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The small-time asymptotic properties of the reaction front formed by a reaction A+B→C coupled to
diffusion are considered. Reactants A and B are initially separately dissolved in two identical solvents. The
solvents are brought into contact and the reactants meet through diffusion. The small-time asymptotic position
of the center of mass of the reaction rate is obtained analytically. When one of the reactants diffuses much
faster than the other reactant then the position of the local maximum in the reaction rate travels on a length
scale related to the diffusion coefficient of the slowest diffusing reactant while the first moment of the reaction
rate and the width of the reaction front are on a length scale related to the diffusion coefficient of the fastest
diffusing reactant. If the sum of the initial reactant concentrations is fixed, then the fastest reaction rate is
obtained when equal concentrations are used. The first-order solutions are analytically obtained, however, each
solution involves an integral which requires numerical evaluation. Various small-time asymptotic analytical
reaction front properties are obtained. In particular, one finds that the position of the center of mass of the
product concentration distribution is initially located at three quarters of the position of the center of mass of
the reaction rate.
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I. INTRODUCTION

When a chemical reaction changes a fluid’s physical prop-
erties, e.g., its density, viscosity, or surface tension, then con-
vection can be induced. Some recent theory and experiments
on convection induced by chemical reactions have analyzed
various hydrodynamic instabilities that can deform reaction-
diffusion base states �1–6�.

For transient problems in which a system switches from a
stable regime to an unstable regime, linear stability analysis
is a useful analyzing technique in predicting the onset time
of the instability and further the linear stability predictions
can remain valid up to the start of the nonlinear regime.
When the linear stability analysis employs the quasi-steady
state approximation, then the instability of the system is de-
termined using convection-free base-state concentration pro-
files which are assumed to be frozen in time. Hence, a clear
understanding of these base-state profiles can be an essential
part in determining the behavior of the instability. Indeed
such a situation is the starting point for the identification and
evaluation of the onset of an instability �7�.

A simple reaction mechanism between two reactants is the

scheme A+B→
k

C in which the production rate R=kÂB̂,

where Â and B̂ denote concentrations and k is the kinetic
constant. The diffusion limited problem of two initially sepa-
rated reactants that are brought into contact along a planar
interface has received much attention. For large times T,
Venzl �8� found that the position of the reaction front, Xf,
scales with T1/2 when the reactants have equal diffusion co-
efficients. Further Gálfi and Rácz �9� determined that the
reaction zone width Wf �T1/6 and the rate of production at
the front R�T−2/3. The scalings for the position of the front
and width of the reaction zone were found to be in good
agreement with results from experiments conducted in gels
�10,11�. These results were then generalized by Koza �12� for

arbitrary diffusion coefficients, with the large time scalings
found to be unaffected. Sinder and Pelleg �13� obtained the
solution for the product for both reversible and irreversible
reactions. By using the reaction nA+mB→C, Cornell et al.
�14–16� found that although the reaction front position and
total reaction rate still scaled with �T and T−1/2, respectively,
the reaction rate at the front and the width of the reaction rate
now scaled with T−2� and T1/2−�, respectively, where �
=1 / �n+m+1�. The properties of such a reaction front in im-
miscible liquids were recently examined by Trevelyan et al.
�17� who found that the center of mass of the product could
travel in the opposite direction to the reaction front. The
first-order correction to the large time asymptotic solution for
the reaction nA+mB→C has furthermore been obtained �18�
and it was found that the position of the reaction front could
be more accurately described by Xf �2�T��+�2T−2��. This
can lead to reaction fronts traveling with different time scal-
ings when the reactants diffuse at different rates and the ini-
tial concentration ratio is chosen appropriately.

The small-time asymptotic limit of this problem is not as
clearly understood as the large time asymptotic limit. We
note that, as this problem has no intrinsic length scale, the
small-time asymptotic limit is equivalent to the asymptoti-
cally slow reaction rate limit. Taitelbaum et al. �19� found
that the position and width of the reaction front along with
the total rate of production were all found to increase like �T
for small times. Further, the first-order correction to the so-
lution in the small-time asymptotic limit was analytically
expressed in terms of a double integral using the Green’s
function for the diffusion equation. The correction to the to-
tal rate of the reaction was then found to scale with T3/2.
Then Taitelbaum et al. �20� introduced approximate solutions
for the small-time limit and found that the reaction front
could change direction under certain conditions upon the ini-
tial concentration ratio and the ratio of the diffusion coeffi-
cients. Recently similar approximate solutions have been ap-
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plied to systems with competing reactions by Hecht and
Taitelbaum �21�. The direction of the reaction front was nu-
merically found to actually change direction twice by Taitel-
baum and Koza �22�.

In this study the small-time asymptotic properties of the
reaction front are obtained analytically on the basis of a one-
dimensional model of this reaction-diffusion system. In the
small-time asymptotic limit the corrections to the zeroth-
order solutions are expressed analytically using single inte-
grals with the concentrations and their gradients at the initial
interface obtained exactly. The first moment of the reaction
rate is found to travel faster than the position of the maxi-
mum reaction rate in the small-time asymptotic limit. First-
order solutions in time of the reactant concentrations are ob-
tained in the asymptotic limit when one reactant diffuses
much faster than the other one. Here we find that the location
where the maximum leading order correction to the slowest
diffusing reactant and the position where the reaction rate is
maximum are related to the smallest reactant diffusion coef-
ficient. However, the location where the maximum leading
order correction to the fastest diffusing reactant, the first mo-
ment of the reaction rate, and the width of the reaction rate
are all related to the largest reactant diffusion coefficient.

A brief summary of the six types of behaviors exhibited
by reaction fronts throughout the full course of time is given
in Sec. III. The small-time asymptotic equations are listed in
Sec. IV. The zeroth-order reaction front properties are pre-
sented in Sec. V and the first-order solutions are given in
Sec. VI. In Sec. VII various integral measures of the solu-
tions are obtained and show that the position of the center of
mass of the product concentration distribution is initially lo-
cated at three quarters of the position of the center of mass of
the reaction rate.

II. PHYSICAL MODEL

Consider two identical solvents placed in contact along a
planar interface, X=0, at time T=0. The solvent on the left,
i.e., X�0, initially contains reactant A homogeneously dis-

tributed at concentration Â0, while the solvent on the right,
i.e., X�0, initially contains reactant B homogeneously dis-

tributed at concentration B̂0. The reaction scheme is simply
A+B→C. The mean field approximation is assumed and the

rate of production is thus given by R=kÂB̂, where k is the

kinetic constant and Â and B̂ are the concentrations of A and
B, respectively. This problem is modeled using the following
system of one-dimensional reaction-diffusion equations:

ÂT = DaÂXX − kÂB̂ , �1a�

B̂T = DbB̂XX − kÂB̂ , �1b�

ĈT = DcD̂XX + kÂB̂ , �1c�

where Ĉ denote the concentration of C. The subscripts X and
T denote partial derivatives with respect to space and time.
The concentrations of the species are considered sufficiently

dilute that the molecular diffusion coefficients Da, Db, and
Dc can be assumed constant.

As this study is concerned with small times the size of the
domain can effectively be treated as infinite. Thus, at infinity
we apply no flux conditions,

ÂX,B̂X,ĈX → 0 as X → � � . �1d�

Finally, the initial conditions are

Â = Â0, B̂ = Ĉ = 0 for X � 0, �1e�

B̂ = B̂0, Â = Ĉ = 0 for X � 0. �1f�

To nondimensionalize system �1�, the characteristic length
and time scales are constructed using the kinetic constant,
the initial concentration of reactant A, and the diffusion co-
efficient of reactant A, i.e.,

l0 = �Dat0 and t0 =
1

kÂ0

,

where the dimensionless variables are x=X / l0, t=T / t0, a

= Â / Â0, b= B̂ / Â0, and c= Ĉ / Â0. The dimensionless param-
eters introduced are

� =
B̂0

Â0

, r =�Da

Db
, s =�Da

Dc
�2�

with � representing the initial reactant concentration ratio,
while r and s represent the square root of the concentration
ratios. The resulting system of equations is

at = axx − ab, bt =
bxx

r2 − ab, ct =
cxx

s2 + ab . �3a�

The far field conditions are now

ax,bx,cx → 0 as x → � � , �3b�

while at t=0, the initial conditions read

a = 1, b = c = 0 for x � 0, �3c�

b = �, a = c = 0 for x � 0. �3d�

It is useful to transform the full system of equations from x
and t to 	 and t where

	 =
x

2�t
. �4�

Thus, the transport equations become

at −
	a	

2t
=

a		

4t
− ab , �5a�

bt −
	b	

2t
=

b		

4r2t
− ab , �5b�
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ct −
	c	

2t
=

c		

4s2t
+ ab . �5c�

The initial conditions at t=0 for all 	 are equivalent to the
far field conditions as �	�→� for all t and are given by

a = 1, b = c = 0 for 	 � 0, �5d�

b = �, a = c = 0 for 	 � 0. �5e�

This study will focus on the small-time asymptotic properties
of dimensionless system �5�. Previous slow reaction rate
studies on this problem have employed a different nondimen-
sionalization resulting in a three parameter problem for the

two reactants �19,20,23�, namely, k /��Â0B̂0DaDb�, �Da /Db,

and �Â0 / B̂0, while here the two reactant problem only de-
pends on the two parameters r and �. As this study is di-
rected toward applications in time dependent base-state so-
lutions for linear stability analysis, here both reactants and
the product are considered. Hence, this problem depends on
the three dimensionless parameters given in Eq. �2�.

III. SYSTEM DYNAMICS

To set the context of this problem a very brief outline of
the behavior of the full dynamics of this system is first pre-
sented. By numerically solving system �3� in time one finds
that there are six different possible behaviors for the direc-
tion of the resulting reaction front �see Fig. 1�. Here the
reaction front is defined as the first moment of the reaction
rate. The path taken by the reaction front is indicated on Fig.
1 by the shape of the arrow tail.

The reaction front is found to initially propagate in the
positive direction if and only if r�1, i.e., reactant A diffuses
faster than reactant B. This result was found by Taitelbaum et
al. �19� for the position of the maximum of the reaction rate.
This is illustrated in Fig. 1 when r�1, by the initial part of
the arrow tail moving upward. Eventually, for large times,
the reaction front is found to propagate in the positive direc-

tion if and only if r��, i.e., Â0
�Da� B̂0

�Db which means
that the diffusion limited flux of reactant A is greater than the
diffusion limited flux of reactant B. This result was deter-
mined by Koza �12� �see Eq. �26��; however, it could have
been derived from Eq. �8.1� in �24�, which is a generalized
version of Eq. �24� in �12�. This is illustrated in Fig. 1 when
r��, by the arrow head pointing upward. The shaded re-
gions in Fig. 1 correspond to the situation when the reaction
front changes direction twice. This occurs for a region of the
parameter space contained inside the domains r���1 or
r���1, so that the small and large time asymptotic limits
predict the same direction for the reaction front, but during
moderate times the reaction front travels in the opposite di-
rection. This type of behavior was first identified by Taitel-
baum and Koza �22�. The condition for a reaction front to
change direction twice will not be addressed by this study as
such behavior does not occur in the small-time asymptotic
limit. One notes that if the point �r ,�� is on this critical line
then so is the point �1 /r ,1 /��.

IV. SMALL-TIME ASYMPTOTIC EXPANSION

To determine the initial behavior of the reaction front a
small-time asymptotic expansion of each variable is carried
out by writing


 = 
0�	� + t�
1�	� + t2�
2�	� + O�t3�� , �6�

where � is a positive constant and 
 represents the concen-
trations a, b, and c. Substituting the expansions into system
�5� reveals that �=1 so that the leading order correction
terms can balance the reactive term. We collect the equations
by equating the coefficients of the powers of t.

The zeroth-order solutions are then given by

a0 =
1

2
erfc�	�, b0 =

�

2
erfc�− r	� �7�

with c0=0. These correspond to purely diffusive nonreactive
solutions �25,26�. The system of first-order transport equa-
tions is

a1 −
	a1	

2
=

a1		

4
− a0b0, �8a�

b1 −
	b1	

2
=

b1		

4r2 − a0b0, �8b�

c1 −
	c1	

2
=

c1		

4s2 + a0b0, �8c�

whose associated far field conditions are a1 ,b1 ,c1→0 as
�	�→�. The system of second-order transport equations is

=

FIG. 1. Dynamics of the reaction front in the six regions of the
r−� plane. The shapes of the arrows are sketches of the space-time
plot of the reaction front �the first moment of the reaction rate�. The
initial behavior of the reaction front corresponds to the start of the
arrow tail while the large time behavior of the reaction front corre-
sponds to the arrow head. Reaction fronts that eventually propagate
in the positive direction have arrows pointing upward. The regions
where a reaction front changes direction twice are shaded.
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2a2 −
	a2	

2
=

a2		

4
− a1b0 − a0b1, �9a�

2b2 −
	b2	

2
=

b2		

4r2 − a1b0 − a0b1, �9b�

2c2 −
	c2	

2
=

c2		

4s2 + a1b0 + a0b1, �9c�

whose associated far field conditions are a2 ,b2 ,c2→0 as
�	�→�.

Before examining the corrections to the zeroth-order so-
lutions, first the reaction front properties of the zeroth-order
solution are considered.

V. ZEROTH-ORDER REACTION FRONT PROPERTIES

The position of the reaction front is usually described as
the point where the reaction rate is maximum or as the first
moment of the reaction rate �27�. To distinguish between
these definitions, xm is introduced to denote the position
where the reaction rate is maximum and xf is used to denote
the first moment of the reaction rate.

A. Maximum of the reaction rate

In the small-time asymptotic limit Koza �12� was able to
obtain xm=2�m

�t, where �m satisfies

er2�m
2

erfc�− r�m� = re�m
2

erfc��m� . �10�

By numerically solving Eq. �10� for �m its dependence on
the parameter r is illustrated in Fig. 2.

An expansion in small �m yields the approximation

�m �
���r − 1�

4r
,

which is valid when �r−1�
1, showing that the small-time
asymptotic direction of the reaction front is solely dependent

on r with xm�0 if and only if r�1, as was pointed out in
�19�.

As r→0, using Eq. �10�, one finds that

�m → −�ln	 1

2r

 , �11�

which slowly tends to −�. In dimensional quantities using
Xm=2�m

�DaT we find that

Xm → −�2DaT ln	 Db

4Da

 .

As one would physically expect, this means that the reaction
front moves further to the left and invades the liquid contain-
ing reactant A faster as the diffusion coefficient of reactant B
tends to infinity. One notes that the position of the local
maximum in the limit of Db�Da has a much stronger de-
pendence on Da than Db as expected since the maximum
reaction rate would be on the diffusive length scale of reac-
tant A.

As r→�, using Eq. �10�, one finds that

�m →
1

r
�ln	 r

2

 , �12�

which slowly tends to 0. Recalling that �m increases as r
increases above 1 and now that �m decreases as r→� means
that there exists a maximum value of �m. Numerically this
maximum is found to occur at r�2.8384 with �m�0.2092.
Although a local maximum in �m appears unexpected, in fact
in dimensional quantities this limit becomes

Xm →�2DbT ln	 Da

4Db

 ,

which, as one would physically expect, means that the reac-
tion front moves further to the right and invades the liquid
containing reactant B faster as the diffusion coefficient of
reactant A tends to infinity. Thus the local maximum �m is
only related to the dimensionless problem and is not relevant
to the physical problem. As a further check one notes that the
dimensional limit is consistent with the limit when r→0
with A and B taking reverse roles.

B. Moments of the reaction rate

The dimensional first moment of the reaction rate is given
by

Xf =

�
−�

�

RXdX

�
−�

�

RdX

,

while a measure of the width of the reaction front, Wf, is
defined using the second moment of the reaction rate, as

FIG. 2. Comparison of � f and �m against log10�r�, where � f

=xf /�4t and �m is the solution to Eq. �10�.
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Wf
2 =

�
−�

�

R�X − Xf�2dX

�
−�

�

RdX

.

In dimensionless variables with xf =Xf / l0 and wf =Wf / l0 and
using the definition of 	 one obtains

xf = 2�t

�
−�

�

ab	d	

�
−�

�

abd	

, wf
2 = 4t

�
−�

�

ab	2d	

�
−�

�

abd	

− xf
2.

At this point it is useful to define

I� = �
−�

�

	�a0b0d	 , �13�

where � is a non-negative integer. The zeroth-order small-
time asymptotic position and width of the front are thus
given by

xf = 2�t
I1

I0
, wf

2 = 4t
I2

I0
− xf

2.

Then using the solutions for a0 and b0 in Eq. �7� and using
the definite integrals in Appendix A one can evaluate I0 to
obtain

I0 = �
−�

�

a0b0d	 =
��1 + r2

2��r
, �14�

which means that the small-time asymptotic total production
rate 
−�

� a0b0dx=2�tI0 scales with �t. One notes that I0 is a
positive monotonic decreasing function of r such that I0

�
�

2��
and tends to infinity as r→0. In dimensional quantities

this yields

�
−�

�

kÂB̂dX =
k

��
Â0B̂0

�Da + Db
�T ,

which one notes is proportional to the square root of the sum
of the reactant diffusion coefficients. If one of the diffusion
rates tend to infinity so does the total production rate. How-
ever, if both of the diffusion coefficients tend to zero, so does
the total production rate, as the reactants can only meet
through diffusion. In the case when one of the reactant dif-
fusion coefficients is zero the total production rate remains
positive. Additionally if one introduces that the constraint

Â0+ B̂0 is a fixed constant, then the total production rate is

maximized, in the small-time asymptotic limit, when Â0

= B̂0. If one is using a slow chemical reaction and the costs of
both reactants are the same, then this means that the cost of
producing species C is minimized when equal amounts of the
reactants are used.

One can evaluate I1 using the definite integrals in Appen-
dix A to obtain

I1 = �
−�

�

	a0b0d	 =
��r2 − 1�

8r2 . �15�

One notes that I1 is a monotonic increasing function of r
such that I1�

�
8 ; it is zero at r=1 and tends to minus infinity

as r→0. The zeroth-order first moment of the reaction rate is
given by

xf =
��t

2r

�r2 − 1�
�1 + r2

. �16�

Hence, like xm, the short time position of the reaction front xf
has been found to depend only on the parameter r with the
initial concentration ratio � playing no part. The reaction
front is initially stationary if and only if r=1. We notice that
although both xm and xf scale with �t, in general they do not
coincide. It should be noted that in a recent paper by Treve-
lyan �18� in Appendix C, it was incorrect to say that the
small-time asymptotic first moment of the reaction rate in-
volves integrals which must be evaluated numerically since
Eq. �16� describes this analytically.

Returning to dimensional quantities one obtains

Xf =
��T�Da − Db�

2�Da + Db

.

Again, just like Xm, the small-time asymptotic reaction front
position is only stationary when Da=Db. If one of the diffu-
sion coefficients is zero, say that of reactant B, then one
obtains Xf =��DaT /4. Importantly, we notice that, unlike
Xm, if one of the reactants diffuses much faster than the other
then Xf scales with the square root of the diffusion coeffi-
cient of the fastest diffusing reactant.

In order to compare the positions xf with xm it is useful to
introduce � f =xf /�4t. Then plotting � f and �m against
log10�r� �see Fig. 2� reveals that �� f�� ��m�, so that the first
moment of the reaction front travels faster than the position
of the maximum reaction rate in the small-time asymptotic
limit. Further, as r→� we observe that �m→0 while � f

→�� /4. At this point it is useful to note that if one returns to
Fig. 1 based on xf obtained numerically from solving system
�5�, we find that the region in the r−� parameter space
where the reaction front changes direction twice is slightly
different if xm is considered instead of xf.

Using the definite integrals in Appendix A, one obtains

I2 = �
−�

�

	2a0b0d	 = �
2r4 + r2 + 2

12��r3�r2 + 1
. �17�

One notes that I2 is a positive monotonic decreasing function
of r such that I2�

�

6��
and tends to infinity as r→0. The

small-time asymptotic width of the reaction front is given by

wf
2 =

t

r2�r2 + 1���r4 + 1�	4

3
−

�

4

 + r2	2

3
+

�

2

� �18�

so that wf scales like �t. This time scaling was found in �19�.
As r→0, wf scales with r−1, while as r→�, wf becomes
independent of r. In dimensional quantities one obtains
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Wf
2 =

T

Da + Db
��Da

2 + Db
2�	4

3
−

�

4

 + DaDb	2

3
+

�

2

� ,

which monotonically increases with both Da and Db. One
notes that when Da=Db then Wf

2= 5
3TDa. If one of the diffu-

sion coefficients is zero, say that of reactant B, then one
obtains Wf

2=TDa� 4
3 − �

4 �. This shows that the width of the
reaction front is linked to the diffusion coefficient of the
fastest diffusing reactant.

VI. FIRST-ORDER SOLUTIONS

The first-order expansions for the concentration of species
A, B, and C are a=a0+ ta1, b=b0+ tb1, and c= tc1. In particu-
lar these expansions show that the amount of product present
initially increases linearly with time, t. In this section the
corrections a1, b1, and c1 are sought.

Taitelbaum et al. �19� expressed the solution to a system
equivalent to Eq. �5� using a Green’s function, however, such
a solution is difficult to analyze analytically. Thus, Taitel-
baum et al. �20� introduced the following approximate solu-
tions:

a1 = −
�

2��r
exp�−

1

4	2	 − �r +
1
�r

2

−
1

4r� ,

b1 = −
��r

2��
exp�−

1

4	2r	 − �r +
1
�r

2

−
r

4� .

An improvement to these approximations were then made by
Malyutin et al. �23� based on the Feynman-Kac formula �28�
which are given by

a1 = − a0b0 +
�r�

6��
e−	2�erf	r	 +

�r

2

 − erf	r	 −

�r

2

� ,

b1 = − a0b0 +
e−r2	2

�

6��r
�erf		 +

1

2�r

 − erf		 −

1

2�r

� .

At the initial interface 	=0 these solutions yield

�1 � a1�	=0 = −
�

4
+

��r

3��
erf	�r

2

 ,

�3 � b1�	=0 = −
�

4
+

�

3��r
erf	 1

2�r

 ,

where �1 and �3 have been introduced for comparative pur-
poses.

However, the solution to system �8� can be analytically
expressed as an integral solution, namely,

a1

1 + 2	2 = �1 + S�	�	�2

4
+ �

0

	

a0b0P�z�dz

− �

0

	

a0b0���P�z�erf�z� + 2z�dz , �19a�

b1

1 + 2r2	2 = �3 + rS�r	�	 �4

4r2 + �
0

	

a0b0P�rz�dz

− r�

0

	

a0b0���P�rz�erf�rz� + 2rz�dz ,

�19b�

c1

1 + 2s2	2 = �5 + sS�s	�	 �6

4s2 − �
0

	

a0b0P�sz�dz

+ s�

0

	

a0b0���P�sz�erf�sz� + 2sz�dz ,

�19c�

where the functions P and S are given in Appendix B and the
details of this derivation are presented for b1. The six inte-
gration constants denote the following initial interfacial
quantities:

a1�	=0 = �1 and a1	�	=0 = �2,

b1�	=0 = �3 and b1	�	=0 = �4,

c1�	=0 = �5 and c1	�	=0 = �6.

Applying the first-order far field conditions, namely,

a1,b1,c1 → 0 as 	 → � �

to the solutions in Eq. �19� results in these six conditions,

���2

4
− �1 = �

−�

0

a0b0�2z + ��P�z�erfc�− z��dz ,

���2

4
+ �1 = �

0

�

a0b0�2z − ��P�z�erfc�z��dz ,

���4

4r
− �3 = r�

−�

0

a0b0�2rz + ��P�rz�erfc�− rz��dz ,

���4

4r
+ �3 = r�

0

�

a0b0�2rz − ��P�rz�erfc�rz��dz ,

���6

4s
− �5 = − s�

−�

0

a0b0�2sz + ��P�sz�erfc�− sz��dz ,

���6

4s
+ �5 = − s�

0

�

a0b0�2sz − ��P�sz�erfc�sz��dz .

These six equations can be evaluated to read as

���2

4
− �1 =

�

8
�1 +

4

r + 1
− G�r� − K�1,r,1�� ,

���2

4
+ �1 = −

�

8
�3 − G�r� − K�1,r,1�� ,
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���4

4r
− �3 =

r�

8
�r +

2

r
− rG�r� − K�1,r,r�� ,

���4

4r
+ �3 = −

r�

8
�r +

4

1 + r
− rG�r� − K�1,r,r�� ,

���6

4s
− �5 = −

s�

8
�s +

4

r + s
− sG�r� − K�1,r,s�� ,

���6

4s
+ �5 =

s�

8
�s +

4

1 + s
− sG�r� − K�1,r,s�� ,

where the functions G and K are defined in Appendix A.
Solving these six equations yields

�1 =
�

4�
	 �

r2 − 1
−

1

r
−

�r2 + 1�2

r2�r2 − 1�
tan−1�r�
 , �20a�

�2 =
��1 − r�

2���r + 1�
, �20b�

�3 =
�

4�
	��1 + r4�

2�r2 − 1�
− r −

�r2 + 1�2

r2 − 1
tan−1�r�
 , �20c�

�4 =
r��1 − r�

2���r + 1�
, �20d�

�5 =
s2�

2��s2 − r2�	�

2
−

r2 − 1

s2 − 1
tan−1�r�


+
rs��r2 + 1 − 2s2�tan−1�s−1�1 + r2 − s2�

2��s2 − r2��s2 − 1��1 + r2 − s2
, �20e�

�6 =
s2��r − 1�

���r + s��s + 1�
. �20f�

Some of these expressions initially appear to be singular in
the following five limits: r→0, r→1, s→1, s→�1+r2, and
s→r; however, by expanding around each limit reveals no
such singularities, as expected, since the corrections to the
concentrations must remain finite. We notice that all of the
�i’s are proportional to �.

The quantities �1, �2, �3, and �4 further depend on r. The
interfacial value of a1, �1, is a monotonic increasing function
of r while the interfacial value of b1, �3, is a monotonic
decreasing function of r, as illustrated in Fig. 3. Both �1 and
�3 lie between − �

4 and − �
8 and equal to − �

2� at r=1.
In Fig. 3 the values �1 and �3 are also presented. One

notices that although �1 is close to �1 for r
1 and r�1, for
large r, �1→� like �r. Similarly �3 is close to �3 for r�1
and r�1, but for small r, �3→� like 1 /�r. Thus as �r−1�
increases, one of the solutions in �23� will rapidly diverge
from the analytical solution.

The interfacial derivative of a1, �2, is a monotonic de-
creasing function of r lying between − �

2��
and �

2��
and taking

the value 0 at r=1. The interfacial derivative of b1, �4, equals

that of a1 multiplied by r, i.e., �4=r�2. Thus �4 is zero at
r=0 and r=1 with its maximum value at r=�2−1. Hence,
the interfacial gradients of a1 and b1 are positive for r�1
and negative for r�1 and further the interfacial gradient of
b1→−� as r→�. Physically letting r tend to infinity with
Da fixed is equivalent to letting Db tend to zero, which will
result in a large gradient at 	=0; thus it is consistent to
expect �4 to tend to infinity in this limit.

As product C can diffuse at a different rate to each of the
reactants it depends on the three parameters: �, r, and s. The
interfacial value of c1, �5, is a monotonic decreasing func-
tions of r, but a monotonic increasing function of s lying
between 0 and �

4 . As r→0 or as s→� then �5→ �
4 , physi-

cally these limits correspond to Db→� or Dc→0, respec-
tively. In the limit s→�1+r2 one obtains

�5 =
��1 + r2�

2�
	�

2
−

1

r
−

r2 − 1

r2 tan−1�r�
 ,

which takes the value �
4 in both the large and small limits of

r and has a local minimum at r=1 with �5 reaching �� 1
2

− 1
� �. Also in the limit r→�, �5→ �s

4�s+1� . �It is important to
note that tan−1�iz�� i tanh−1�z�, where i=�−1 so that �5 is
always real even when s2�1+r2.� The interfacial derivative
of c1, �6, is a monotonic increasing function of r, but a
monotonic decreasing function of s which is zero at r=1. If
�6 is considered as a function of s then it lies between 0 and
��r−1� /��.

In the special case when s=1, so that species C diffuses at
the same rate as reactant A, then �5=−�1 and �6=−�2 and
further Eq. �19� implies that c1=−a1 which is expected in
this case. Similarly, when s=r, so that species C diffuses at
the same rate as reactant B, then �5=−�3 and �6=−�4 and
now Eq. �19� implies that c1=−b1.

A. More explicit form of the solution

Although, the forms of the analytical solutions in Eq. �19�
with Eq. �20� are convenient due to their concise forms, they

FIG. 3. Analytical solutions of the normalized interfacial values
of a1, �1 /� and b1, �3 /� against log10�r�. The approximate solu-
tions �1 /� and �3 /� are also plotted against log10�r�.
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involve pairs of integrals that individually tend to infinity as
�	�→�. This divergence can hinder the accuracy of a nu-
merical evaluation. Using integration by parts the divergent
contributions can be removed leading to these more explicit
forms of the solutions,

a1 = �1 + 2	2�	�1 + �A +
��r2 + 1�
8�1 − r2�

−
��r2 + 1�2a0

4r2�1 − r2� 

+ a0b0�2	2 + �1 + 2	2�	 1

2r2 +
1

1 − r2 − 	2
�
− 	a0b0		 1

2r2 +
1

1 − r2 +
	2

r2 
 −
�	�r2 + 1�2a0	

4r2�1 − r2�

+ 	b0a0		 1

2r2 +
1

1 − r2 − 	2
 −
	2

2r2a0	b0	, �21a�

b1 = �1 + 2r2	2�	�3 + �B +
��r2 + 1�
8�r2 − 1�

−
�r2 + 1�2b0

4�r2 − 1� 

+ r2a0b0�2	2 + �1 + 2r2	2�	1

2
+

1

r2 − 1
− 	2
�

− r2	b0a0		1

2
+

1

r2 − 1
+ r2	2
 −

�r2 + 1�2	b0	

4�r2 − 1�

+ r2	a0b0		1

2
+

1

r2 − 1
− 	2
 −

r2	2

2
a0	b0	, �21b�

c1 = �1 + 2s2	2�	�5 + �C +
�s2�1 − r2�erf�s	�
4�s2 − r2��s2 − 1� 


+ s2	� a0b0	

s2 − r2 +
b0a0	

s2 − 1
+

s��1 − r2�e−s2	2

2���s2 − r2��s2 − 1�
�

+
�rs2	�2s2 − r2 − 1�
2���s2 − r2��s2 − 1�

erf��r2 + 1 − s2	�
�r2 + 1 − s2

e−s2	2

− 2s2	2a0b0, �21c�

where the functionals �A, �B, and �C are given by

�A = 2�
0

	

a0	zb0 −
b0z

1 − r2
dz , �22a�

�B = 2r2�
0

	

b0	za0 −
a0z

r2 − 1

dz , �22b�

�C =
�rs2�2s2 − r2 − 1�
2�s2 − r2��s2 − 1� �0

	 erf��r2 + 1 − s2z�
���r2 + 1 − s2

e−s2z2
dz

+ s2�
0

	 a0b0z

s2 − r2 +
b0a0z

s2 − 1
dz . �22c�

The expressions in �21� were verified as solutions of system
�8� using the symbolic software MAPLE 8 �29�. In general one
must use numerical integration to evaluate �A, �B, and �C and
hence obtain the solutions a1, b1, and c1.

As expected, a1 and b1 are found to be nonpositive while
c1 is non-negative. Further one finds that a1 and b1 are al-
ways greater than −� /2. This introduces an additional re-
straint on the validity of the small-time asymptotic expansion
that t��−1 when ��1 or t�1 when ��1, so that the con-
centrations a and b remain non-negative. In dimensional

quantities these constraints become kT�min�1 / Â0 ,1 / B̂0�.

B. Immobile reactant limit

As �A /� and �B /� defined in Eq. �22� only depend on the
parameter r, their asymptotic limits as r→0 or r→� can be
determined. Without loss of generality only the limits as r
→0 need to be considered and are determined in Appendix
C. Thus one can obtain the two outer solutions of a1 and b1.
For 	�1, using a0=0, we have

a1+
out = 0, �23a�

b1+
out = �1 + 2r2	2�

b0 − �

4
+

	

4
b0	 �23b�

and for 	
−1, using a0=1, the solutions are

a1−
out = − �1 + 2r2	2�b0 − 	b0	, �23c�

b1−
out = �6r2	2 − 1�

b0

4
+

3	

4
b0	, �23d�

which are valid for r
1 with �	��1. In general a similar
asymptotic solution for c1 has not been found; however, in
the special cases s=1 or s=r we recall that one obtains c1
=−a1 or c1=−b1, respectively.

We notice that a1−
out and b1−

out satisfy Eq. �8� using a0=1
while a1+

out and b1+
out satisfy Eq. �8� using a0=0. Although these

solutions are not valid near 	=0 we notice that the outer
solutions for b1 and its first derivative are continuous at 	
=0 with b1=−� /8 and b1	=r� /�4� which agree with the
analytical values of �3 and �4, respectively, in the limit as
r→0. One finds that b1−

out has a local minimum located at 	
=−� /r, where ��0.2423 which has been determined from
the root of the equation 3��� erfc���=e−�2

. In dimensional
quantities the position of the local minimum in b1 is at

X = − 2��DbT �24�

in this limit. The minimum value of b1−
out is thus given by

− 1
8 �1+12�2�erfc����−0.1559. Now using Eq. �16�, as r

→0, we find that the predicted position of the first moment
of the reaction rate, xf /�4t=−�� / �4r��−0.4431 /r, is nearly
twice as far to the left of 	=0 as the position of the mini-
mum of b1, although they both scale with r−1.

At 	=0, the outer solutions for a1 are discontinuous with
a1+

out=0 while a1−
out=−� /2. The solution a1+

out=0 is to be ex-
pected in this limit since r→0 means that reactant A diffuses
much slower than reactant B so that very little of reactant A
is present in 	�0. The inner solutions for a1 and b1, be-
tween the two outer solutions, are obtained in an inner re-
gion, �r	�
1, by expanding b0 in a Taylor series to yield
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a1
in = −

�

2�a0 +
4r

3��
�3	a0 + a0	��

−
�r2

2
��1 + 2	2�a0 + 	a0	� , �25a�

b1
in =

�

2�−
1

4
+

r	

��
� +

�r2

2 		a0	 + �1 + 2	2�a0 −
3 + 2	2

4 
 ,

�25b�

with terms of order r3 and higher neglected. We find that a1
in

has a local minimum located at 	=−�ln� 1
4r �. In dimensional

quantities the position of the local minimum in a1 is at

X = − �2DaT�ln	 Db

4Da

 �26�

in this limit. The position of the minimum of a1 as r→0 is
not quite as far to the left as the predicted position of the
maximum reaction rate, xm /�4t, given by Eq. �11�, although
they both involve the square root of the logarithm of r−1.

In summary, in the limit r→0 we find that the local mini-
mum in b1 is located around the same order of magnitude as
the first moment of the reaction rate, while the local mini-
mum in a1 is located around the same order of magnitude as
the position of the maximum reaction rate.

The asymptotic solutions as r→� can be obtained from
the solutions in the limit as r→0 by reversing the dimen-
sional roles of A and B. In particular, the outer solutions for
r	�1, using b0=�, are given by

a1+
out =

�

4
�6	2 − 1�a0 +

3�

4
	a0	, �27a�

b1+
out = − ��1 + 2	2�a0 − �	a0	 �27b�

and for r	
−1, using b0=0, the solutions are

a1−
out = ��1 + 2	2�

a0 − 1

4
+

�	

4
a0	, �27c�

b1−
out = 0, �27d�

which are valid for r�1 and �r	��1. Now the outer solu-
tions for a1 and its first derivative are continuous at 	=0
with a1=−� /8 and a1	=−� /�4� which agree with the ana-
lytical values of �1 and �2, respectively, in the limit as r
→�. Further, a1+

out has a local minimum located at 	=�.
Then using Eq. �16�, as r→�, we find that the predicted
position of the first moment of the reaction rate, xf /�4t
=�� /4�0.4431 is nearly twice as far to the right of 	=0 as
the position of the minimum of a1. Similarly the inner solu-
tion can be obtained for �	�
1 in the limit as r→� by
expanding a0 in a Taylor series.

In Fig. 4 profiles of a1 /� and b1 /� are illustrated for
values of r tending to zero. The asymptotic outer solution
�23� as r→0 is illustrated by the solid line. The profiles of a1
and b1 get wider and wider as r→0 and so the profiles are
plotted against r	. As r→0 the curves approach the
asymptotic small r limit. For r�1, both a1 and b1 have local

minima in 	�0. As r→0 the minimum of a1 approaches
− �

2 . Further, a1 decays much more rapidly in 	�0 than in
	�0 so that, as predicted, a1 has a very sharp minimum in
the small r limit.

In Fig. 5 profiles of a1 /� and b1 /� are illustrated for
values of r tending to infinity. The asymptotic outer solution
�Eq. �27��, as r→�, is illustrated by the solid line. In this
limit their widths become independent of r. As r→� the
curves approach the asymptotic large r limit. For r�1, both
a1 and b1 have local minima in 	�0. As r→� the minimum
of b1 approaches − �

2 . Further, b1 decays much more rapidly
in 	�0 than in 	�0 so that b1 has a very sharp minimum in
the large r limit.

Hence, the outer solutions which are much simpler than
the full solutions have been shown to reveal the dominant
behavior of the functions a1 and b1 in the limit r→0 and r
→�. In Sec. VII the integral properties of the full solutions
will be addressed for any value of r.

(b)

(a)

FIG. 4. Profiles of the normalized first-order solutions �a� a1 /�
and �b� b1 /� against r	 as r→0. The solid line denotes the
asymptotic outer solution for small r given by Eq. �23�.
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VII. FIRST-ORDER MOMENTS

In this section the properties of the first-order solutions
are examined through their moments.

A. Zeroth moment

First the zeroth moment of each equation in Eq. �8� is
considered. Integrating each equation over the positive and
negative ranges using integration by parts and using the ana-
lytical solutions at 	=0, we obtain the following six condi-
tions:

�
−�

0

a1d	 −
�2

6
= �

−�

0

b1d	 −
�4

6r2

= − �
−�

0

c1d	 +
�6

6s2 = − �
1 + F�1/r�

6��r
,

�
0

�

a1d	 +
�2

6
= �

0

�

b1d	 +
�4

6r2

= − �
0

�

c1d	 −
�6

6s2 = − �
1 + F�r�

6��
,

where the function F is defined in Appendix A. We notice
that pairing up the equations yields the following conserva-
tion of mass relationships, namely,

�
−�

�

a1d	 = �
−�

�

b1d	 = − �
−�

�

c1d	 = −
2

3
I0. �28�

This is qualitatively expected. The quantities a1 and b1 are
the amount of A and B consumed by the reaction while c1 is
the amount of C produced from the reaction. As A and B are
consumed at the same rate thus the total amounts of a1 and
b1 are equal. Further, as C is produced at the same rate at
which A and B are consumed, the total amount of c1 should
equal the total amount of −a1. Returning to species C in the
x and t coordinates allows one to write

�
−�

�

cdx � 2t3/2�
−�

�

c1d	 =
4I0

3
t3/2. �29�

Hence, to first order, the small-time asymptotic total amount
of C present scales with t3/2 which is to be expected since
d
dt
−�

� cdx=
−�
� Rdx, which agrees with the result following

Eq. �14�. On physical grounds this scaling makes sense as
the maximum concentration of C scales with t and the width
of the distribution of C scales with �t so that the total amount
of C scales with the product of these scalings, namely, t3/2.

B. First moment

Second, each equation in Eq. �8� is integrated over the
positive and negative ranges, with the weight function 	,
using integration by parts and using the analytical solutions
at 	=0, we obtain the following six conditions:

�
−�

0

	a1d	 +
�1

8
= �

−�

0

	b1d	 +
�3

8r2

= − �
−�

0

	c1d	 −
�5

8s2 =
�

32r2 �1 + G�1/r�� ,

�
0

�

	a1d	 −
�1

8
= �

0

�

	b1d	 −
�3

8r2

= − �
0

�

	c1d	 +
�5

8s2 = −
�

32
�1 + G�r�� .

We notice that pairing up the equations yields the following
relationships:

�
−�

�

	a1d	 = �
−�

�

	b1d	 = − �
−�

�

	c1d	 = −
1

2
I1. �30�

Using Eqs. �28� and �30� allows the small-time asymptotic
center of mass of the product to be obtained,

(b)

(a)

FIG. 5. Profiles of the normalized first-order solutions: �a� a1 /�
and �b� b1 /� against 	 as r→�. The solid line denotes the
asymptotic outer solution for large r given by Eq. �27�.
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xc =

�
−�

�

xc1dx

�
−�

�

c1dx

= 2�t

�
−�

�

	c1d	

�
−�

�

c1d	

=
3I1

2I0

�t =
3

4
xf , �31�

which shows that the center of mass of the product initially
lags behind the center of mass of the reaction rate. One notes
that the large time asymptotic center of mass of the product
can also be expressed in terms of the large time asymptotic
center of mass of the reaction rate as xc= 1

2xf, found in �17�.
Further, Eqs. �28� and �30� reveal that a1, b1, and c1 all have
identical first moments so that their centers of mass are all at
the same place, xc.

C. Second moment

Third, each equation in Eq. �8� is integrated over the posi-
tive and negative ranges, with the weight function 	2; using
integration by parts one obtains the following six equations:

− �
1 + H�1/r�

30��r3
= �

−�

0

	2a1d	 + �
1 + F�1/r�

30��r
−

�2

30

= �
−�

0

	2b1d	 + �
1 + F�1/r�
30��r5/2 −

�4

30r4

= − �
−�

0

	2c1d	 + �
1 + F�1/r�
30��rs2

+
�6

30s4 ,

− �
1 + H�r�

30��
= �

0

�

	2a1d	 + �
1 + F�r�
30��

+
�2

30

= �
−�

0

	2b1d	 + �
1 + F�r�
30��r2

+
�4

30r4

= − �
−�

0

	2c1d	 + �
1 + F�r�
30��s2

−
�6

30s4 ,

where the function H is defined in Appendix A. We notice
that pairing up the equations yields the following relation-
ships:

�
−�

�

	2a1d	 = − 2
5 I2 − 2

15I0, �32a�

�
−�

�

	2b1d	 = −
2

5
I2 −

2

15r2 I0, �32b�

�
−�

�

	2c1d	 =
2

5
I2 +

2

15s2 I0. �32c�

The width of the product can be measured using the second
moment of c1 and is written as

wc
2 =

�
−�

�

�x − xc�2c1dx

�
−�

�

c1dx

= 4t

�
−�

�

	2c1d	

�
−�

�

c1d	

− xc
2

=
128�2r4 + r2 + 2� − 45��r2 − 1�2

320r2�r2 + 1�
t +

4t

5s2 �33�

so that wc scales like �t. Similarly the widths of a1 and b1 are
given by their second moments to yield

wa
2 =

128�4r4 + 3r2 + 2� − 45��r2 − 1�2

320r2�1 + r2�
t , �34a�

wb
2 =

128�2r4 + 3r2 + 4� − 45��r2 − 1�2

320r2�1 + r2�
t , �34b�

which both monotonically decrease as r increases, with wa

and wb scaling with �t. The limits in Eq. �34� reveal that as
r→0, the square of the widths approaches the limits

wa
2 →

256 − 45�

320r2 t and wb
2 →

512 − 45�

320r2 t .

This result could have been obtained directly from the outer
solutions �23� obtained in Sec. VI and shows that the widths
of a1 and b1 tend to infinity like r−1 in this limit. As r→�,
the square of the widths approaches the limits

wa
2 →

512 − 45�

320
t and wb

2 →
256 − 45�

320
t ,

which only depend on time and so the width becomes inde-
pendent of r as r→�. In dimensional quantities one obtains

Wa
2

T
= M +

4Da

5
,

Wb
2

T
= M +

4Db

5
,

Wc
2

T
= M +

4Dc

5
,

where

M =
128�2Da

2 + DaDb + 2Db
2� − 45��Da − Db�2

320�Da + Db�
,

which shows that the distribution of each species has a dif-
ferent width and even when the product does not diffuse, its
width is given by �MT. One notes that in the case when one
of the reactants does not diffuse, say reactant B, then Wa
�1.8Wb, so that the width of the reactant that diffuses is
only approximately 1.8 times the width of the nondiffusing
reactant. Further all of the widths tend to infinity when either
Da or Db tends to infinity and further Wc→� as Dc→�. As
expected the diffusion coefficient of the product only affects
its width and not its center of mass or production rate.

Although in practice the two reactants and the product
will diffuse at different rates, in many studies, for simplicity,
they are taken as equal, hence in Appendix D the moments of
this special case when r=s=1 are also presented.
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All the quantities obtained in this study have been found
to be in excellent agreement with the corresponding numeri-
cally obtained quantities for small times, however, the length
of time that the solutions are valid does depend on the pa-
rameter values used.

VIII. CONCLUSIONS

In conclusion, various analytical properties of the reaction
front generated by an A+B→C reaction have been obtained
in the small-time asymptotic limit. The corrections to the
zeroth-order solutions are expressed analytically using single
integrals with the concentration and their gradients at the
initial interface obtained exactly. The first moment of the
reaction front is found to travel faster than the position of the
maximum reaction rate in the small-time asymptotic limit.
First-order solutions in time for the reactant concentrations
are obtained in the limit when one reactant diffuses much
faster than the other one. Here one finds that the position
where the reaction rate is maximum is on the length scale of
the slowest diffusing reactant while the first moment of the
reaction rate and the width of the reaction front are on the
length scale of the fastest diffusing reactant. If the sum of the
initial reactant concentrations is fixed, then the fastest reac-
tion rate is obtained when equal concentrations are used.

Analytical concentration profiles are expressed using a
single integral solution which is numerically much easier to
deal with than the previous double integral solutions existing
in the literature. At small times the length scale is very small
so that a numerical solution to the full system of reaction-
diffusion equations can lead to inaccurate results. This study
provides a benchmark to test numerical codes in the small-
time asymptotic limit.

The first-order solutions are found to remain finite for all
parameter values unlike the approximations presented in the
literature which have serious problems when the ratio of the
diffusion coefficients of the reactants is not close to unity.
The study also provides an asymptotic solution for the case
when the ratio of the reactant diffusion coefficients is large.
If one of the reactants diffuses much faster than the other,
then the slowest diffusing reactant has a much sharper gra-
dient in its first correction to the solutions near the reaction
front than the faster diffusing reactant. This study provides
quantitative measures of the solutions analytically. Finally,
the center of mass of the product is found to be initially
located at three quarters of the position of the center of mass
of the reaction rate.
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APPENDIX A: USEFUL INTEGRALS

The following definite integral results have been utilized
for ��0:

�
0

�

erfc��z�erfc��z�dz =
1 − F��/��

���
,

�
0

�

z erfc��z�erfc��z�dz =
1 − G��/��

4�2 ,

�
0

�

z2 erfc��z�erfc��z�dz =
1 − H��/��

3���3
,

�
0

�

erfc��z�erfc��z�P��z�dz =
2�2 + �� + �2

2���2�� + ��
,

�
0

�

erfc��z�erfc��z�erfc��z�P��z�dz =
K��,�,��

2��
,

where the fourth and fifth integrals are valid under the addi-
tional constraints ��−� and ��−��2+ 1 / 2 �������+��, re-
spectively, where the function P is given by Eq. �B2� in
Appendix B and the remaining functions are

F�z� =
�z2 + 1 − 1

z
,

G�z� =
2

�
	1

z
+

z2 − 1

z2 tan−1�z�
 ,

H�z� =
2z4 + z2 + 2 − 2�z2 + 1

2z3�z2 + 1
,

K��,�,�� = �

L	�

�
,
�

�



�2 + �

L	�

�
,
�

�



�2 + �

1 − G	�

�



�2 ,

L�x,y� =

2� −
4 tan−1��x2 + 1 − y2/y�

�x2 + 1 − y2
−

4y

x
tan−1 x

��x2 − y2�
.

The functions F, G, and H are monotonic increasing
functions of z lying between 0 and 1. We note that
��1−F�� /������1−F�� /���, �2�1−G�� /�����2�1
−G�� /���, and �3�1−H�� /�����3�1−H�� /���. The func-
tion L is a monotonic decreasing function of x and y that lies
between 0 and 1. In the special case when y=x, the function
L reduces to 1−G�x�. We notice that K�1,r ,1�= �2�r
−8 tan−1�r�� /��r2−1�+2�1−G�r�� and K�1,1 ,1�=3− 6

� .

APPENDIX B: AN INTEGRAL SOLUTION

Starting from Eq. �8b�, namely,

b1 −
	

2
b1	 =

b1		

4r2 − a0b0,

the analytical solution shall be constructed. By substituting
b1= �1+2r2	2�U into Eq. �8b� yields
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−
	

2
�1 + 2r2	2�U	 = 2	U	 + �1 + 2r2	2�

U		

4r2 − a0b0.

Then by substituting U	= �1+2r2	2�−2V into the above equa-
tion yields

V	 + 2r2	V = 4r2a0b0�1 + 2r2	2� .

Using the integration factor er2	2
one obtains

V = 4r2e−r2	2	 �4

4r2 + �
0

	

a0b0�1 + 2r2y2�er2y2
dy
 ,

where �4 is the integration constant. This means that

U	 =
4r2e−r2	2

�1 + 2r2	2�2	 �4

4r2 + �
0

	

a0b0�1 + 2r2y2�er2y2
dy


and hence the general solution to Eq. �8b� can be expressed
by the following double integral solution:

b1

1 + 2r2	2 = �3 +
�4

4r2�
0

	 4r2e−r2z2

�1 + 2r2z2�2dz

+ �
0

	 4r2e−r2z2

�1 + 2r2z2�2�
0

z

a0b0�1 + 2r2y2�er2y2
dydz ,

�B1�

where �3 is the integration constant. It is useful to define

Q�z� =
4e−z2

�1 + 2z2�2 , P�z� = �1 + 2z2�ez2
, �B2�

so that the solution can be written as

b1

1 + 2r2	2 = �3 +
�4

4r2�
0

	

r2Q�rz�dz

+ �
0

	

r2Q�rz�	�
0

z

a0b0P�ry�dy
dz .

Applying integration by parts to the double integral yields

b1

1 + 2r2	2 = �3 + �
0

	

r2Q�rz�dz�
0

	

a0b0P�rz�dz

+
�4

4r2�
0

	

r2Q�rz�dz

− �
0

	

a0b0P�rz��
0

z

r2Q�ry�dydz .

Finally using the result

�
0

	

rQ�rz�dz = S�r	�, where S�z� = �� erf�z� +
2z

P�z�

the general solution to Eq. �8b� can be expressed in terms of
two single integrals as

b1

1 + 2r2	2 = �3 + rS�r	�	 �4

4r2 + �
0

	

a0b0P�rz�dz

− �

0

	

a0b0P�rz�rS�rz�dz . �B3�

APPENDIX C: ASYMPTOTIC SOLUTIONS

The asymptotic behavior of �A and �B in the limit r→0
will be considered here. For convenience we write

�A = 2N1 −
2

1 − r2N2, �B = 2r2N1 −
2r2

r2 − 1
N3, �C1�

where

N1 = �
0

	

za0b0dz, N2 = �
0

	

a0b0zdz, N3 = �
0

	

b0a0zdz .

Using integration by parts N3�a0b0− �
4 −N2, so that N1 and

N2 are the only terms that cannot be represented analytically.
We shall now obtain the asymptotic limits of N1 and N2 as

r→0 in an inner region, �r	�
1, and in an outer region,
�	��1. In the inner region, both r and �r	� are considered as
small quantities so that b0 and b0	 can be replaced by their
Taylor series approximations while the full solution for a0 is
kept. These yield the following inner solutions:

N1
in =

�

16
�1 + �4	2 − 2�a0 + 2	a0	�

+
�r

6�
�1 + 2��	3a0 + ��a0	� + O�r3� ,

N2
in =

�r

2�
�1 + 2��	a0 + ��	a0	�

−
�r3

6�
�1 + 2��	3a0 + ���1 + 	2�a0	� + O�r5� ,

where the superscript in is used to denote the inner solutions
which are valid when r
1 for �r	�
1.

In the outer region �	� is large, but �r	� is assumed order
unity so that a0 becomes a constant and the full solutions for
b0 and b0	 are kept. If 	�0 then a0 can be treated as zero so
that there are no further cumulative contributions to N1 and
N2 and the functions tend to the constants,

N1+
out = �

1 + G�r�
16

, N2+
out =

�

2�
tan−1�r� , �C2�

where the superscript out is used to denote the outer solu-
tions and the subscript + denotes that this is for 	�0. If 	
�0 then a0 can be treated as unity as the corrections are
exponentially small in 	. Thus we can analytically obtain

N1−
out = �

2 + r2�G�r� − 1�
16r2 +

	b0	

4r2 +
2r2	2 − 1

4r2 b0,

�C3a�
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N2−
out = b0 +

�

2�
tan−1�r� −

�

2
, �C3b�

where the subscript − denotes that this is for 	�0.

APPENDIX D: EQUIVALENT SPECIES

If all three species have the same diffusive rate then this
problem can be simplified. By setting s=r=1 and defining
u=a+c and v=b+c, then the quantities u and v satisfy the
nonreactive equations. Further, u and v satisfy the far field
boundary conditions of a and b, respectively. Thus u�a0
and v�b0. Returning to the concentrations a, b, and c, one
can write

a = a0 − c, b = b0 − c . �D1�

Thus, in the small-time expansion, one obtains the identities
a1=b1=−c1. It is useful to note that the first-order solutions
in Eq. �21� can be simplified when r=s=1 to

a1 = b1 = − c1 = a0b0�1

2
+ 2	2 − 2	4�

+ b0	�1 − 2	2��		a0 −
1

2

 +

1

4
a0	�

+ �1 + 2	2�	2�
0

	

a0b0zdz −
�

4�
−

�

8
 . �D2�

However, this solution still involves an integral.
For convenience in this appendix R is used to denote the

dimensionless reaction rate ab. Up to first order, the reaction
rate is given by

R = ab � �a0 + ta1��b0 + tb1� � a0b0 + �a1b0 + a0b1�t ,

which can be simplified, using Eq. �D2�, to yield

R � a0b0 − c1�a0 + b0�t �D3�

as r=s=1. Recalling that Eq. �10� yields �m=0 when r=1
means that in this limit the zeroth-order solution predicts that
the location of the maximum reaction rate is at xm=0. Using
c1��5+�6	 near 	=0 we can expand R in small 	 to yield

R �
�

4
−

� + 1

2�
�t +

1 − �

2�
�t	 −

�

�
	2 + O�t	2,	4� ,

�D4�

which is an explicit version of Eq. �27� in �19�. With 	 and t
both small and of the same order, one finds that R has a local
maximum at

xm =
1 − �

2��
t3/2, �D5�

where the time scaling of t3/2 was previously determined in
Eq. �28� in �19�. In dimensional quantities one obtains

Xm =
Â0 − B̂0

2��
k�DT3/2,

where D=Da=Db since r=1, which reveals that the initial
speed of the reaction front is proportional to the kinetic con-
stant k.

Returning to Eq. �D1�, in the small-time expansion, one
can obtain the second set of identities a2=b2=−c2. Then by
additionally taking �=1, corresponding to equal initial con-
centrations of A and B, so that a0+b0�1, the reactive source
term in Eq. �D3� reduces to R�a0b0−c1t. The resulting sys-
tem of second-order equations in Eq. �9� is then fully de-
scribed by the single equation

2c2 −
	c2	

2
=

c2		

4
− c1. �D6�

The far field boundary conditions are then

c2 → 0 as �	� → − � and c2 → 0 as �	� → � .

An integral solution for c2 could also be obtained as before,
however, now the integral involves the first-order solution c1
and so it is difficult to analytically determine the associated
integration constants that must satisfy the far field condi-
tions. Thus such a solution will not be presented here, but
instead integral measures of the solution for c2 will be ob-
tained.

Let us define

J� = − �
−�

�

	�c1d	 �D7�

again where � is a non-negative integer. Setting r=s=�=1 in
Eqs. �28�, �30�, and �32� allows the evaluation of I� and J� to
yield

I0 =
1

�2�
, I1 = 0, I2 =

5

12�2�
,

J0 = −
2

3�2�
, J1 = 0, J2 = −

3

10�2�
.

Using these results allows one to obtain

�
−�

�

Rdx � 2�t�I0 + J0t� =
�2t
��

	1 −
2t

3

 ,

�
−�

�

xRdx � 4t�I1 + J1t� = 0,

�
−�

�

x2Rdx � 8t3/2�I2 + J2t� =
�2t3/2

��
	5

3
−

6t

5

 .

Hence, to first order, the small-time asymptotic reaction rate
scales with �t, the reaction front is stationary, and a measure
of the reaction front width, wf, to first order is given by
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wf
2 =

�
−�

�

x2Rdx

�
−�

�

Rdx

�
5t −

18t2

5

3 − 2t
�

5

3
t −

4t2

45
.

Hence, expanding wf in small-time yields

wf ��5t

3
	1 −

2t

75

 , �D8�

which is found to be in excellent agreement with, a numeri-
cally obtained, reaction front width for small times t�0.1,
not illustrated.

Not only can the reaction front be analyzed but also the
product. First, in this special case �5= 1

2� and �6=0 so that
c �x=0� t

2� with cx �x=0�0, which means that the maximum
concentration of C is at x=0 and this value initially increases
linearly with time.

Integrating Eq. �D6� over plus and minus infinities with
the weight functions 1, 	, and 	2, using integration by parts,
yields

�
−�

�

c2d	 =
2

5
J0 = −

4

15�2�
, �D9a�

�
−�

�

	c2d	 =
1

3
J1 = 0, �D9b�

�
−�

�

	2c2d	 =
2

35
J0 +

2

7
J2 = −

13

105�2�
. �D9c�

Recalling that c= tc1+ t2c2, Eq. �D9� allows the following
analytical results to be stated:

�
−�

�

cdx = 2�t�
−�

�

cd	 �
2�2

3��
t3/2 −

4�2

15��
t5/2,

�
−�

�

xcdx = 4t�
−�

�

	cd	 � 0,

�
−�

�

x2cdx = 8t3/2�
−�

�

	2cd	 �
6�2

5��
t5/2 −

52�2

105��
t7/2.

The position of the center of mass of the product concentra-
tion distribution is stationary at x=0 and a measure of the
width of C, wc, to first order is given by

wc
2 =

�
−�

�

x2cdx

�
−�

�

cdx

�
9t −

26

7
t2

5 − 2t
�

9

5
t −

4t2

175
.

Hence, we can expand wc in small time to yield

wc � 3� t

5
	1 −

2t

315

 �D10�

so that not only do both wc and wf scale with �t but also their
magnitudes are of very similar orders and further both have
small negative correction terms.
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