banking Federation, which represents 4500 banks in the 24
member states of the European Union and in Iceland, Nor-
way, and Switzerland. Euribor is the rate at which euro in-
terbank term deposits are offered by one prime bank to an-
other.

The choice of banks quoting for Euribor is based on mar-
ket criteria. These banks are of first class credit standing and
are selected to ensure that the diversity of the euro money
market is adequately reflected, thereby making Euribor an
efficient and representative benchmark. All the features dis-
cussed for Libor can also be applied to Euribor.

Euribor was first announced on 30 December 1998 for
deposits starting on 4 January 1999. Figure 3 shows daily
values for Euribor forward interest rate on 90 day deposits
for deposits one, two, and three years in the future. Since its
launch, Euribor has been actively traded on the option mar-
kets and is the underlying rate of many derivative transac-
tions both over the counter and exchange traded. Euribor is
one of the most liquid global interest rate instruments, sec-
ond only to Libor. The Euribor zero coupon yield curve,
based on the rates, is contracted in the Euribor swap market
and extends out to 50 years in the future.

The term Libor is used for generic interest rate instru-
ments and includes both Libor and Euribor.
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FIG. 3. Euribor maturing one, two, and three years in the future
from 26 May 1999 to 17 May 2004.

II. LIBOR MARKET MODEL

From Figs. 2 and 3, it is clear that interest rates L(z,T),
which at every instant # form a curve extending in future time
out to almost 50 years, evolve in a random manner. It is
hence natural to take the interest rates to be a random func-
tion; in other words, L(¢,T) is taken to be a random two-
dimensional stochastic field. The observed market behavior
of interest rates is obtained by averaging over all possible
values of the stochastic field. Since the functional averaging
is identical to the functional averaging over all possible con-
figurations of a quantum field, interest rates L(¢,7) are mod-
eled as a two-dimensional Euclidean quantum field [3].

Interest rate instruments can be modeled using either the
zero coupon bonds B(¢,7) or the simple interest Libor
L(¢,T). Both these approaches are, in principle, equivalent
but are quite different from an empirical, computational, and
analytical point of view.

B(z,T) is the price of a zero coupon bond—at time /—that
pays a prefixed amount, say 1 euro, at future time 7. Recall
L(¢,T) is the simple interest, agreed at time ¢, for a fixed
deposit from future time 7 to 7+¢. The forward interest rate,
denoted by f(z,x), is the interest rate, fixed at time ¢, for an
instantaneous loan at some future time x> t; note that x and
t refer to future and calendar time, respectively. One can take
the view that there exists one set of underlying forward in-
terest rates f(7,x) that can be used for modeling both L(z,T)
and zero coupon bonds B(¢,T). Forward interest rates are
strictly positive, that is, f(¢,x) =0. The positivity of f(z,x) is
intuitively obvious and also required by absence of arbitrage.
The Heath-Jarrow-Morton (HIM) [4] model of f(z,x)—and
its quantum finance generalization [2]—goes a long way in
accurately modeling interest rate instruments. However, the
HJM model and its quantum finance generalization have one
serious shortcoming: both allow f(z,x) to be negative with a
finite probability, which, in turn, implies that simple interest
rate L(¢,T) has a finite probability of being negative.

Giving up f(z,x) =0 does not pose a very serious problem
for the bond sector since B(z,T) is strictly positive even for
those configurations for which f(z,x) =0. However, for the
interest rate sector of the debt market, a model that allows
Libor to be negative can yield results that allow for arbitrage
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and hence are not permissible as a consistent model for in-
terest rate instruments. One needs to go beyond modeling
f(t,x) and instead develop a model based directly on Libor
L(t,T).

The Libor market model (LMM) aims at modeling inter-
est rates in terms of debt instruments that are directly traded
in the financial markets. In particular, forward interest rates
f(t,x) are not directly traded, but instead what are traded are
(a) Libor and Euribor for fixed time deposits and (b) zero
coupon bonds B(¢,T) as well as coupon bonds. LMM takes
the traded values of Libor L(¢,T) to be the main ingredient in
modeling interest rates—instead of deriving Libor from an
underlying Libor forward interest rate model. In the LMM
all Libors are strictly positive: L(t,T)>0.

Zero coupon bonds and the Libor forward interest rates
are both derived from Libor instead from f(z,x). Strictly
positive Libor has the added advantage that all zero coupon
bonds and hence coupon bonds as well are all strictly posi-
tive.

The LMM approach was pioneered by Bruce-Gatarek-
Musiela (BGM) [5] and Jamshidian [6], with many of its
subsequent developments discussed by Rebonata [7,8]. One
of the biggest achievements of the LMM is a derivation of
Black’s formula for pricing interest rate caplets from an ar-
bitrage free model—something that many experts thought
was not possible. Various extensions of the LMM have been
made; Anderson and Andresean [9] and Joshi and Rebonata
[10] incorporated stochastic volatility into the LMM whereas
Labordere [11] combined LMM with the stochastic alpha,
beta, tho (SABR) model [12]. The calibration and applica-
tions of BGM-Jamshidian model have been extensively stud-
ied [7,13].

In the BGM-Jamshidian approach, similar to the HIM
modeling of the forward interest rates, all Libors for different
future times are exactly correlated. In contrast, in the quan-
tum finance formulation, Libors are driven not by white
noise but rather by the two-dimensional stochastic field
A(t,x). The values of all Libor instruments are given by
averaging A(z,x) over all its possible values. Hence, A(z,x)
is mathematically equivalent to a two-dimensional quantum
field.

The equal time Wilson expansion [14,15] of the bilinear
product of the quantum field .A(¢,x) is discussed in Sec. V
and provides a generalization of Ito calculus. The key link in
deriving the quantum finance version of the LMM and in,
particular, of the Libor drift is the singular property of the
bilinear product of Gaussian quantum field A(z,x). The
quantum finance generalization of the Libor market model
contains crucial correlation terms reflecting the imperfect
correlation of the different Libors and avoids systematic er-
rors that arise from the assumption of perfectly correlated
Libors.

A derivation of Libor drift independent of the Wilson ex-
pansion and based on the Hamiltonian formulation of the
Libor market model is given in Sec. XV.

The LMM is driven by f(z,x), the Libor forward interest
rates, which is distinct from both the empirical forward in-
terest rates and the bond forward interest rates. It is shown
that f(r,x) has a nonlinear evolution equation with both its
drift and volatility being stochastic. Libor forward interest
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FIG. 4. Libor future time.

rates are strictly positive and nonsingular, being finite for all
calendar and future time. An efficient description of Libor
instruments is obtained by doing a nonlinear change of inde-
pendent variables from f(¢,x) to L(¢,T,) and then to logarith-
mic Libor field, namely, ¢(z,x).

It is shown that, when the limit of perfectly correlated
Libor is taken, the quantum finance LMM reduces to the
BGM-Jamshidian model and, in turn, yields—in the limit of
zero Libor tenor (£ — 0)—the HIM model for the bond for-
ward interest rates.

III. LIBOR AND ZERO COUPON BONDS

In terms of Libor forward interest rates f(¢,x) Libor zero
coupon bond B(¢,T) is defined as

T
B(t,T):exp{—f dxf(t,x)} (1)

and Libor L(z,T,) is given by

T,+¢
L(t,T,) = %{exp{f dxf(t,x)} - 1} ) (2)
T,

n

Libor zero coupon bonds B(¢,T) are not actual instruments
traded in the market but rather a way of encoding the dis-
counting of future cash flows consistent with all the Libors.
The price of a traded zero coupon treasury bond B(z,T) is not
equal to a Libor bond B(z,T), but these differences are small
and will be ignored.

From Eq. (2), Libor is given by

_ B(I’Tn) - B(I’Tn+l)

L(t,T,) =
= BT,
and which yields
B(1.T,)
B(t,T,+0)=—"—. 3
( ) 1+ €L(t,T,) ®)

Equation (3) provides a recursion equation that allows one to
express B(t,T,) solely in terms of L(z,T,). Recall that Libors
are only defined for discrete future time given by Libor fu-
ture time T=T,=nf, n=0,*1,%2,..., =, Libor future
time lattice is shown in Fig. 4. Hence, from Eq. (3)

k

B(1,T}) B, To)H 1

B(t,Tj) =" ~= 1+ €L, (1)
(t’ k+1) 1+ €Lk(t) =0 1+ eLn(t) '

where L,(1)=L(z,T,).

Bonds B(z,T,) that have time ¢ not at a Libor time €k
cannot be expressed solely in terms of Libor rates. Consider
only zero coupon bonds that are issued at Libor time, say T,
and mature at another Libor time Ty, ;; since B(T,,Ty)=1,
B(Ty,Ty,;) can be expressed entirely in terms of Libor as
follows:
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FIG. 5. The zero coupon bond B(T,T,.) is issued at T and
expires at T,+{. Its forward Libor bond price F(ty,Ty,T,1) is
given at present (Libor) time ty=T_,.

k

1
B(Ty. Ty =11

n=0 1+ eLn(TO) ) (4)

Forward bond price and Libor

Let us present time be 7y=T7_;. Suppose a zero coupon
bond B(T,,T,+{) is going to be issued at some future time
Ty>ty=T_,, with expiry at time T, +¢; the zero coupon bond
and its forward price are defined for Libor time and shown in
Fig. 5. The forward bond price is the price—at present time
to—of a zero coupon bond that is to be issued at some future
time T,>t,. From Eq. (4), the forward bond price is given
by

B(IO’TrHl)
B(ty, To)
n -1
[ [

2o VHCL(t0,T) | | 22 1+ €L (2, T))

F(ty, Ty, T, +€) =

n

1

- f{ 1+ 0L,(1y) ®)

IV. LIBOR MARKET MODEL AND QUANTUM
FINANCE

The Libor market model is defined in the framework of
quantum finance by defining the time evolution of the Libor
rates L(z,T).

Modeling in finance widely uses the concept of stochastic
differential equations. The bond forward interest rates fj(f,x)
and Libor L,(z), as defined by the HIM and BGM-
Jamshidian models, respectively, are both expressed as func-
tions of white noise and given by

afga(;,x) = a(t,x) + o(t,)R() (HIM model),  (6)
ﬁﬂa’f” = () + v ()R(t) (BGM-Jamshidian model),

(7)

where R(?) is Gaussian white noise,
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E[R(1)]=0, E[R®OR({)]=d8rt-1").

The volatility functions o(z,x), y,(r) are deterministic. The
drift «(z,x) is deterministic in the HIM model, whereas Li-
bor drift {(r) depends on Libors L(r) for the BGM-
Jamshidian model.

Future time x and T} have been introduced in both the
HIM and BGM-Jamshidian models only in the drift and
volatility of the interest rate term structure. A single white
noise R(z) drives the entire forward interest rate curve and
leads, as follows, to perfectly correlated rates:

[ Of5(t,2)/ 9t — alt,%) af gt x" )t — alt' ,x")
E
o(t,x) o(t',x")

]:5(t—t’),

E{ L7'(0) 0L ()19t - G(0) Lot (1) I L) ot - Zkr(t’)}
Y1) Y (1)
=6(t-1"). (8)

Note that the right-hand side of above equations is indepen-
dent of x,x" and T, T}, respectively, showing perfect corre-
lation in future time.

The quantum finance model of the bond forward interest
rates fp(f,x) given in [2] and its HIM limit have a major
unavoidable side effect: there is a finite probability that
f5(t,x) can take negative values. Since, empirical forward
interest rates can never be negative, the Libor market model
takes the view that for the debt market one should replace
the bond forward interest rates f5(z,x) by strictly positive
Libor forward interest rates f(¢,x). These rates are used for
modeling all interest rate instruments and, in particular, yield
all L(z,T) as always being positive.

In the Libor market model, market interest rates L(7T,,T,,)
and coupon and zero coupon bonds B(Ty) and
B(T,,Ty)—given at Libor times T,,Ty, respectively—are
expressed solely in terms of Libor L(7,T,), as in Eq. (4),
without any direct reference to the underlying Libor forward
interest rates f(z,x). Moreover, positive Libor rates automati-
cally yield coupon and zero coupon bonds that are strictly
positive, as seen in Eq. (4).

Only the quantum finance differential formulation of the
Libor forward interest rates is the main focus of this paper; a
similar generalization of the bond forward interest rates and
of the HIM model has been extensively discussed in [2]. The
BGM-Jamshidian model of the LMM is generalized by “pro-
moting” white noise R(f) to a two-dimensional quantum field
A(t,x) and yields the following:

af(t,x)

P = u(t,x) +v(t,x)A(t,x), 9)

t t

dtu(t,x) + f dro(t,x) A(t,x). (10)

)

f(t9x) =f(t09-x) + f

I

In terms of the Libors, the quantum LMM is given by

Ty
1 M=§k(t)+f

L(t,T,) at dxy(t,x) A(t,x).  (11)

Ty
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In the LMM formulation of Libor forward interest rates
f(z,x) both the drift u(,x) and volatility v(z,x) are stochastic
and depend on f(¢,x); in particular, Libor volatility v(z,x)
o[ 1-exp{~£€f(t,x)}].

The dynamics of the quantum field A(z,x) is given by the
“stiff Lagrangian” [16],

1 1 {0A2)\2 1<c72A(t,Z))2
E[A]=—E{A2(I,Z)+P< P )+F 7 ,

z € [0,]. (12)

z=(x-1"

The quantum field A(z,z) satisfies the Neumann boundary
conditions

dA(t,2)
Jt

z=0

The provenance of the stiff quantum field A(z,z) is from
the market behavior of interest rates [16]; to explain the em-
pirical behavior of both Euribor and Libor, one needs to in-
troduce remaining market time z=(x—17)" as well as strongly
correlate the field A(z,z) using fourth-order derivatives [17].

The Libor market model is quantized in Appendix A us-
ing the Feynman path integral. The correlation function of
the two-dimensional quantum field A(¢,x) is given in Eq.
(A6) by

E[A(t,x)]=0, (13)
E[A(t,x) A(t",x")] = 8(t = t")D(x,x";1), (14)
M, (x,x" ;1) =v(t,x)D(x,x";0)v(t,x"). (15)

As expected, the Libor forward interest rates are imperfectly
correlated,

Af(t,x)/dt — u(t,x) af(t',x")1ot" — u(t',x")
v(t,x) v(t',x")
—t")YD(x,x" ;1)

=8t

(imperfectly correlated).

V. WILSON EXPANSION OF QUANTUM FIELD
Alt,x)

Modeling in finance widely uses the concept of stochastic
differential equations. The time derivative of various quanti-
ties such as a security S(r) is generically expressed as fol-
lows:

dS—(t) = u(t) + o()R(1).

dt
The HIM and BGM-Jamshidian interest rate models are ex-
amples of stochastic differential equations, as can be seen
from Egs. (6) and (7).
Ito’s stochastic calculus, for discrete time r=ne, is a result
of the following identity [2]:

E[R(1)R(1)]=8(t—-1") = R*(1) = 16 +0(1). (16)
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The singular piece of R(t) is deterministic and to leading
order is equal to 1/¢€; all the random terms that occur for
R?(z) are finite as e—0.

For Gaussian quantum fields such as A(z,x), which have a
quadratic action, one can give differential formulation of the
theory of forward interest rates, as given in Eq. (9), and that
is similar to the HIM and BGM formulations. This is pos-
sible because the full content of a Gaussian (free) quantum
field, as discussed in Appendix A, is encoded in its propaga-
tor.

Similar to white noise, the correlation function
E[A(t,x)A(t',x")] is infinite for r=t' (equal calendar time).
The product of nonlinear (non-Gaussian) quantum fields is
the subject matter of the short “distance” Wilson expansion
[14]. The singular product of two Gaussian quantum fields is
the simplest case of the Wilson expansion and the singularity,
similar to Eq. (16), is expressed as follows:

A(t,x)A(t,x") = lED(x,x’ ) +0(1). (17)

The correlation of A(z,x).A(t,x") is singular for t=t'—very
much like the singularity of white noise R(z). All the fluctu-
ating components, which are contained in A(¢,x).A(z,x’), are
regular and finite as e—0.

Since, for each x and each ¢, A(r,x) is an integration
variable one may question as to how can one assign it a
deterministic numerical value as in Eq. (17). What Eq. (17)
means is that in any correlation function, wherever a product
of fields is at the same time, namely, A(¢,x)A(t,x'),
then—to leading order in e—the product can be replaced by
the deterministic quantity D(x,x’;z)/e. In terms of symbols,
Eq. (17) states the following:

equal time

e s,
E[A(t),x)) A(ty,x,) ... Alt,x,) A(t,%,11) ... Aty xy)]
1
= ;E[A(tl’xl)A(IZ’XZ) ce A(tn—hxn—l)D(xman ;[)

X A(ln+23xn+2) s A(le-xN)] + 0(1)

As discussed in [17], one can choose the normalization of
o(t,x) so that D(x,x;t)=1/€ and which yields from Eq. (17)

A2(t,x)=é+0(l), (18)

showing even more clearly the similarity of Eqs. (16) and
(18).

The HJM model is a special case of quantum finance,
given by taking the limit

A(t,x) — R(t), D(x,x";t) — 1= E[A(t,x)A(t' ,x")]
— E[R(R()]=8(r—1"). (19)

Since Egs. (16) and (17) have a similar singularity struc-
ture, one expects that there should be a natural generalization
of Ito calculus for Gaussian quantum fields. The singularity
of the equal time quadratic product of the quantum field, in
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particular, leads to a differential formulation of the martin-
gale condition for discounted zero coupon bonds and is dis-
cussed in Appendix B.

VI. LIBOR MARTINGALES AND FORWARD BOND
NUMERAIRE

The factor for discounting of the future cash flows of
traded instruments is of fundamental importance in finance
and is called a numeraire [2]. A wide class of numeraires can
be used to render all traded assets into martingales. Choose
the zero coupon bond B(z,Ty,;), with fixed index I, as the
forward bond numeraire. The combination L(z,T,)B(t,T,,,),
from Eq. (2), is equivalent to a portfolio of zero coupon
bonds and hence is a traded asset. By a suitable choice of the
drift, all traded assets can be made into martingales. In par-

ticular, all instruments X, (¢), defined below, for n
=0,*1,*2,..., =00 are martingales [18]; in other words,
for all n
L(1,T,)B(1,T, .
X, (1) = L& T)BW T, ) (martingales). (20)

B(t,Ty)

Note that, for n=1I, the portfolio X,(r) is equal to L,(z)
=L(t,T)); hence, for the forward bond numeraire given by
zero coupon bond B(z,T},,), the Libor rate L(¢,T)) is a mar-
tingale. As shown in (i) and (ii) in Fig. 6, time T, can be
either less than, equal to, or greater than 7.

In terms of the Libor forward interest rates, from Egs. (1)
and (2), the martingale is

Ty Tyt
€Xn(t):exp{—f dxf(t,x)}—exp{—f dxf(t,x)}.

T s

Differentiating portfolio X, (¢) using Egs. (9) and (14) and
the rules derived in Appendix B yields the following:

ﬂXn(t) Tn 1 Tn
(—=|- dxu(t,x) + 2 dxdx' M ,(x,x" ;1)

at Ty T
T, T,
—f dxv(t,x)A(t,x)]exp|:—f dxf(t,x):|
Ty Ty
|: Thi1 1 (Tst
+ f dx,u(t,x)——f dxdx' M ,(x,x";t)
Tpy 2 Try
Tn+l Tn+l
+f dxv(t,x)A(t,x)}expl—f dxf(t,x)}
Tpt Tps

Note that in obtaining X, (1)/d no condition has been
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placed on either the drift w(z,x) and/or the volatility v(z,x),
both of which can be arbitrary nonlinear functions of f(¢,x).

The bond portfolio &), is a martingale, as discussed in Eq.
(C6) of Appendix C, if and only if

dX,(1)
o),

The random terms in Eq. (21) are proportional to A(z,x).
Since, from Eq. (13), E[.A(z,x)]=0, the martingale condition
given in Eq. (21) requires that the drift—namely, terms in-
dependent of A(r,x)—must be zero and yields

Tn 1 Tn
f dxp(t,x) = EJ dxdx' M ,(x,x";1).

Tpi Tpi

The martingale condition given above is satisfied by
choosing the following value for drift:

ult,x) = dx'M,(x,x";1). (22)

T4y

VII. TIME EVOLUTION OF LIBOR

The drift term, as given in Eq. (22), is expressed in terms
of the Libor forward interest rate volatility function v(z,x).
The main theoretical objective of the Libor market model is
to completely remove v(z,x) from the Libor evolution equa-
tion. More specifically, the objective is to express the drift of
the Libor rates in terms of deterministic Libor volatility
(t,x) [defined later in Eq. (26)].

Consider the definition of Libor given in Eq. (2) and
choose the drift w to be equal to the u; given in Eq. (22).
Equation (9) and the Wilson expansion for A(z,x) given in
Eq. (17) yield

Tot1 et
‘ JL(t,T,) _ exp{ J axf(, x)} [ j dxp(t,x)
ot T T,

n n

1 (Tt
+ —f dxM ,(x,x" ;1)
2)r

n

T,

n

Thi1
+ f dxv(t,x)A(t,x):| . (23)

The drift for dL(z,T,)/dt, from Eq. (22), has the following
simplification,

Tn+| l T,H.]
j dx,(t,x) + Ef dxdx'M ,(x,x" ;1)

Tn Tll

Tn+1 Tn x
=J dx J dx’+f dx" | M, (x,x" ;1)
T T,

I+1

T’l
Tn+1 x
+ dx | dx'M,(x,x";1)
Tll Tn

Tn TrH—l
= dxf dx'M ,(x,x" ;1)
TVl

T4y
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T)Hl Tn+1
+ dx dx'M ,(x,x" ;1)
TVl T}’l

Tn+| Ty
= dxf dx'M ,(x,x";1), (24)
Tn

Tryy

and yields, from Egs. (2), (23), and (24), the following,

aL(1,T, s T
¥ = lf dxf dx'M ,(x,x" ;1)
at Tn

Tryy
[1+€¢L(,T,)]

Tyt
+f dxv(t,x).A(t,x):| v

T,

n

(25)

Note that, as expected, the drift is zero for n=1I, making
X,(f)=L(t,T;) a martingale. Libor drift {(z,T,) and volatility
v(t,x) are defined as follows:

1 &L([, Tn) B T
L(1,T,) T ={1,T,) + JT dxy(t,x) A(t,x). (26)

n

Volatility y(z,x) is a deterministic function—independent of
L(t,T,). The drift {(z,T,) is a nonlinear function of L(¢,T,)
that is determined by the martingale condition. Volatility
Y(t,x) and drift {(¢,T,) are discussed in Secs. VIII and IX,
respectively.

VIII. VOLATILITY %(¢,x) FOR POSITIVE LIBOR

A key assumption of the Libor market model is that the
Libor volatility function y(¢,x) is a deterministic function
that is independent of the Libor rates. The main results of
this section is to give an explicit derivation for Eq. (26) and
verify that y(¢,x) is, in fact, a deterministic function. The
market value for (¢,x)—for Libor and Euribor—has been
obtained in [17].

As it stands, Eq. (25) for dL(¢,T,)/dt does not imply that
the Libor interest rates L(¢,T,) are strictly positive. Libors
are strictly positive only if Eq. (26) holds; namely, if there
exists a Libor volatility function y(z,x) such that, from Egs.
(25) and (26),

Tos1 ¢L(1,T,) Thv1
an dxv(t,x) A(t,x) = I+ (LT . dxy(t,x) A(t,x)
(27)
CL(1,T,)
=v(tx) = T+ (LT Ytx), xelTl,T,). (28)

In the Libor market model, v(z,x) yields a model of the
Libor forward interest rates with stochastic volatility. Equa-
tion (27) can be viewed as fixing the volatility function
v(t,x) of the forward interest rates f(r,x) so as to ensure that
v(t,x) is deterministic and leads to all Libor L(z,T,) being
strictly positive.

To have a better understanding of v(z,x) consider the limit
of £—0, which yields [77+1dxf(t,x) = €f(¢,x). From Egs. (2)
and (28) !
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v(t,x) = [1 = eI ]y(1,x).

The following are the two limiting cases:

{ey(t,x)f(t,x), ) <1
v(t,x) =

¥(t,x), £f(t,x) > 1. (29)

For small values of f(¢,x), the volatility v(z,x) is propor-
tional to f(¢,x). It is known [19] that Libor forward interest
rates f(¢,x) with volatility v(r,x)=f(¢,x) are unstable and
diverge after a finite time. However, in Libor market model,
when the Libor forward rates become large, that is €f(z,x)
> 1, the volatility v(s,x) becomes deterministic and equals
¥(t,x). It is shown in Appendix E that Libor forward interest
rates f(z,x) are never divergent and Libor dynamics yields
finite f(¢,x) for all future and calendar times.

IX. LIBOR DRIFT FOR MARTINGALES x,(t)

The main motivation for introducing the Libor market
model is to have manifestly positive interest rates and bonds.
To ensure that the Libor rates L(z,T,) are always positive, it
is sufficient to show that they are the exponential of real
variables. To obtain positive Libor rates requires a nontrivial
drift; a quantum finance derivation of the drift term is given
in this section and generalizes earlier results of the BGM-
Jamshidian approach.

The drift (t,T,) in Eq. (26) is chosen to make
Xa(t)—given in Eq. (20)—a martingales for all n. One needs
to express the Libor drift {(¢,7,) solely in terms of Libor
volatility function y(z,x). The Libor drift term {(z,T,) is de-
fined, from Egs. (25) and (26), as follows:

[1+€L(t,T,)]

é’(t’Tn) = €L(1,Tn)

Tn+| Tn+]
X f dxv(t,x)J dx"D(x,x";t)v(t,x").
Tn

Tpi

(30)

The Libor forward interest rate volatility function v(z,x)
needs to be expressed in terms of the Libor volatility func-
tion y(z,x). To do so, a recursion equation is obtained from
Eq. (27) in the following manner. Multiply both sides of Eq.
(27) by A(z,x")v(t,x") and use Eq. (17), namely,

1
A(t,x)At,x") = —D(x,x";1).
€

This removes the quantum field from Eq. (27) and, by equat-
ing the 1/e€ term from both sides of the resulting equation,
one obtains

Tn+1
f dxv(t,x)D(x,x";t)v(t,x")
T,

LT, [T

= d D ’. ' ) 1
L+ €L(1,T,) )7, xy(t,x)D(x,x";0)v(,x"). (31)

Since the dynamics of L(¢,7,) is being analyzed, we inte-
grate variable x” from T, to T,,, and obtain
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Tn+l Tn+1
f dxf dx'v(t,x)D(x,x";0)v(t,x")
TVl Tn

L(t,T,) [T

= dxv(t,x)w,(t,x), 32
1+ LT ), 0 (1.3), (1,%) (32)
where w,(7,x) is defined by
Tn+l
w,(t,x) = f dx'D(x,x" ;1) y(t,x"). (33)
TVl
Hence, from Egs. (32) and (30)
Tn+1
{1, T,) = dxv(t,x)w,(t,x). (34)
Try

The drift obtained in Eq. (34) still depends on the volatil-
ity function v(z,x). To express this integral solely in terms of
the volatility function y(z,x) one has to carry out a calcula-
tion similar to the one used in obtaining Eq. (34).

Multiplying both sides of Eq. (27), this time by
A(t,x")y(t,x"), and using Eq. (17) yield the following:

Tn+]
J dxv(t,x)D(x,x" ;1) y(t,x")
T,

¢L(t,T,) (T

= — d t,x)D "ot t,x").
T+ LT ) xy(t,x)D(x,x" ;1) y(t,x")

Integrating x’ from 7T, to T, yields

CL(t,T,) [T

dxdx'M (x,x";1),
4 (LT . xdx' M (x,x" ;1)

Tn+1
f dxv(t,x)w,(t,x) =

T,

n

(35)
where
M (x,x";t) = Y(t.x)D(x,x" ;1) y(t,x"). (36)

The recursion equation

Tyy1 T,
f dxv(t,x)w,(t,x) = f dxv(t,x)w,(t,x)
t t

Tt
+ f dxv(t,x)w,(t,x) (37)
T

n

yields, from Egs. (35), the following:

Tn+1 Tn
f dxv(t,x)w,(t,x) :f dxv(t,x)w,(t,x)
t t

CL(1,T,) [T

+ dxy(t,x)w,(t,x).
Ly ), et

For simplicity, let time ¢=T7,; recursing above equation
yields, using Eq. (33), the following:

PHYSICAL REVIEW E 80, 046119 (2009)

Calendar time

A

Tof

t H H : : >
T To To  Ton T, T, Futuretime

FIG. 7. Libor propagator A,,,(¢) yields nontrivial and imperfect
correlation between the different Libors.

Tn+]
f dxv(t,x) w,(t,x)
Ty

5oL, T,) (T

1
= dxy(t, t,
2 i), y(t,x) 0, (1,)

" CL(1,T,)
=S Z=eTml A
oo L+ €L(1,T,,) 1), (38)

where, as shown in Fig. 7, the Libor propagator is given by

Ty
Apn(t) = f dxy(t,x)w,(t,x)
T

m

Ton+1 Ty
=f de dx" y(t,x)D(x,x" ;1) y(t,x")
Tm Tll

Tm+l Tn+1
=f dxf dx'M (x,x";1). (39)
T, T,

There are three cases for {(¢,T,) corresponding to T,=T),
T,>T,, and T, <T;, as shown in Fig. 6.
Case (i) T,=T,. From Eq. (34)

g(t, TI) = O
Case (ii) T,>T;. Equation (38) yields the following:

T,

wery= | " dwiexo, )

Ty

Tn+l Tl+l
f dxv(t,x)w,(t,x) —f dxv(t,x) w,(t,x)

To Ty

" eL(T,)
= ——A, (7).
,EM 1+€L(t,T,) (1)

Case (iii) 7,<T;. From Eq. (38), one has the following:
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T,

n+l
(T, = dxv(t,x)w,(t,x)
Tryy

|

) 2’ ¢L(1,T,)
- m=n+1 1+€L(I’Tm)

Try Ty
f dxv(t,x)w,(t,x) — dxv(t,x)w,(t,x)
Ty Ty

Ay (0).

Collecting the results from above yields [18,20]
(

C€L(t,T,,)
o A, T,>T;
mets1 1 +€L(1,T,,)
g(n Tn) = < Os Tn = Tl
1
¢L(t,T,,)
- — A, (), T,<Ty,
k 1 l + €L([,Tm) mn( ) n 1

(40)

where A,,,(7) is given in Eq. (39).

Equation (40) is the main result of the Libor market
model and the equation incorporates imperfect correlation of
Libor thus generalizing the earlier BGM-Jamshidian result.

X. LIBOR DYNAMICS
As stated in Eq. (26), Libor dynamics is given by

;M_ Tt
LT, ot =0T, + L dxy(t,x) A(1,x). (41)

n

In particular, since {(r,T;)=0, Libor L(¢,T;) has a martingale
evolution given by

Tpsy
IL(,T) =L(1, Tl)f dxy(1,x).A(t,x). “42)
ot T;

The results obtained express the time evolution of Libor
completely in terms of volatility (¢,x), which is a function
that is empirically studied in [17]. Libor drift £(¢,T,) is fixed
by Eq. (40) and is a nonlinear and nonlocal function of all
Libors.

In the Libor evolution equations given in Eq. (41), all
reference to the volatility function v(z,x) of the Libor for-
ward interest rates f(z,x) has been removed—as indeed was
the whole purpose of the derivations of Sec. IX—with the
drift being completely expressed in terms of Libor L(z,T,)
and its volatility y(z,x).

Equation (41) needs to be integrated to confirm that Libor
dynamics yields positive valued Libors. Let 7>, be the
two points on the Libor time lattice. From Egs. (17) and (41),
the differential of logarithmic Libor is given by

d1InL(z,T, 1
IIMLT) o s e — 10 LT
ot e—~0€
_ 1 LT, 5[ 1 JL(t,T,) ]2
T L(t,T,) ot 2| L(1,T,) ot
d1In L(t,T,
+0(e) = * ={(t.T,)

PHYSICAL REVIEW E 80, 046119 (2009)

A

To T, T,

Time

FIG. 8. Simple interest earned over Libor time interval 7 to 7.
Simple interest earned over the two subintervals 7, to 7'} and from
T, to T, must be equal to the interest earned from 7}, to 7.

Tn+l
+ J dxy(t,x) A(t,x) — %Ann(t). (43)
T

n

Integrating above equation over time yields
L(Ty,T,) = L(to, T,))ePloTo T+ W, (44)

where

Ty Ty
B(IO’TO’ Tn) = J dtg(t’ Tn)’ qi: f thnn(t)s
I !

0

1 T() Tyt
Wommgaie [ o] 000,
1 T,

Libor is proportional to the exponential of real quantities,
namely, a real drift {(z,7,)—¢>/2 and a real valued (Gauss-
ian) quantum field A(z,x). Hence, Libor dynamics leads to
positive Libor—as given in Eq. (44).

XI. LOGARITHMIC LIBOR RATES ¢(t,x)

Since y(z,x), the volatility of L(z,T,,), is deterministic it is
convenient to change variables from f(¢,x) to L(¢,T,). Equa-
tion (44) shows that Libor L(z,T,) is a positive random vari-
able. A change of variables to logarithmic coordinates shows
the structure of the Libor market model more clearly. Let
¢(t,x) be a two-dimensional quantum field; define a change
of variables by

T,

n

Ty
CL(1,T,) = exp{f dxd)(t,x)} X (45)

From its definition, ¢(z,x) has dimensions of 1/time and can
be thought of as the effective logarithmic Libor interest rates.

Consider, at some time ¢, a contract for a deposit to be
made from future time T}, to 75; the principal plus simple
interest earned, at time T, is given by 1+(7,
—Ty)L(t,T,,T,). This amount must be equal to that earned by
first depositing the principal at time 7|, then rolling over, at
To+{=T), the deposit and interest earned, and collecting the
principal and interest at time T,=T;+¢ (see Fig. 8). For there
to be no arbitrage opportunities the two procedures must be
equal, namely [21],

1+ (T, = Ty)L(t,To, T,) =[1 + €L(1, Tp) I[1 + €L(t,T,)] = (T,

_ TO)L(I‘, T, T2) — e¢o(f)+¢1(l) + e¢0(1)
+ e¢71(f) = e¢0(f)+¢1(t)

T,
:exp{f dxd)(t,x)]
Ty
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FIG. 9. The dependence of ¢(#,x) on f(z,x).

= CL(1,Ty)CL(1,T)). (46)

Here, exp{/[ g””edxqb(t,x)}, similar to Eq. (46), is related to

the future Libor rate L(¢,7T,,T,.,). The integral of ¢(z,x)
over many Libor future time intervals yields the following:

T+ m
exp{f dxd)(t,x)} = H [€L(z,T))].

T,

n

The Libor forward interest rates f(¢,x) are related to loga-
rithmic Libor by Eq. (2),

Tn+|
exp f dxf(t,x)
T

n

T,+¢

n

=1+¢€L(t,T,) = exp f
T

n

T+t
=1+exp f dx(t,x) (.
T

n

dxf(t,x)}

The definition of ¢(z,x) depends on the tenor, and for the
benchmark case is taken to be £=90 days (three months).
For Libor, the tenor is always finite, being a minimum of
overnight (24 h). The logarithmic Libor ¢(z,x) is well de-
fined for any nonzero tenor €. For the limit of zero tenor, let
{=¢€—0; from defining Eq. (2), it follows that, since f(r,x) is
always finite,

1+ €f(t,x) =2+ e(t,x) = P(t,x) = i[f(t,x) —1]— —o».

In other words, the zero tenor limit is singular for ¢(z,x);
however, for finite tenor € # 0, the field ¢(z,x) is always well
defined.

Since the interest derivative market is based on the three-
month Libor, let £=1/4 year; one can approximately evalu-
ate the integral and obtain the following:

exp{€f(t,x)} = 1 + exp{€ P(1,x)}. (47)

Equation (47) is plotted in Fig. 9. For f(z,x)<In(2)/¢
~400%/year, the value of ¢(z,x)=0; furthermore, for
¢(t,x)<1 the value of f(z,x)=0. Only when both the rates
f(t,x) and ¢(t,x) are large they are approximately equal.

PHYSICAL REVIEW E 80, 046119 (2009)

FIG. 10. The dependence of f(z,x) on ¢(t,x).

Hence, there is no domain where both the quantum fields
f(z,x) and ¢(t,x) take small values and consequently there is
no consistent scheme for simultaneously defining a perturba-
tion expansion, in powers of ¢(z,x) and f(¢,x), for both the
quantum fields. In summary, one can define a perturbation
expansion for either f(z,x) or ¢(z,x) but not simultaneously
for both the fields.

Furthermore, as can be seen from Fig. 10, for Eq. (47) to
have real values for both f(z,x) and ¢(z,x), the following is
required:

0=f(t,x) =+, —0=d¢d(tx) =+oo.
Note that ¢)(z,x) is the natural quantum field for developing a
Feynman perturbation expansion for Libor instruments as it
is a flat degree of freedom taking values on the real line.

The dynamics of Libor L(¢,T,,) is specified in Eq. (41) and
yields, from Eq. (43), the following defining equation for
o(t,x):

9 [T _dW[€L(1.T,)]
P L,, dxcﬁ(t,x)——at ={(T,)

Tn+1 1
+ f dxy(t,x) A(t,x) — EA,m.

T,

n

(48)

The drift (z,T,) for forward bond numeraire B(z,T},,) is
given by Egs. (39) and (40). Integrating Eq. (48) from cal-
endar Libor time #; to T, yields

Ths1 Tht1 Ty
f dx(Ty,x) = dx(tg,x) + f dtl {(t,T,)

Tn Tn T

n

Tye1 1
+f dxy(t,x) A(t,x) — EA”" .

T,

n

(49)

Exponentiating Eq. (49) yields Eq. (44) as expected.
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Hn(x)

Tn  Th+aa X
FIG. 11. The characteristic function H,(x) for the Libor interval
[Tn > Tn+1)~

Dropping the [ ;’”ldx integration from both sides of Eq.

(48) yields, for x en[Tn,TnH), the following time evolution
for logarithmic Libor:

dp(t,x) _

a %An(t,x) * pu(t.0) + ALX)A(L.x), - (50)

Tn+l
A, (t,x) = f dx'M(x,x";t). (51)
T’l

The function p,(z,x) is defined as follows:

Tyt
{.T,) = f dxp,(1,x). (52)
Tn
Hence, from Egs. (40) and (52), for x € [7,,,T,.),
é o)
Am(tsx)s Tn > TI
m=I+1 1+ e(/)m(t)
pa(t,x) =14 0, T,=T, (53)
()
- ———A,(tx), T,<T,.
m=n+1 1 +e‘/’m(’) m( ) !

To write Eq. (50) in a more compact form, define the
characteristic function H,(x) for the Libor time interval
[Tn’TnH) giVCIl by

Tn =x < Tn+1

1,
H”(x)={o, x&[T,.T,.,) 59

Ty
=>f dXHm(x) = 6m—n (55)
T,

and it is shown in Fig. 11. The characteristic function has the
following important properties:

) =2 Hy(x)f(x),
n=0

J@)=£,(x), xell,Tu).

Hence, from Egs. (50) and (29), for arbitrary future time
X,

PHYSICAL REVIEW E 80, 046119 (2009)

% =p(t,x) - %A(fsx) + A1x) A1), (56)

Alt,x) = 2 H,(x)A,(t,x),
n=0

p(t,x) = 2, H,(x)p,(1,%). (57)
n=0

It is convenient to separate out a “kinetic” drift —%A(t,x) that
does not depend on the Libors, with the remaining drift
p(t,x) being a nonlinear and nonlocal function of the Libors.

XII. LAGRANGIAN OF LOGARITHMIC LIBOR
b(t,x)

Equation (56) encodes a change of variables relating two
quantum fields ¢(z,x) and A(z,x) and is given by

_ Ap(t,x)/ 9t — p(t,x)
- (t,%)

Alt,x) , (58)

PY) = pl1) = SAG0). (59)

The Lagrangian and action for the Gaussian “stiff” quan-
tum field A(z,x), after doing an integration by parts in Eq.
(12), are given by

L[A]=- %A(t,x)D‘l(t,x,x')A(t,x’),

S[A]= fTL‘[A].

The semi-infinite trapezoidal domain 7 is given in Fig. 16.
The partition function is given by the Feynman path integral

Z= f DAeSAL

The Lagrangian and action for logarithmic Libor quantum
field ¢(z,x) are given by
1| d¢(t,x)/t — p(t,x)
5{ ¥1.)
y { a(1,x" )3t - ple,x") ]
Ht,x") ’

L[p]=~ ] X DN (t,x,x")

S[é] = f C i f ’ dxdx' L[ ). (60)

The Neumann boundary conditions A(z,x) yields the fol-
lowing boundary conditions on ¢(z,x) [2]:
aJ dp(t,x)/ 9t — p(t,x)
Ox w(t,x)

=0. (61)

x=t
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It is shown in Appendix F that the Jacobian of the func-
tional change of variables given in Eq. (58) is a constant,
independent of ¢(z,x) even though the transformation in Eq.
(58) in nonlinear due to the nonlinearity of Libor drift p(z,x).
A constant Jacobian leads to ¢(z,x) being flat variables, with
no measure term in the path integral. Flat variables have a
well-defined leading order Gaussian path integral that gener-
ates a Feynman perturbation expansion for all financial in-
struments, thus greatly simplifying all calculations that are
based on ¢(z,x).

Hence, up to an irrelevant constant, the logarithmic Libor
path integral measure is given by

+

JDAszqb:H 11 wdd)(t,x).

1=ty x=t J-oo

The partition function for ¢ is

Z= f Dedl?l = f DASA

and the expectation value of a financial instrument O is
given by

E[(’)]z% J DAO[A]eS[A]:% f DoO[ple?). (62)

Path integral derivation of Libor martingale

Consider the n=1 special case of the portfolio; from Eq.
(40), drift {(¢,T;)=0 and hence the instrument X(z)
=L(t,T,) is a martingale. The integral formulation of the
martingale condition states that the present value of a mar-
tingale instrument is the conditional expectation value of its
future value; in other words, the martingale condition is
given by

L(ty,T;) = ELL(T,, T)], Ty > to.
The path integral for the right-hand side, from Eq. (62), is

given by the expectation value of a financial instrument O
=L(T,,T)); hence

E[L(T,,T)]= % f Do IL(T,, T)). (63)

For Libor L(¢,T)), the drift is zero p;=0 and hence, from
Eq. (52), {(¢,T;)=0; Egs. (45) and (49) yield

T4y T4y
In €L(T0» TI) = j dx¢(TO’x) = f dx¢(t0»-x)
T T

Ty
+ f dt
)

Changing path integration variables from ¢(z,x) to A(z,x)
and using the generating functional given in Eq. (A5) yield

Tpyy 1
f dxy(t,x) A(t,x) — EAH(I)} .

Ty

PHYSICAL REVIEW E 80, 046119 (2009)

E[€L(T,,T))] = €L(1,,T))

1 To
X —f DA exp f dt
VA »

1
- EAH(I)] }eS[A] ={€L(ty,T;) (martingale).

Tryy
f dxy(t,x) A(t,x)

Ty

The calculation confirms that X,(f)=L(z,T,) is in fact a mar-
tingale.

The path integral derivation of the martingale condition
for the Libor x,(T;)=L(T,,T;) cannot be applied for the gen-
eral case of y,(¢). The reason being that, in general, drift p,
is a nonlinear function of the quantum field .A(¢,x); evaluat-
ing the drift requires that a nonlinear path integral be evalu-
ated exactly—something that is computationally intractable.

XIII. DYNAMICS OF LIBOR FORWARD INTEREST
RATES fi¢,x)

The dynamics of logarithmic Libor given in Eq. (56) also
defines the dynamics of the quantum field f(z,x). Differenti-
ating Eq. (2) and using Egs. (45) and (56) yield the follow-
ing:

Ty41 df(t,x) e¢n(f) Ty &d)(t,x) e¢n(1)
dx = dx =

T g 1+eh T, ot 1+ehW

n

(64)

Ty
X f dx{— %A(r,x) + p(t,x) + y(t,x).A(t,x)} . (65)

T,

n

From Egs. (9) and (65)

&f(t,x) Ty e¢n(1)
T u(t,x) +v(1,x) A(t,x) = f . dxp(t,x) = T3 b0
Ths1 1
X f dx| - EA(t,x) + p(t,x) |, (66)
Tyl
Tn+l €¢’7([) Tn+l
an dxv(t,x) = men Y(t,x). (67)

The result for v(f,x) has been obtained earlier in Eq. (28);
the value of w is a new result. Writing the drift and volatility
in terms of f(z,x) yields, from Egs. (2) and (57), the follow-
ing:

Tn+1 e¢n(t) > ([)
fa() = JTn dxf(t,x), m =1-e7  (68)
u(t,x) = u(t,x) {— %A(t,x) + p(t,x)} , (69)
v(t,x) = u(t,x) y(t,x), (70)

where u(t,x)=3"_ H,(x)[1-e7"].

The drift u(r,x) and volatility v(z,x) are both functions of
only exp{-f,(r)}, which, in turn, is the forward price of a
zero coupon bond.
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XIV. HAMILTONIAN FORMULATION OF MARTINGALE
CONDITION

The Hamiltonian is a differential operator that acts on an
underlying state space [22]. Financial instruments are ele-
ments of the state space and the evolution is determined by a
Hamiltonian.

As discussed in Sec. VI, choose the zero coupon bond
B(¢,T},,) to be the forward bond numeraire; then, from Eq.
(20), for every n

L(t,T,)B(1,T,,,)

= )

(martingale).
Recall Libor time 7, can be less than, equal to, or greater
than 7/—as shown in Fig. 6.

The drift p(z,x) is fixed in the Hamiltonian framework by
imposing the martingale condition on X,,(¢), namely, that [2]

L(t,T,)B(t,T,,.)

B(t,Ty,) ] =0 (7)

H(OLX,(0]= H(t)[
The instrument X, () is an element of the Libor interest rate
state space, which is discussed in Appendix G, and H(z) is
the Hamiltonian. The differential formulation of the martin-
gale given in Eq. (71) states that for the Hamiltonian evolv-
ing interest rate instruments to be free from arbitrage oppor-
tunities, it must annihilate X, (z).

For notational ease, write

X _ L(t7Tn)B(ta Tn+l)

_ B(thn+l)
T N R

"B(t.T1)

Let ¢ be a Libor time; from Eq. (4), the zero coupon bond is
given by

S
B(t,TnH):]E)(l-i-ka). (72)

The following are the three cases for X,(¢):
(i) For n=1,

X(t) =L;=L(t,T)). (73)

(ii) For n>1,

n 1 n
x,n=L, 1 <1+€L ):Lnexp - > In(1+¢Ly)
k

k=I+1 k=I+1
(74)
(iii) For n<I,
I 1
X,0=L, [l 1+€L)=L,expy > In(l+4€L)
k=n+1 k=n+1
(75)

XV. HAMILTONIAN DERIVATION OF LIBOR MARKET
MODEL DRIFT

Libor market model drift p(z,x) was derived in Sec. IX
using the Wilson expansion. The drift is given an indepen-
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dent derivation in this section based directly on the Hamil-
tonian formulation of the martingale condition given in Eq.
(71).

The derivation for Libor drift p(z,x) for the Libor market
model given in Sec. IX was quite circuitous; the Libor for-
ward interest rates f(r,x) were used as scaffolding and it was
not clear why one could not evaluate Libor drift directly
using only Libor L(¢,T,). The result is also quite opaque,
with the drift having summations and minus signs that do not
have a clear explanation. In contrast, the Hamiltonian frame-
work yields a clear and transparent derivation of Libor drift
directly using Libor variables L(¢,T,) and the result is intu-
itively clear.

The logarithmic Libor Hamiltonian is derived in Appen-
dix H and is given by Eq. (H8); for notational convenience,
a kinetic piece is subtracted out from the drift p(7,x). Hence
[23]

! & 1
H(t) =— EL’X, M(x,x ,t) 5¢(x) 5¢(x,) + ZJ;C [A(t,x)
5
Sp(x)’

[ [ a -

The martingale condition given in Eq. (71) requires the
calculation of &/ 8¢ acting on X,(¢), which in turn needs the
following computation. The definition of logarithm Libor
given in Eq. (45), namely,

- p(t,x)]

T,

n

Ty
{L(t,T,) ={L,= exp{f dxd),(x)} = e,

yields

)
%Lk = Hi(x)Ly, (77)

where the characteristic function is given in Eq. (54) and is
shown in Fig. 11.

For the case of n=1, from Eq. (73), X,(t)=L,;=L(t,T)); by
inspection, it can be easily seen that p,(z,x)=0.

A. Case (i) n>1
For the case of X,(¢), n>1, Egs. (74) and (77) yield

18X, S elH (%)
X,(1) Sp(x) _H”(x)_kzzm 1+eb

(78)

Note that the summation term above is due to the discount-
ing by the forward numeraire B(z,T},,). The second func-
tional derivative yields
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A0 [

_ AH ||
X,(0) 5¢(x) 6(x") -3 ] [Hn(x )

Jj=I+1

_ é ¢ka(x'):|

b
=1 1+ e

e‘/’.iH!«(x)H!-(x')

1+e%

j=I+1
n

e¢f 2 ,
+ EI{M] H(0)H;(x"). (79)

J=I+

On applying logarithmic Libor Hamiltonian on X, (), n>1,
Eqgs. (77)—(79) yield, after a few obvious cancellations,

H[Xn(t)] 1 . |: :|2 i €¢j
e i Vo A= A
1+e¢f 7 -21 L+e% "

S
J=I+

X, 2

Jj=I+1

! é et N
"2 (1ot 1ot ikt
2 i [T+ e+ %]
I

j=I+1

4 (80)

1+e?

where

Tm+] Tn+l
A, = dx dx'M(x,x";t)
Tm Tn

and, as in Eq. (52),

Tn+l
= {(t,T,) = f dxp,(t,x). (81)
Tn
Inspecting the result in Eq. (80) leads to the following
ansatz:

n
e?

£n=j§1 o (82)
Hence
o et "ot %
jzl mgj =j§1 l+e%% 50 1+ e"’kAjk' (83)
The remarkable identity
n J
> 2 Ajk_ 2 Ay E A (84)

j=l+1 k=I+1 ] k=I+1 —1+1

applied to Eq. (83) leads to the cancellation of all the terms
on the right-hand side of Eq. (80) and yields the final result,

H[X,(t)]=0 (martingale). (85)

Hence, from Egs. (81) and (82), Libor drift is given by
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Ty " ed’j(l)
f dxp,(t,x)= > ———

T, e L+ e’

Tyt Tj+1
Xj dxf dx'M(x,x";t). (86)
T, T;

Therefore, for T, =<x<T,,,, the drift is given by

e i+l
— [ — ! r.
pn(l,x) - 2 +e¢j([) ij d-x M(-x’-x sl)

J=1+1 1
" ¢j(f)
= _%1 m (t X). (87)

B. Case (ii) n<I

A derivation similar to case (i) yields the result for X, (z),
n<I. One needs to keep track of the relative negative sign in
X given in Egs. (74) and (75) arising from the difference in
the discounting factor. The following is the final result:

! e¢j(f) Ty
pu(tx) =~ 2 Wf dx'M(x,x";1).  (88)
+e% 7;

Jj=n+l 1

The exact results given in Egs. (82), (87), and (88) yield
Libor drift as follows:

©

plt,x) = 2 H,(x)p,(t.x),
n=0
where
p
AN ()
E Aﬂl(t"x)’ n > I
m=I+1 I+ e(b ®
pa(t,x) =14 0, n=1I (89)
()
- 2 o), n<t
m=n+1

The result for Libor drift obtained in Eq. (89) agrees ex-
actly with the result obtained in Eq. (40) using the Wilson
short distance expansion.

XVI. LIBOR MARKET MODEL: HAMILTONIAN,
LAGRANGIAN, AND A(¢,x)

The Hamiltonian formulation of the martingale condition,
given in Eq. (71), yields the Libor drift in a fairly transparent
and direct manner compared to the rather roundabout ap-
proach adopted in Sec. IX. The summation that appears in
the drift term is due to expressing the ratio
B(t,T,,,)/B(t,T;) as a product of Libor variables L(¢,T}).
The relative minus sign in the summation term of the drift
for n<<I and n>1 arises from the ratio B(¢,T,,,)/B(t,T},,)
being the product of 1+€L(¢,T,) or of its inverse.

The derivation of Libor drift given in Sec. IX follows the
general spirit of the BGM-Jamshidian approach—
generalized to the case of quantum finance by the use of the
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Wilson expansion. The martingale condition was first ex-
pressed in terms of the Libor forward interest rates f(z,x);
one then did a change of variables and re-expressed the drift
in terms of the Libor variables. To carry out this change of
variables for the quantum finance case, the Wilson expansion
for the velocity quantum field A(z,x) was crucial in captur-
ing the nontrivial correlation terms.

In contrast, in the Hamiltonian derivation of Libor drift,
there is no need to employ the A(#,x) field and all the cor-
relation effects are produced by the Hamiltonian. The Libor
Hamiltonian is expressed directly in terms of log Libor vari-
ables ¢(r,x), making no reference to f(¢,x). The martingale
condition is expressed directly in terms of the Hamiltonian
‘H and leads to an exact derivation of Libor drift. The fact
that the Jacobian of the transformation from A(z,x) to ¢(z,x)
is a constant, as shown in Appendix F, is essential for ob-
taining the logarithmic Libor Hamiltonian; a nontrivial Jaco-
bian would give rise to new terms.

The Hamiltonian derivation of Libor drift leads to some
general conclusions in the context of the Libor market
model. The extension of the martingale condition from the
case for equity to that of interest rate instruments is non-
trivial due to (a) the need to treat the discounting factor as
being stochastic and (b) the time-dependent state space [2].
The derivation of the nontrivial and nonlinear drift of the
Libor market model verifies the correctness of the martingale
condition stated in Eq. (71).

The Hamiltonian derivation of Libor drift provides inde-
pendent proof of the correctness of the earlier derivation of
Libor drift in Sec. IX, which crucially hinged on the Wilson
expansion. The Hamiltonian result shows that the Wilson
short distance expansion for a Gaussian quantum field is the
correct generalization of Ito’s calculus and opens the way to
applications of .A(¢,x) in theoretical finance.

XVII. SUMMARY

Quantum finance provides a natural and mathematically
tractable formulation of the Libor market model. Gaussian
white noise R(z), in effect, is “promoted” by quantum finance
to a quantum field A(z,x) that drives the time evolution of
Libor. In particular, the Libor market model has been given
three different and consistent formulations, namely, employ-
ing A(z,x), L[ ¢], and H(r)—thus displaying the versatility
and flexibility of quantum finance.

In an economy where Libor rates are perfectly correlated
across different maturities, a single volatility function is suf-
ficient. In contrast, Libor term structure that is imperfectly
correlated introduces many new features. In the quantum fi-
nance approach, due to the specific properties of Gaussian
quantum fields, the entire Libor volatility function can be
taken directly from the market and thus incorporates many
key features of the market in a parameter free manner.

The Gaussian quantum field A(7,x) has a quadratic action
and hence one can obtain a differential formulation of the
Libor market model. The singular quadratic product A(f,x)
has a “short distance” Wilson expansion that generalizes the
results of Ito calculus and yields a derivation of Libor drift. It
is seen that the underlying Libor forward interest rates f(r,x)
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of the Libor market model are nonlinear and nonsingular.
The Libor forward interest rates f(¢,x) are related to loga-
rithmic Libor by Eq. (2),

T+t T+t
exp f dxf(t,x) ¢ =1 +exp f dx(t,x)

T, T,

n n

(90)

The transformation from ¢(¢,x) to f(z,x) is nonlinear and
nonlocal and is well defined only for strictly positive f(z,x),
that is, for f(z,x)=0. In particular, this means that f(z,x)
cannot be a Gaussian quantum field. The linear approxima-
tion that treats f(z,x) as a Gaussian quantum field needs to be
carefully examined to ascertain whether it can be applied to
the interest rate (Libor and Euribor) market.

Note the transformation given in Eq. (90) is completely
general and only requires that f(7,x) =0; for example, one
could take f(¢,x)~ef“Y, where £(¢,x) is any real quantum
field and this yields strictly positive Libors. The Libor mar-
ket model makes a very specific choice for f(z,x), namely,
one for which the logarithmic Libor quantum field ¢(z,x) has
deterministic volatility given ¥(¢,x). This choice for f(z,x)
leads to the field ¢(z,x) being a “flat” quantum field that
takes values on the entire real line. The leading order effects
of ¢(t,x) are described by a Gaussian quantum field; the
nonlinear terms are all contained in the drift and can be
treated perturbatively using Feynman diagrams. Logarithmic
Libor variables ¢(z,x) yield strictly positive coupon bonds
and Libors. A nonlinear quantum field theory for flat quan-
tum field ¢(z,x) is the most appropriate formalism for simul-
taneously analyzing coupon bond and Libor instruments.

The Hamiltonian realization of the martingale evolution
of an instrument entails that the instrument be annihilated by
the Hamiltonian. The Hamiltonian is the appropriate frame-
work for imposing the martingale condition for nonlinear
interest rates and, in particular, yields the exact expression
for the Libor market model’s nonlinear drift.

A new feature of the interest rate dynamics is that, unlike
the case for equity, the interest rates’ state space and Hamil-
tonian are time dependent; this leads to a number of new
features for the Hamiltonian and, in particular, that the evo-
lution operator is defined by a time ordered product. Choos-
ing the forward bond numeraire leads to a major simplifica-
tion: the interest rates’ state space becomes equivalent to a
fixed state space and one can dispense with time ordering,
leading to a time independent evolution operator.
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APPENDIX A: A(t,x)’S GENERATING FUNCTIONAL

One is free to choose the dynamics of the quantum field
A(t,x). Following Baaquie and Bouchaud [16], the Lagrang-
ian that describes the evolution of instantaneous forward
rates is defined by three parameters u,\, 7 and is given by
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1 1 {3A@,z2)\? 1(&2A(t,z)>2
E(A):-E{A2(1,z)+;< P )+P o

dA(t,2)
dz

X

=0, (A1)
z=0

where market (psychological) future time is defined by z
=(x-1)"
The action S[A] of the Lagrangian is defined as

S[A]= f dtf dzdz' L(A). (A2)
to 0

The market value of all interest rates’ financial instru-
ments is obtained by performing a path integral over the
(fluctuating) two-dimensional quantum field A(z,z). The ex-
pectation value of an instrument F[.A], denoted by E{F[A]},
is defined by the functional average over all values of A(z,z),
weighted by the probability measure ¢%/Z. Hence

E{F[A]} = % j DAF[ A, 7= f DAeSHAL

(A3)

The quantum field theory of the forward interest rates is
defined by the generating function given by

Z[h]= E[exp{ f‘” a’tfoc dzh(t,z)A(t,z)}}
0w Jo

1 foel o]
= ZJ DA expy S[A] +f dtf dzh(t,7) A(1,2)
10 0

(A4)

:exp{%J dtJ dzdz’h(t,z)D(Z,Z’;t)h(t,Z')}. (A5)
fo 0

Hence the correlator of the .A(¢,x) quantum field is given by

E[A(1,2)]=0,

E[A(1,2)A(t',2')] = 8(t - t')D(z,7’ ;).

For notational simplicity only the case of v=1 will be
considered; all integrations over z are replaced with those
over future time x. For v=1 from Eq. (A2) the dimension of
the quantum field A(z,x) is 1/time and the volatility o(z,x)
of the forward interest rates also has dimension of 1/time.

The expression for D(x,x’ ;) has been studied in [16,17]
and provides a very accurate description of the correlation of
the forward interest rates. In the present paper the explicit
value of the propagator D(x,x’;?) is not required.

(A6)

APPENDIX B: TIME EVOLUTION OF A BOND

To illustrate the content of the singularity in the equal
time quadratic product of the quantum field, namely,
A(t,x)A(r,x") given in Eq. (17), a concrete analysis is car-
ried out of the evolution of zero coupon bond—with and
without discounting.
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t, (b, ) (t.,T)

0

FIG. 12. The domain of the forward interest rates f(7,x), in
calendar and future time, required for evaluating the time evolution
of a zero coupon bond.

Consider for simplicity the bond forward interest rates
given by

W = a(t,x) + o(t,x) A(t,x), (B1)
et + | atat+ | anoten. e,
(B2)

where the drift a(7,x) and volatility o(f,x) are both deter-
ministic functions.
From Eq. (1), a zero coupon and its forward bond are

given by
T
B(t,,T) = exp —f dxfp(te,x)
t

s

T
F(tOJ*vT) =exp{_f dxfB(tO’x)}a

t* T
B(t*,T)=F(t0,t*,T)exp{—f dtf dxa(t,x)}
" TO *
X exp —f dtf dxo(t,x)A(t,x) (. (B3)

The domain of integration is a rectangle R, equal to [fy, ]
X [t,,T] and shown in Fig. 12.

To calculate the time evolution of the bond
one needs to compute the time derivative of
exp{—/ ﬁ;dt I gdxa(t,x)A(t,x)}; for doing this computation
one needs to take account of the fact that the quadratic power
of A(z,x) is singular. Consider [24]
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e T
exp{+f dtJ dxo-(t,x)A(t,x)}

P ‘. T
X —exp —f dtf dxo(t,x) A(t,x)
dt, I Iy

| T
= ;lexp - ef dxo(t,,x) Alt,,x)

s

X exp{+ ef dta(t,t*).A(t,t*)} - 1} .

0

Expanding the exponential to second order yields all the non-
trivial terms as follows [25]:

| T
;leXp - ef dxo(t.,x) A(t.,x)

*

X exp{+ eJl* dta(l,t*)A(t,t*)} - 1]

0
Ly

T
=— f dxo(t,.,x) A(t,,x) + f dto(t,t,)A(t,t.)

* 10

€ r :
+ E(j dxcr(t*,x)A(l*,x)) +O(€)

T Ly
=— f dxo(t,,x) A(t,,x) + f dto(t,t,)A(t,t,)

1. 1
+ —f dxf dx' M j(x,x";t.),
2 Iy 1y

where, from Eq. (17),

T 2
( f dxa(t*,x)A(t*,x)>

s

1 (7 T
= —f dxf dx' M (x,x" ;1) M (x,x" ;1)
€Jy, I

= 0(t.,x) 0t x")D(x,x";1,).

Collecting all the results yields

t* T
exp{+f dtf dxo-(t,x)A(t,x)}
1 1
P 1 T
X —exp —f dtf dxo(t,x) A(t,x)
o, W

T Ly
=—J dxa’(t*,x)A([*,x)+J dto(t,t,) A(t,t,)

[ I
1 (T T
+ —J dxf dx' M j(x,x";t,).
2 1, Iy

The only term in the zero coupon bond that needs to be
examined carefully is the one involving .A(z,x); the other
terms all obey the usual rules of calculus. Hence, since
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OF (tg,t.,T)/ t.=+f(ty,t.)F(ty,t.,T) and using Eq. (B1), one
obtains from Eq. (B3)

B(t.,T) dt.

T
! M=f(t*,t*)—f dralt,,x)

T
- J dxo(t,,x) A(t.,x)

1 (7 T
+ Ef dxf dx' M(x,x";t,). (B4)
Iy Iy

The martingale condition on the drift a(z,x) for a numeraire
using discounting by the money market account, namely, by
exp{-f g;dtr(t)}, where r(t)=f(t,t) is the spot interest rate, is
given by

a(t,x) = U(t,x)fx dx'D(x,x";t)o(t,x").

This yields

dB(t.,T)

T
o ={f(t*,t*)—f dXU(t*,X)A(t*,x)]B(t*,T).

Similarly, the time derivative of a discounted bond obeys a
martingale evolution. The discounted zero coupon bond is
given by

0

D(t..T) = exp{— f ; dtf(t,t)}B(t*,T)

and a derivation similar to the result obtained in Eq. (B4)
yields

aD(t,,T)

T
P - lf; dxo(t*,x)A(t*,x)]D(f*,T)-

s

From Eq. (C9), it is seen that the discounted bond follows a
martingale process.

APPENDIX C: MARTINGALE

A martingale refers to a special category of stochastic
processes. An arbitrary discrete stochastic process is a
collection of random variables X;, i=1,2,...,N that is
described by a joint probability distribution function
p(x;,x5,...,xy). The stochastic process is a martingale if it
satisfies

E[X,1|x1,%5, ... ,x,]=x, (martingale). (C1)

In other words, the expected value of the random variable
X,,i—conditioned on the occurrence of x; for random vari-
ables X;, i=1,2,...,n—is simply x,, itself.

Consider a general stochastic functional differential equa-

tion for a two-dimensional function x(z,x),
dx(t,x
%) —d(1,0) + f dx' Gx,x" vt Alrx'), (C2)

where A(z,x) is the Gaussian two-dimensional quantum field
defined by the action given in Eq. (12). G(x,x’;?) is a deter-
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ministic function and the quantities d(z,x) and v(z,x) can, in
general, depend on x(#,x). Equation (C2) is a stochastic dif-
ferential equation that is encountered in the study of Libor.

An initial (or final) condition needs to be specified to
obtain a solution for Eq. (C2); for applications in finance, the
initial condition is specified as follows:

boundary condition: y(zy,x) = fixed.
Discretizing time in Eq. (C2) yields for infinitesimal e

x(t+ €,x) = x(t,x) + ed(t,x)
+ ef dx'G(x,x";t)v(t,x")A(t,x"). (C3)

The martingale condition given in Eq. (C1) requires that
the expectation value of x(7+e€,x) is taken conditioned on
x(7,x) having a fixed value. In taking the expectation value
of Eq. (C3), the functions d(z,x) and v(¢,x) are deterministic
since they depend only on x(z,x) and hence can be taken
outside the expectation value. Since E[A(z,x’)]=0, taking
the conditional expectation value of both sides of Eq. (C3)
yields the following:

E[x(t + €,x)|x(t,x)] = x(t,x) + ed(t,x)
+ EJ dx'G(x,x";t)v(t,x" ) E[A(t,x")]

= x(t,x) + ed(t,x). (C4)

The martingale condition given in Eq. (C1) requires E[x(z
+€,x)| x(¢,x)]=x(t,x); hence, from Egs. (C1) and (C4)

d(t,x) =0 (martingale condition). (C5)

Hence, the unconditional expectation value is given by

ax(t,x) ]
J

Elx(t+ ex)]= E[ x(t,x)] = E{ =0 (martingale).

(Co)

In summary, for x(¢,x) to be a martingale, it is sufficient that

@= f dx'Gxx' 00t ALx).  (CT)

The martingale condition can be further generalized. The
stochastic evolution equation

@%= J dx' Glxx';0u(t,x") At,x') - (C8)

yields the following conditional expectation value:

E[£(1+ €x)] = £(1,%)

which is the martingale condition.

(martingale), (C9)

APPENDIX D: LIMITS OF THE LIBOR MARKET MODEL

The following three different limits of the Libor market
model are taken:
(i) the limit of zero tenor, namely, € — 0,
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(ii) the BGM-Jamshidian limit, and
(iii) the HIM limit.

1. Tenor ¢ —0
Consider the limit of the tenor € —0. Let x=T7,, x'=T,

m»

and x,x’>T,. From Eq. (28), v(¢,x) ={€f(z,x)¥(t,x); hence,
from Eq. (69)

xelT,T,], LT, ~ f(t.x) + O),

0 ftx), 1- eIl ~ £f(t,x),

A, =M (x,x;1) = € y(t,x)D(x,x;1) Y (t,x),
pe) =S HI - e-ff“)]{— A0+ m(u)]
j=0

€
= [ﬁf(t,X)][— Ey(t,xm(x,x;t) Y t,x)

¥ m:E[_H 1+ €f(t’x)€7(f,X)D(x, Tm,[) 'y(t’ Tm):| .

The sum X; H,(x) has collapsed to one term since x
elT,,T,,;). The limit €—0 is taken holding v(z,x)
={f(t,x)y(t,x) fixed; hence, in this limit

€
pult,x) = = SLEF(x) Y(1,2) D e, 1) A1)

+0f(t )02 X (A6, T,) Nt x) D, T, ) N, T,,)]

m=I+1

= v(t,x)fx dx'D(x,x";Hv(t,x") + 0(€). (D1)
T

Hence, from Eq. (9)

af(t,x) — ¢

P 2f(t,)c)f dx'D(x,x";0)f(t,x") + €2f(C1,x) A(t,x).
T;

(D2)

The limit of tenor £ — 0 yields an evolution equation for the
Libor forward interest rates f(¢,x) that looks similar to the
HIM model, except v(t,x)=€f(r,x)y(t,x) is stochastic. Re-
call the drift results from requiring a martingale evolution of
the Libor forward interest rates f(r,x) with the forward bond
numeraire being the zero coupon bond B(¢,T,) with T, fixed.

2. BGM-Jamshidian limit

The BGM-Jamshidian limit of the quantum finance for-
mulation of Libor market model can be obtained using the
following prescription:

D(x,x";1)|gom — 1,

A(t,x)[gem — R(1),
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E[R(DR(t")] =8t —1"), (D3)

where R(7) is Gaussian white noise.
The Libor evolution for T,<T,, given in Eq. (26), yields
the BGM-Jamshidian limit. From Eq. (39)

Tm+l Tn+1
A0 =f dxy(t,x)f dx'D(x,x" ;1) y(t,x")
Tm TVL

Tn+]
— ¥u(0) v, (1), where ,(1) = f dxy(t,x).
Tn

Hence, the BGM-Jamshidian limit of the Libor market model
evolution equation, from Eq. (26), (53), and (D3), is given by

_ L ILtT) _
Lty o 4,0 + y,(DR(1),
n oL, ;
(n(t) = 'yn(t) 2 LT) (l) (D4)

S LT, "

3. HIM limit

The HIM limit requires the following three conditions:

(i) the zero tenor limit € — 0 is taken,

(ii) it assumed that v(z,x)=4€f(¢,x)y(t,x) is a deterministic
function equal to the HJIM-volatility function, that is,
v(t,x)— o(t,x), the HIM bond forward interest rate volatil-
ity is independent of f(¢,x), and

(iii) D(x,x" ;) [gm— 1.

With these assumptions Eq. (D2) yields

f(t,x) Y

(t,x)fx dx'o(t,x") + o(t,x)R(1),
at .

which is the expected HIM equation; note that the drift is the
one appropriate for the forward bond numeraire B(¢,T)).

APPENDIX E: NONSINGULAR LIBOR FORWARD
INTEREST RATES f{¢,x)

The underlying Libor forward interest rates driving all the
Libors, from Eq. (9), are given by the following:

af(t,x)

P u(t,x) +v(t,x)A(t,x).

The theory is nonlinear due to the dependence of the vola-
tility v(¢,x) and drift w(z,x) on the underlying Libor forward
interest rates f(¢,x). A nonlinear drift that renders the time
evolution of Libor to be a martingale apparently implies that
the underlying Libor forward interest rates are singular [19].
This aspect of the Libor forward interest rates is analyzed.

An approximation of Eq. (70) that is adequate for the
analysis of this appendix is

v(t,x) =[1 = eI (1,x).

Recall from Eq. (54) that volatility v(¢,x) has the following
two limiting cases:
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We----------

ol ts t

FIG. 13. Time evolution of f(¢,x). The singularity at time f, is
spurious since nonlinear effects take over at time ¢,—¢€ leading to a
finite f(z,x) for all time.

Cy(t.x)f(t,x), €f(tx) <1

ot = T, 00 (E1)
7(t9-x)9 €f(l‘,x) > 1

Here v(t,x)={f(t,x)¥(t,x) ~0, ignoring the integration that

does not qualitatively change the results. Recall from Eq.
(22) that the drift is

dx'D(x,x";0v(t,x") + O(£).

Ty

u(t,x) = v(t,x)

The limiting cases for u(t,x), from Eq. (E1), are the fol-
lowing [26]:
For case (i) £f(t,x)<1,

wlt,x) = [Lf(t,x) ¥(t,.x) > + O(0). (E2)
For case (ii) €f(¢t,x)>1,

T,

n

1 Ths1 +1
u(t,x) = — EJ dx'M (x,x" ;1) + f dx'M (x,x";1).
T, T

In the limit €f(z,x)> 1, volatility v(¢,x) — y(,x). The re-
sults obtained in Egs. (E2) and (E1) for this limit are consis-
tent with the earlier result given in Eq. (22); the two results
agree only in the limit of €—0. For the case when
€f(t,x)y(t,x) is independent of ¢, the extra term

£”+1M7(x,x’ ;1)/2 in Eq. (E2) is of O(£) and goes to zero.

"For small values of Cf(t,x), w(t,x)=[€y(t,x)f(t,x)]* fol-
lows from Eq. (E2). The stochastic term can be ignored as
these do not qualitatively change the impact of the quadratic
term on the evolution of f(¢,x). The simplified dynamics for
the Libor forward interest rates, from Eq. (9), is the follow-
ing [27]:

&f;tt,x) ~ ¢292f2(t,x) + random terms = f(,x)
0,
= (7% + random terms = f{(t,x)
— 0 for 1,= f0.x)>0. (E3)

€yf(0,x)”

From Eq. (E3), all the Libor forward interest rates seem to
become infinite as t—#,=1/[€yf(0,x)]>0 and are shown as
the dashed line in Fig. 13. If f(z,x), in fact, becomes singular
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1/¢ f

FIG. 14. The behavior of volatility v(z,x) and drift w(z,x) as a
function of f(z,x).

without the stochastic term, then, on including the stochastic
term, the singularity is even more severe with the Libor for-
ward interest rates becoming singular almost instantaneously
[19]. However, the result that the forward interest rates be-
come singular is not correct. When €f(z,x)~ 1, the approxi-
mation leading to Eq. (E3) is no longer valid and the solution
breaks down for 7; given by

£(0,x)

— ==t <,
1=[eyf0,0)], 7

fle) ==ty
(E4)

Instead, as follows from Egs. (E2) and (E1), for €f(¢,x)~1
the volatility and drift both become deterministic, leading to
a finite evolution of f(¢,x). Ignoring the stochastic term
yields
f(t.x) ~ f(0,x)e!,  1t>1,.

The different domains for f(z,x) are shown in Fig. 13; f(z,x)
grows slowly for #> ¢, since the coefficient uo~ y*<1.

Recall that the drift u(z,x) and volatility v(z,x) are both
functions of only exp{-f,(1)}=exp{-{f(¢,T,)}. As f(t,x)
grows large, both u(z,x) and v(r,x) rapidly become deter-
ministic and independent of f(¢,x), as shown in Fig. 14. This
in turn means that f(¢,x) can be described by a linear Gauss-
ian quantum field. Gaussian fields have configurations where
f(z,x) takes small values and can, hence, revert back to the
regime for its nonlinear evolution. In this manner, the Libor
forward interest rates are driven by its exact evolution equa-
tion between the nonlinear and linear domains.

APPENDIX F: JACOBIAN OF TRANSFORMATION A(#,x)
— o(t,x)

The change of variables from quantum field A(z,x) to
¢(t,x) is, from Eq. (56), given by

ao(t,

% =p(t.x) + Y60 ALY), teltpr].  (F1)
Equation (F1) is a nonlinear change of variables since

drift p(z,x) depends on ¢(z,x) and, in principle, can have a

nontrivial Jacobian. Taking the differential of Eq. (F1) yields
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f *dt'{é(t’ - I)% - % At %) = Y(t,)dA(1,x)

= det[ J]D¢=const X DA.

The change of variables factorizes for the x variable; hence,
for notational simplicity, the x coordinate is suppressed and
only the time variable 7 is displayed. The Jacobian is equal to
det[ 7], where matrix of transformation 7 is given by

’ _ ’ ﬁ_&ﬁ(l,,x): r_ i_ 4
Ji' 1) =81 —1) 1 i) =6t -1) o Ji'. =T
779,01 ;o 9P x)
_uatbr . J( ) = T (F2)

In Eq. (F2) matrix multiplication is an integration over ¢
given by [ Z‘)dt. Time is discretized t—1,=t'+(n—1)e, n
=1,2,3,...,M=(t—t")/ € to explicitly write out the matrix
elements of U/ as follows:

M-1

Ut = [ 11 fl*
n=1 1

0

M-1
dtn] 1_.[ eXP{EJ(tnath)},

n=0

boundary conditions:t, =¢', ty,=t.

From Eq. (F2) the Jacobian is given by
J. .
det[ J]=det| U—U" | =det| &' —t)— | = const.
at ot

Hence, the Jacobian of the transformation in going from
A(t,x) — ¢(1,x) is a constant; all constants involved in going
from A(z,x) — ¢(z,x) cancel due to division by the partition
function Z. Henceforth, the path integration measure will
taken to be invariant, namely,

[ =] 04

The Jacobian being a constant is essential for the deriva-
tion of the Libor Hamiltonian given in Sec. XV.

APPENDIX G: INTEREST RATE STATE SPACE V),

The Hamiltonian and the state space are two independent
ingredients of a quantum system; taken together they repro-
duce the Lagrangian and the path integral. The essential fea-
tures of the interest rates’ Hamiltonian and state space are
reviewed; a detailed discussion is given in [2].

The state space of a quantum field theory at time ¢, similar
to all quantum systems, is a linear vector space—denoted by
V.. The dual space of V,—denoted by V), p,,—consists of all
linear mappings from V; to the complex numbers and is also
a linear vector space. The Hamiltonian H, is an operator—
the quantum generalization of energy—that is an element of
the tensor product space V,® V, 4,, and maps the state space
to itself, that is, H,:V,— V..

For each time slice, the state space is defined for interest
rates with x>¢, as shown in Fig. 15. The state space has a
nontrivial structure due to the underlying trapezoidal domain
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t (g .

/t1+TFR

b to+Tg X

FIG. 15. The domain of the state space of the interest rates. In
the figure the state space V; is indicated for two distinct calendar
times #; and t,.

T of the xt space. On composing the state space for each time
slice, the trapezoidal structure for finite time, as shown in
Fig. 16, is seen to emerge from the state space defined for
each time slice.

The Hamiltonian for log Libor ¢(z,x) is nonlinear and
defined on a nontrivial domain. Since the quantum field
¢(t,x) exists only for future time, that is, for x> and hence
x € [t,t+Trg]. In particular, the interest rates’ quantum field
has a distinct state space V), for every instant ¢.

The state space at time ¢ is labeled by V,, and the coordi-
nate eigenvector of V, is denoted by |¢,). For fixed time ¢, the
state space V), consists of all possible functions of the interest
rates, with future time x € [#,7+Tpg]. The elements of the
state space of the forward interest rates V), include all pos-
sible debt instruments that are traded in the market at time .
In continuum notation, the coordinate basis eigenstates of V,
are tensor products over the future time x,

|¢t> = H

t=x=t+Tpp

|p(t.x)),

and satisfy the following completeness equation:

+

1,= H d¢(t’x)|¢t><¢l| EJD¢t|¢t><¢t|'

1=x=t+Tpg J -

(G1)

Figure 15 shows the domain of the state space as a function
of time, shown for typical times #; and #,.

T;

T:+Trr Te+Trr X

FIG. 16. The trapezoidal domain 7 of the forward interest rates
required for computing the transition amplitude {¢biyiiulZ{exp

—f;{H(l)df}|¢final>~
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The time-dependent interest rate Hamiltonian H(z) is the
backward Fokker-Planck Hamiltonian and propagates the in-
terest rates backward in time—taking the final state |Qgna)
given at future calendar time 7, backward to an initial state
(inisiall at the earlier time 7.

The transition amplitude Z for a time interval [T}, 7] can
be constructed from the Hamiltonian and state space by ap-
plying the time slicing method; since both the state space and
Hamiltonian are time dependent one has to use the time-
ordering operator 7 to keep track of the time dependence:
H(z) for earlier time ¢ is placed to the left of H(z) that refers
to later time. The transition amplitude between a final (coor-
dinate basis) state |¢p,,) at time Ty to an arbitrary initial
(coordinate basis) state (.| at time 7; is given by the
following [2]:

7
Z = Prnisiall T} €Xp — f H(D)dt [ | brina))- (G2)
T;

Due to the time dependence of the state spaces V), the for-
ward interest rates that determine Z form a trapezoidal do-
main shown in Fig. 16.

APPENDIX H: INTEREST RATE HAMILTONIAN

Consider the Lagrangian density £(7,x) for logarithmic
Libor field ¢(z,x) given by Eq. (60),

L(t,x)=—- %{ a(ﬁ(t’x;/(ftx_) ﬁ(t’x)] X D7 (t,x,x")
X { IPlx)/dt = 5(t’x,)] -0 = ¢(t,x) = +c°.
y(t.x")

The volatility y(¢,x) is deterministic and p(¢,x) is a nonlinear
drift term defined in Eq. (59). Neumann boundary condition,
given in Eq. (61), has been incorporated into the expression
for the Lagrangian. The derivation for the Hamiltonian is
done for an arbitrary propagator D~'(¢,x,x’), although for
most applications a specific choice, such as the stiff propa-
gator, is made.

Discretizing time into a lattice of spacing €, with r—1,
=ne, yields the Lagrangian £(z,,),

l”+TFR tn+TFR
‘C(tn) = f d-x£(tn,x)9 J = f dx:
1 X t

n n

- ifxA(tn,X)D‘1(t,x,x’)A(th), (H1)

(¢tn+e - ¢tn - eﬁzn) (x)

Alt) = Wt,.x)

(H2)
Note ¢(t,,x) =, (x) has been written to emphasize that
time ¢, is a parameter for the interest rate Hamiltonian.

The Dirac-Feynman formula relates the Lagrangian £(z,)
to the Hamiltonian operator and yields

<¢tn|e_€H/| ¢tn+e> = Neeﬂ(tn) s (H3)

where N is a normalization. Equation H(H3) is rewritten
using Gaussian integration and (ignoring henceforth irrel-
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evant constants), using notation I1, [dp(x)= [Dp yields

L) = J Dp exp[_ﬂ P)D(tx,x")p(x')

XX

+ if}p(x)A(x)} . (H4)

X

The propagator D(t,x,x') is the inverse of D~!(¢,x,x").
Rescaling the variable p(x)— y(z,x)p(x), Egs. (H1) and
(H2) yield (up to an irrelevant constant) [28]

6Xp{€£([)}=f Dp exp iJ P (e~ & — €p)(x)

Xexp —;f /V(I,X)p(X)D(x,x';t)7(t,x’)p(x’) .

(HS)

Hence, the Dirac-Feynman formula given in Eq. (H3) yields
the Hamiltonian as follows:

Nt = (ple” | ¢y, (H6)

=e_EHt(§/5¢t)f Dp eXp|:if p(d,— ¢t+e)i| . (H7)

For each instant of time, there are infinitely many indepen-
dent interest rates (degrees of freedom), represented by the
collection of variables ¢,(x),x €[t,t+Tpg]. Hence, one
needs to use functional derivatives to represent the Hamil-
tonian as a functional differential operator and the Hamil-
tonian is written in terms of functional derivatives in the
coordinates of the dual state space variables ¢,.

Unlike the action S[¢] that spans all instants of time—
from the initial to the final time—the Hamiltonian is an in-
finitesimal generator in time and refers to only the instant of
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time at which it acts on the state space. The degrees of free-
dom ¢,(x) refer to time 7 only through the domain on which
the Hamiltonian is defined. This is the reason that in the
Hamiltonian the time index ¢ can be dropped for the vari-
ables ¢,(x) and replaced by ¢(x) with r=x=1+Tp.

The Hamiltonian for logarithmic Libor interest rates, from
Egs. (H5)—(H7), is given by
0

+Tpp
H(t) =- 5£ dxdx’My(x,x/ ;t)m

t+Tpg S
- f dxp(t,x) —5¢ =%

M (x,x" ;1) = Y(t.x)D(x,x" ;) Y(t.x"). (H8)

The derivation only assumed that the volatility y(z,x) is
deterministic, which is a key feature of the Libor market
model. The drift term p(z,x) in Hamiltonian is completely
general and can be any (nonlinear) functions of the interest
rates [29].

General considerations related to the existence of a mar-
tingale measure rule out any potential terms for the interest
rate Hamiltonian [2,30]. Nontrivial dynamics is contained in
the kinetic term with the function M ,(x,x" ;) encoding the
model chosen for the interest rates; a wide variety of such
models has been discussed in [2]. The drift term is com-
pletely fixed by the martingale condition and, in particular,
by M (x,x').

The quantum fields ¢(z,x) is more fundamental that the
velocity quantum field A(z,x); the Hamiltonian cannot be
written in terms of the A(f,x) degrees of freedom. The rea-
son being that the dynamics of the forward interest rates are
contained in the time derivative terms in the Lagrangian,
namely, terms containing d¢(z,x)/dt; in going to the Hamil-
tonian representation, these time derivatives essentially be-
come differential operators &/ 5¢(t,x) [31].
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