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It is commonly accepted that reaction-diffusion equations cannot be obtained by a Lagrangian field theory.
Guided by the well known connection between quantum and diffusion equations, we implement here a La-
grangian approach valid for totally general nonlinear reacting-diffusing systems which allows the definition of
global conserved observables derived using Nother’s theorem.
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I. INTRODUCTION

The quantitative understanding of growth and form in na-
ture, and in particular in complex living beings, interested
scientists dating back to classical Darcy Thompson’s mono-
graph [1]. Animal growth (morphogenesis) presents a variety
of coat patterns which seem to have typical regularities.
Some chemical or hydrodynamical systems too can present
complex structured dynamical or stationary regimes [2].
Similar highly regular geometrical patterns appear in differ-
ent natural contexts, repeated at different spatial scales, sug-
gesting a multiscale behavior. A typical example of this phe-
nomenology is the spherical form, which appears both on a
neutron star but also, at much smaller scale, on a water
bubble. In the realm of regular patterns, however, the most
impressive and mysterious form is the spiral. In space in fact
there are many spiral galaxies but also on our planet’s sur-
face spirals occur as gaseous eddies. At much smaller scale
some biological populations of fungi and amoebae (as the
Dictyostelium Discoideum) organize themselves in spiraling
structures. In the whole heart or in cardiac cell cultures, spi-
ral waves of electrical activity are experimentally observed
on the tissue’s surface. The motion of the spiral tip or fila-
ment (which is the singular organizing center [3] of the
spiral/scroll wave regime) seems to be associated with life-
threatening arrhythmias. A similar phenomenology is en-
countered also in the brain and is associated with epilepsy
but also retina can support spiral wave patterns [4]. Spiral
waves appear spontaneously in growing crystals [5] and in
specific chemical reactions such as the classical
Zhabotinsky-Belousov one [3]. Finally, in plant morphogen-
esis such a peculiar pattern can occur in a developmental
process which is known as kinetic phyllotaxis [6]. From the
phenomenology reported, the importance of a quantitative
understanding of this complex stringlike [3,7] dynamics is
clear. All these nonlinear dynamical systems can be math-
ematically described successfully by systems of reaction-
diffusion (RD) equations [3]. Turing, more than 50 years
ago, studied the way in which animals develop formulating
an elegant theory for animal coats using RD equations [8]. At
the same time Hodgkin and Huxley proposed their model for
the electrical activity of nerves whose equations are of
reaction-diffusion class. Their article [9] presented the first
mathematical model based on experiments quantitatively de-
scribing a complex biological system. In the same period
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Belousov and later Zhabotinsky posed the experimental basis
for the theory of nonlinear chemical oscillators [3]. Some
years later, Krinsky proposed a similitude between the spread
of excitation in an inhomogeneous chemical medium and the
biological cardiac fibrillation [10]. This important conjecture
opened the way to modern biophysics of excitable media
[11] and computational cardiology [12]. The relevance of
reaction-diffusion theory for explaining all these phenom-
enologies was finally summarized by Prigogine with his pio-
neering theory on self-organizing complex systems [13]. It is
worthwhile to conclude this discussion on the importance of
RD systems stressing that even the Navier-Stokes equations
of viscous hydrodynamics have the mathematical structure of
a system of semilinear reaction-diffusion equations [14].
Reaction-diffusion theory, so manifestly important for many
different areas of science, is still lacking, however, of a La-
grangian formulation based on the least action principle and
Nother’s theorem [15]. Tt is remarkable the point of view of
Feynman in his Feynman Lectures on Gravitation [16] on the
importance of least action principle in nature. He stated that:
“There is apparently no successful theory which is not deriv-
able from a variational principle which starts from a La-
grangian.” In this context, Winfree left in his paper entitled
“A prime number of prime questions about vortex dynamics
in nonlinear media” a question to be addressed: “Is there any
relation to the more recent apparition of linked and knotted
vortex rings in Lagrangian field theory?” [17] (recently it has
been theoretically proposed an analogy between the motion
of the RD vortex lines and those of cosmic strings in a
curved universe [18]). In this paper we shall present a gen-
eral Lagrangian theory for reaction-diffusion. To this aim we
shall mix classical and quantum elements of Lagrangian field
theory in order to define possible counterparts of quantum
conserved quantities for reacting-diffusing systems. More in
detail, our analysis is organized as follows. In Sec. II we start
studying the nonlinear Schrodinger equation, which at imagi-
nary time (i.e., Wick’s rotated) can be shown to describe a
reaction-diffusion process. In Sec. III we apply the Lagrang-
ian field theory reviewed in Appendix B on quantum prob-
lems while in Sec. IV we frame the RD theory in the least
action principle context. For the most interesting two
reacting-diffusing variables case (the prototype of any more
general RD systems) the total energy, momentum, and angu-
lar momentum are derived theoretically via Nother’s theorem
in general and confirmed numerically in the specific case of
FitzHugh-Nagumo (FHN) [3] theory. We conclude showing
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that also Burger’s equation of one-dimensional (1D) hydro-
dynamics, as well as diffusion processes with an advection
term, can be obtained by a Lagrangian formulation. Finally,
in Sec. V physical implications and future perspectives of
our formulation are presented.

II. QUANTUM SYSTEMS AND REACTION-DIFFUSION
EQUATIONS

In this section we start our analysis presenting a short
review of nonlinear quantum mechanics, establishing then a
connection of the imaginary time problem with reaction-
diffusion equations.

A. Nonlinear Schrodinger equation

Nonlinear Schrédinger equations (NLSE) appear in many
contexts of physics ranging from nonlinear optics to super-
fluidity and superconductors. While quantum mechanics of
many bodies is a complicated theory on phase space, in
many physical situations, such as a gas of bosons in the same
quantum state as an example, one can use, in a first approxi-
mation, a unique self-interacting wave function of physical
space (a mean-field approximation) [19,20]. In general the
nonlinear terms may have complicated functional forms, al-
though usually one considers what is known as “normal
form,” i.e., a typical polynomial behavior close to a critical
point associated with a bifurcation [21]. In this section we
shall review specifically equation

J
L = TP (Ve Wy glgfy ()
at  2m
(V is standard gradient operator) which manifests a global
U(1) phase invariance. Introducing the real and imaginary
parts y=A+iB, Eq. (1) splits into

JB f 1

— =+ —V?A - —[VA - WB+ gA(A% + BY)],

ot 2m ﬁ[ gA( )]

JA f 1
—=——V?B+—[VB+WA+gB(A’+B%], (2
ot 2m fi

which is a system of two coupled nonlinear partial differen-
tial equations (PDEs). When g=0 one obtains standard quan-
tum mechanics with a real potential V=V(z,¥) while the
complex one W=W(z,x) is introduced to take into account
the possible creation and destruction of particles in scattering
absorption processes of nuclear, atomic, and molecular phys-
ics [22]. In this case in particular the Hamiltonian of the
problem is non-Hermitian and violates the probability con-
servation. On the other hand, if W=0 but g # 0 one obtains
the Gross-Pitaevskii (GP) equation for the order parameter of
a Bose-Einstein condensate (BEC) [23]. More in detail one
has g=(4mh?a/m) where a is the two-body correlation
length, m is the single atom mass in the condensate, and for
a potential one can choose V=3mQ? 7> with Q) being the
angular frequency of the atomic trap [24]. We point out that
in general the quantity g could be a function of space and
time. In linear Hermitian quantum context, the interpretation
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of i as a probability density requires [|¢4?d°x=1 while in the
GP nonlinear case we have [|#{’d®x=N, with N being the
fixed mean number of boson gas particles [25]. These con-
siderations can still be generalized for W# 0. An example is
represented by the dynamics of bright and dark solitons in
BECs with the time-dependent interatomic interaction in an
expulsive parabolic and complex potential [26]. If one
chooses W=0 and V=0 (o being constant) and replaces
—ihV ——ihV—e/cA (where A is the vector potential, ¢ is
the speed of light, and e is the electric charge), requiring
stationarity (time-dependent cases are more delicate to be
handled [27]) one gets the standard Ginzburg-Landau theory
for superconductivity (again  is the complex order param-
eter) [20,28]. Finally when V,W and g are all complex num-
bers one obtains the more the general complex Ginzburg-
Landau theory [29]. We conclude this review stressing that
linear and nonlinear Schrodinger equations share a common
important feature: they have variational formulations based
on Lagrangians or energy functionals [30-32]. It is useful to
notice now the well known strict relation between diffusion
equation and linear Schrodinger equations when the time pa-
rameter is allowed to be imaginary [33] as done in diffusion
quantum Monte Carlo methods as an example [34]. The con-
nection with a diffusion equation can be easily obtained by
Wick-rotating Schrodinger equation, i.e., replacing t— —i7.
A time-dependent analytic example illustrates this useful
transformation. Starting in fact from the simplest linear free
case of Eq. (1), i.e.,

ap 1
h— = —(=ih V)¢, 3
th= = (V)Y 3)
on the one-dimensional domain x € [0, L] a possible analytic
solution is [35]

+00

2 .
i) =a| 7 2 [sinlkx)e e - KP2%] - (4)
n=1

with k,=7mn/L and wnz(%)kn. Here o and K are usual

constant parameters of Gaussian wave packets while a is
computed by normalization condition. Simple manipulations
show that the Wick-rotated equation (now a diffusion equa-
tion)

oy _ R
ar  2m

# V2 (5)

admits solution in one dimension [Eq. (4)] replacing ¢ by —i.
The equation for ¢ instead describes an antidiffusion pro-
cess (negative diffusion coefficient associated with a process
diffusing backward in time). Solution (4) has a wave behav-
ior bouncing between the ends indefinitely, while its Wick-
rotated version, solution of Eq. (5), dies off in time.

B. Reaction-diffusion theory

We extend now to Eq. (1) the Wick rotation procedure
obtaining consequently the nonlinear equation
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d 1
ﬁ—lﬁ=%(ﬁV)zzﬁ—(VHW)lﬂ—gWV‘ﬂ’ (6)

which will be easily shown to be a reaction-diffusion system
whose prototype is presented and discussed in Appendix A.
To this aim, posing y=A+iB in Eq. (6) and equating to zero
separately the real and imaginary parts, respectively, we ob-
tain

A h

—=—VA- —[VA WB + gA(A” + B?)],

or 2m

0B h

—=—V’B- —[VB + WA + gB(A% + B?)], (7)
or 2m

which clearly is a RD system of PDEs of form (Al). We
point out that the associated diffusion coefficient D=% is
the same for both morphogenes, so Turing instability cannot
occur. In general the potentials V and W depend on space and
time so that solutions of Egs. (1) and (A1) can be obtained
numerically only, due to the heterogeneities and nonlineari-
ties, although for selected cases (typically one dimensional)
one can adopt generation techniques of mathematical physics
for nonlinear PDEs in search of exact solutions [36]. We now
explore possible Lagrangian links between quantum mechan-
ics and reaction-diffusion theory. To this aim we have given
in Appendix B a short review of classical Lagrangian field
theory stressing in particular the “caveats” underlying the
demonstrations. We apply in the next section these tech-
niques to usual linear and nonlinear quantum mechanics in
order to perform then a direct parallel with diffusive prob-
lems.

III. LAGRANGIAN QUANTUM MECHANICS

We start from the real Lagrangian density [30,31]

LY
;f t/f—l/j) YV (8)

(Vl//) Vi) - (
connected to the action by L= [dt[Ld>x. This quantity, once
inserted in Euler-Lagrange (EL) equations (B5), assuming
da=(1, ") as an O(2) symmetric set of quantities to be
varied independently [15], leads to Schrodinger equation (1)
with W=g=0 and to its complex conjugate. We stress here
that this operation commonly presented in every quantum
textbook is justified only by the fact that the Lagrangian
density, only apparently complex, is real instead as simple
manipulations performed replacing $=A+iB can easily
show. While the canonical momenta are = ac/a{p
=+if/2¢* and 7 =9L/ )y =—ifi/2¢ (dot here and in the
following stands for derivative with respect to time coordi-

nate 7), the canonical energy-momentum tensor given by Eq.
(B23) is

Lo 9Ly
VAl oxt) ax¥ A9 axt) ax”

9)

These differential relations must be integrated in space to
possibly obtain global conserved physical quantities. If V is
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not invariant under time and/or space translations and rota-
tions, then this leads to more general Lagrangian densities in
which coordinates are explicitly present. This makes the
whole Lagrangian not invariant under translations (or rota-
tions) which requires nontrivial formulations as discussed in
Ref. [37], in particular in relation with Nother’s theorem
where certain conservation laws cannot hold anymore. Com-
ing back to Eq. (9), the component Tg=H
=h2/(2m)V 'V ¢+ " Vi is the Hamiltonian density (the en-
ergy density), which is independent of time derivatives mak-
ing the Hamiltonian formulation of Schrédinger Lagrangian
relevant in the static case only (or if the field is quantized)
[38], so that we shall not adopt a Hamiltonian point of view
in this paper (the diffusion problem shall present similar
problems). The other components of 7% describe the momen-
tum density, i.e., P;=-T=A/(2i)('V -V "), the en-
ergy flux S'=T)=~#2/(2m)(*V i+ 4V ), and the remain-
ing 3 X3 matrix the stress strains. The three-dimensional
angular-momentum vector is finally given by Eq. (B28), i.e.,
J"=L" with L=(My;, M, M,,). Explicitly for the z compo-
nent (similar relations hold for L, and L,) defining I:z
=—ifi(xd,—yd,) we can write '

L0V f WLy gLy

. — f d®x Re(f'L,1h)

(10)

(here QM stands for quantum mechanics) but the real part
notation can be removed because iz is a quantum observable

(a Hermitian operator) whose expectation value [ d3x(¢*£zw)
is real [39]. Regarding the internal symmetries we can easily
see that the Lagrangian density in exam is invariant under
the global phase field transformation [a U(1) symmetry] and
its linearization ¢ —e®y=(1+ie)y and " —e =y
=(1-ie)y which means in Eq. (B29) that \;;=—N\y=1
while the off-diagonal terms of N, vanish. Inserting these
relations in Eq. (B31) one easily obtains the integrated prob-
ability conservation condition, i.e.,

o dx l//¢=—f Exo (P~ Yy

Ef dS,(f Sy — Py ). (11)
B

If the argument in the surface term vanishes on the boundary
then the N&ther’s charge Q=[dxyn)* remains constant in
time. Similar arguments on boundary terms on the conserva-
tion laws can be applied to the previously defined global
quantities in order to ensure their conservation. We can now
move to the nonlinear quantum problem: adding to Lagrang-
ian density (8) the interaction term

AL=—if' Wip—112g47 ()’ (12)

and inserting again in EL equations (B5) one gets exactly Eq.
(1). The energy density becomes Tg:ﬁz/ Cm)VV
+ i (V+iW)p+1/2gy2(*)* while the momentum density
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and energy fluxes are unchanged but the stress-strain terms
on the other hand do not.

IV. LAGRANGIAN REACTION-DIFFUSION THEORY

It would appear natural now to Wick rotate Eq. (8) obtain-
ing, after addition of the nonlinear term in Eq. (12),

h? h -
tum o wien -2 w2y - vpeac.
m 2 ar ar

(13)

Inserting this relation into Eq. (B5) with 7 renamed by 7, we
immediately obtain a diffusion-type equation (5) once we set
V=0 and AL=0 together with an antidiffusion one for ".
Unfortunately, such a result appears to be purely accidental.
Our variables ¢ and ¢ are complex and substitution =A
+iB and "=A—iB leads to a complex Lagrangian whose
space derivatives belong to its real part while the temporal
ones to the imaginary [we can stress that the quantum La-
grangian given by Eq. (8) on the other hand is real in terms
of A and B functions]. Complex actions are very common in
quantum mechanics and especially in quantum field theory
where they play a central role in pair creation rates [40], but
their presence can pose serious problems of consistency from
the point of view of classical field theory. In fact, as pointed
out by Weinberg in his Foundations of Quantum Field
Theory monograph [41], a complex action for N field vari-
ables, once inserted into EL equations, gives a set of 2N
relations because the real and imaginary parts of EL equa-
tions must be equated to zero independently. This overdeter-
mination of the problem in general justifies the use of real
Lagrangians only, although in some very specific cases the
2N relations could be dependent reducing the problem to N
relations. In our case using a little bit of algebra it is clear
that the four field equations obtained, in order to be compat-
ible, require 9,A=0 and ¢,B=0 (staticity). Similar results can
be obtained including nonlinear terms considering Eq. (6).
We can conclude then that our relation of NLSE with RD
systems is only a fortuitous mathematical correspondence to
eventually draw analogies between quantum and chemical
systems. Probably this result is intimately related to the fact
that in quantum mechanics one has a real Lagrangian and,
moreover, that it is usually stated (as we did) that the fields ¢
and " must be treated as independent, which is not com-
pletely true because the dynamics of ¢ is simply obtained
computing ¢ and operating complex conjugation. On the
other hand, the real and imaginary parts of ¢ give two inde-
pendent degrees of freedom which together with the real La-
grangian density make the quantum problem well deter-
mined. In any case the Wick’s rotated Lagrangian in Eq. (13)
is still giving us a strong useful suggestion to reach our final
goal of a Lagrangian theory of reaction-diffusion because of
its specific mathematical form. It is commonly encountered
in the literature in fact the statement that “linear heat diffu-
sion does not admit a Lagrangian density” (see as an ex-
ample Ref. [42]). While this point of view is correct if one
allows a Lagrangian density depending on the diffusing field
only, on the other hand, by introducing an auxiliary field and
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defining then a Lagrangian similar to Eq. (13), Morse and
Feshbach (MF) in their classical monograph on Mathemati-
cal Methods for Physics [43] (see also Ref. [44]) obtained a
Lagrangian variational version for the linear (only) diffusive
problem. Shortly, in that context their variables were two
independent real fields ¢; and i, [while after Wick’s rotation
our fields in Eq. (13) remained complex]. Comparing with
our Wick-rotated Lagrangian in Eq. (13) one should simply
replace ¢— ¢y, and " — ), together with A—1 and
1/(2m)— D (D is the diffusion coefficient) in order to obtain
the linear diffusion equation following the MF formulation
(the original MF notation of a star to denote a real field and
not complex conjugation was very unfortunate). After substi-
tution in EL equations (B5), ¢, shall satisfy a diffusion equa-
tion and the other real field ¢, an antidiffusion one, as ex-
plicitly shown in detail later in our discussion. MF computed
also the physical observables associated with the energy mo-
mentum tensor. The energy density results into H
=DV, Vi, and similarly the energy flux vector &'

=—(J, Vi + i,V ;) together with the momentum density
vector P;=1/2(, Vi — i, Vif,) (but not the angular mo-
mentum) were easily computed. The great problem pointed
out by MF was the physical interpretation of the variable i,
which “diffuses backward in time” leading to the apparently
“cryptic” statement that one has here a process in which the
field ¢ loses energy which is gained by the field #,. More-
over, MF analysis lacked of an important remark: due to the
fact that the field #, has no physical content (it is an auxil-
iary field not referring to any physical experiment), it should
disappear from any measurable quantity. It is clear that in
order to proceed toward the definition of physical observ-
ables for RD systems we must solve this problem of physical
consistency and this task is accomplished in fact in the next
pages. We point out, moreover, that unfortunately backward
diffusion (or heat) equation leads to an “ill-posed” math-
ematical problem [45,46] as discussed in detail in Appendix
C. On the other hand, the fact that a problem is ill posed is
not so dramatic as it could appear at a first glance. Ill-posed
diffusion equations arise in a variety of applications includ-
ing computer vision, population dynamics, and granular flow
physics as examples [47]. Diffusive processes which do not
respect Fick’s law are encountered in biology in chemotaxis,
i.e., a process in which diffusion is directed up to points of
high concentration (an anti-Fickian behavior in fact). While
diffusion is a sort of stabilizing process, chemotaxis is gen-
erally destabilizing acting as a negative diffusion [2]. In the
retrograde heat problem analyzed in detail in Eq. (CI) of
Appendix C, one of the three Hadamard requirements (exis-
tence, uniqueness, and stability) required to have a well
posed problem is not satisfied: even the constant solution is
unstable in fact. Stability here means that, because boundary
data are obtained though measurements (so have certain error
margins), a small measurement error must not change the
solution drastically [48]. If the antidiffusing field, however,
does not interact with the physical world (it is an auxiliary
variable), there is no reason why one should care about pos-
sible measurements error which make the instability growth.
So we shall assume that the constant antidiffusing solution is
acceptable and shall derive then observable quantities which
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will be independent from any antidiffusing fields. To this aim
we notice that our nonlinear Wick-rotated Lagrangian in Eq.
(13) suggests us the necessity to generalize MF procedure to
nonlinear systems of many variables leading naturally to the
Lagrangian theory of reaction-diffusion and obtaining the
counterparts of the observable quantities previously derived
in the quantum case.

A. Linear diffusion problem

Following MF, let us start with Lagrangian density for the
two real valued fields ¢, and i,

i

ot ) + G(‘ﬂl? I//2)

(14)

J
Lyr=-DV) (Vi) - (wz Ny,

Removing for the sake of simplicity the interaction term
G(i, 1) in Eq. (14) first (which gives the original MF La-
grangian), arranging the variables into a real vector ¢,
=(i;,¢,), and inserting into EL equations (B5) we obtain as
anticipated the field equations

It
ot

d
=DV2y, % =— DV, (15)

The canonical momenta are given by = L1 gy

=—1/24 and m=L/ I =+1/24), similarly to the quan-
tum case previously analyzed (which suggests to us in ad-
vance that a time-dependent Hamiltonian formulation of the
problem shall not be possible). As anticipated, in order to
avoid a physical interpretation of these additional fields dif-
fusing backward in time (and leading to the ill-posed prob-
lem previously discussed), we recall that a fundamental re-
quirement must be that the presence of the auxiliary field ¢,
must not appear in any observable quantity. If we assume
that the auxiliary field ¢, is a constant C at =0 in entire
space domain, imposing constant Dirichlet boundary condi-
tions ¢, =C for the antidiffusion equation, quantity i, shall
remain constant at any time then: we have found a trivial
constant solution of the ill-posed retrograde heat problem. In
this way we are dealing with the diffusion equation for ¢,
only. A simple inspection shows that such a constant solution
for ¢, leads to a vanishing action integral for the stationary
problem. One may question on this apparently inconsistent
result which does not hold to any problem however. In quan-
tum field theory in fact (and in particular in instanton phys-
ics), vacuum is defined as a configuration with vanishing
action and typically results in a constant field [15,20,49]. On
the other hand, the simple wave equation

Fu Fu

—-—=0 16
it ox? (16)

derived from the action integral

fafal G- o

following the variational procedure described in Appendix B
has plane-wave solutions u=u, exp(ikx+iwt) which satisfy
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D’ Alembert equation if w=+k and at the same time cause the
action to vanish identically. Similar results hold for any so-
lutions of the form u=f(x+1) or u=g(x—1). The fact that the
action integral S is zero for such a solution of EL equations is
not a pathologic behavior which could invalidate the varia-
tional procedure (see as an example the discussion on the
value of the action in Ref. [50] on p. 71). We still have to fix
the problem of possible observable effects of the constant
field 4, on the physical quantities obtained from 7% and the
angular-momentum tensor. The solution here is simple again:
the Lagrangian density can be defined up to a constant mul-

tiplicative factor K, i.e., L— L=KL. While the field equa-
tions get unchanged in this case, energy momentum tensor
T and angular-momentum tensor A, (see Appendix B)
acquire a multiplicative factor K which can be wisely chosen
to eliminate the constant quantity ¢, from the observables.
We shall develop explicitly such a procedure in a more gen-
eral case of two reacting and diffusing fields in the next
sections pointing out that the procedure easily generalizes to
more than two species. We can now proceed beyond Morse
and Feshbach analysis of the linear diffusion problem con-

sidering now the nonlinear term in our Lagrangian density in
Eq. (14).

B. Nonlinear diffusion problem

Adopting the ansatz G(i,, ) =F (i) (,—C) in Eq. (14),
where C is an arbitrary constant, we obtain from EL equa-
tions (B5):

P
= DV + (),
o JF ()
P DV=y, + i —(C-1). (18)

Again the choices ¢, =C on the entire domain at =0 and
Dirichlet boundary condition for , everywhere equal to C
produce a constant solution ¢,=C valid for any time for the
antidiffusion equation. As an example, selecting F= k(i
—ay)(a,— ) where k, a;, and a, are constant parameters we
obtain the bistable equation [51].

C. Nonlinear two variables reaction-diffusion problem

We pass now to study the case of two diffusing species.
Denoting with an odd suffix the physical real field and with
an even one the auxiliary ones, we define the following La-
grangian density:

L==D(Vip) (Vi) - Dz(Vl//4)(V‘/f3)__< o l//]ﬂa_lfz)

J J
( L %%) + H(, )

X(hy = Cy). (19)

This quantity, once inserted into EL equations (B5) and de-
fining the real vector ¢,= (4, ¥, ¥, ¥,), gives

S(, ) (- Cy) = =
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‘?a_‘? =DVt j—z(cl — )+ ;;—‘IZ(C2 — ).

aa_l? =DV + j—;(cl — )+ j—Z(C2 — ).
%?:mW%+M%M&
%f:mww+mwwﬁ (20)

where the first two equations are antidiffusion ones, while
the remaining ones are the prototype of RD equations of
form (Al). As an example, one can apply this machinery to
the FHN theory [51] which is a generalization of the bistable
equation just discussed given by

S, ) = ki (Y — ay)ay = ) = ¥,
H(y,4n) = mipy + O + ¢, (21)

where 7, 6, and { are real constants. Moreover, one can
easily set the diffusion coefficient of one of the two species
equal to zero, obtaining also a local dynamics typical of elec-
trophysiological models. We point out that for two RD spe-
cies, a well known definition of the phase is given by [52]
tan O(z,X)=i(t,%)/ ,(¢,X) where the singular points are
those where ¢, and ¢; vanish. One can define the index of a
curve as the integral 27/ =¢VO.-dl: if the curve does not
enclose any singular points, then / is zero. Introducing the
variable change ;=R cos(®) and ¢5=R sin(®) (and simi-
larly for the auxiliary fields) into Lagrangian density (20)
one may reformulate the Lagrangian problem in terms of the
variables modulus and phase. We leave this analysis to future
works [53], however, coming back to our problem (20). As
discussed before, we require a constant solution =y
=C,=C, (on the domain and on the boundaries) and multi-
ply the whole Lagrangian density (19) by a common factor
K=2/Cy leaving the field equations unaltered and eliminat-
ing the presence of the auxiliary fields from the observables
given by Nother’s theorem.

D. Observables

In this section we shall explicitly derive the Lagrangian
observables for the two variable RD system prototype given
by Eq. (20), although the one variable case only can be easily
obtained setting ;=0 (we recall that we shall assume con-
stant in space and time solutions #, and ). Using the res-

caled Lagrangian L previously discussed, from the energy-
momentum density tensor in Egs. (B22) and (B24) we get

T0=K(D,V iy V by + D,V 4 V )
- K[S(r - C)) +H(¢py, — Cy)], (22)

which in our case is identically zero so that, following stan-
dard interpretation of the components of the 7% tensor, one
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has a zero total energy Py=E=[d*xH = [d*xTj=0. More
drastically than in the quantum case, here a Hamiltonian for-
mulation of the problem does not exist at all. Vanishing
Hamiltonian densities H naturally arise in the context of
Hamiltonian classical and quantum gravity [54] so that we
can analogously say that diffusing systems have zero energy.
A simple check shows that the energy flux vector too

S'==KD(y V b+ 1V i) = KDy (43 V by + 4y V 1)
(23)

vanishes which is consistent with the vanishing of the energy
density previously demonstrated. This result seems to con-
trast with standard literature on heat equation however. As
anticipated, in thermodynamics it is well known that the heat
equation for the temperature 7 can be derived from balance
laws [55] obtaining in the one-dimensional case pcT,=kd-T,
where in the simplest scenario c is the constant specific heat
per unit mass, p is the constant material density, and k is the
constant thermal conductivity. The internal energy density ¢
in solids is well known to be proportional to the temperature,
i.e., e=pcT in absence of work done. In dimensionless form
the heat equation becomes u,=u,, which integrated in space,
exchanging space integral and time derivative leads to

(9 X2 x2
—f udx = f Upedx = u,|2, (24)
gl 1 X1 l

which gives a conservation law if the fluxes get balanced on
the boundaries. A comparison with the relation for the inter-
nal energy density & shows that relation (24) should give a
sort of conservation law for the energy. Heat equation, de-
rived using a phenomenological law (Fick’s law), seems to
lead to a discrepancy with the Lagrangian result (i.e., identi-
cally zero energy density). Such a discrepancy is only appar-
ent, however, because we can show immediately that relation
(24) does not come from time translational invariance but
from an internal symmetry for the linear problem only in-
stead. Let us work with one diffusing species in one dimen-
sion only for the sake of brevity (the same arguments directly
extend to more diffusing species in higher dimensions). The
finite transformations i, —exp(ie)y; and ¢, — exp(—ie) i,
leave unaltered Lagrangian density (14) only in absence of
self-interacting term G(i, y,). After linearization close to
the identity we get the infinitesimal transformations
=(1+ie)y, and ,=(1—ie)y, (e is a constant) and using
formulas (B31) we can easily see that \;;=1 and A,,=—1 so
that (assuming usual #, constant solution)

9 2 d(,4h)
- (’ljza_f dx(//l :—Dll//zf dx;lz_Dldﬁaxzrlfl ﬁz’
; o ox :

(25)

which will be zero, leading to a conserved quantity é
=[dxy, if the gradient d,i, is the same on the boundaries.
Algebraic simplifications together with D=1 give exactly
Eq. (24). The addition of the nonlinear terms as anticipated
causes a loss of the symmetry of the action integral with
respect to the internal transformation just discussed and no
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conservation law is expected to hold anymore. Regarding the
total momentum instead, we work in the simpler one-
dimensional case first obtaining from Eq. (B20) with £ re-

placed by L that

X2
P, = f dxP,

1

K [®
- Ef dx(nd by — P19 + Pud s — Y3 0.4hy)

X1

= f dx(ﬁxwl + ﬁx¢3)

1

= (g + )2, (26)

which shows that the total momentum is surely constant in
time if the functions satisfy constant in time Dirichlet bound-
ary conditions and even vanish if the functions have appro-
priate values on the boundary. We have still to explore the
surface term given by relation (B21) in order to see if our
result is consistent. Explicitly we obtain

s
Hon) P~

and one can easily see that this surely vanishes if the fields
assume constant in time values on the boundaries (their time
derivatives vanish) or if the fields are on the opposite of the
other on each point. This is not an unexpected result because
in classical Lagrangian field theory (see Appendix B), con-
servation laws hold if the boundary terms vanished at infinity
or on the borders. Coming back to our diffusive problem, the
three-dimensional analysis leads to

X1

d
= d_t(l!jl + '/fs)m (27)

X

P,-=fd3xpi5fd3x(f7i¢1+3il//3) (28)

and similar argumentations presented in the 1D case still
hold. In Eq. (B24) in fact, considering Lagrangian (19) mul-
tiplied by 2/C;, for the boundary terms one has T;EO if
Dirichlet boundary conditions constant in time (but not nec-
essarily in space) hold, leading to conservation laws (in two
dimensions integrals must be performed with a two-
dimensional measure). The only delicate point remains to
wisely choose initial data in order to have initial nonvanish-
ing total momentum then. Interestingly if we write the mo-
mentum density ﬁ=ﬁ1 +753 with 73] =V, and 733=Vz//3 we
obtain a physical interpretation of the “mysterious” function
®=max |V, X V| introduced in Ref. [56] in order to lo-
cate spiral’s singular points and filaments. Such a function in
fact is peaked exactly on the spiral tip or on the scroll wave
filament. Here we see that in terms of cross product of mo-
mentum density vectors for the two cross reacting species,
ie., max|731 X 753 , we have that the singular region is where
field momenta density cross product is maximum. Regarding

the angular momentum instead from Eq. (B28), with £ in-
stead of £, we obtain
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K( . - . ) )
7= E d.x(‘lezlpl - lﬁllsz + ¢4lzw3 - ¢3lzw4)
= f d3x[iz(¢1 + )], (29)

with fzzxay— yd, and analogous relations can be worked out
for L, and L, [so that we can summarize saying that for our
diffusive problems the angular-momentum density for the
field ¢, can be written in the more familiar form EA
=[d*x(FX Vi), which is a result quite different from the
quantum case]. Coming back to the L. component, the asso-
ciated boundary term in Eq. (B27) is then —[dS'A,;;,. Insert-
ing our Lagrangian density (19) multiplied by 2/C; and per-
forming a little algebra one can easily see that this term
surely vanishes if the fields do not depend on time on the
boundaries otherwise an angular-momentum variation is ex-
pected. It appears clear then that the only delicate point in
this case is to find then initial data and boundary conditions
with nonvanishing total angular momentum (which is a deli-
cate point in quantum physics too [57]). Using two-
dimensional Green’s theorem on a closed domain 3, intro-
ducing the vector /f:(—yU,xU) where U=U(x,y), we can
write

f (xd,U - yd,U)dxdy = f (V- A)dxdy = § A-dl.
B B aB

(30)

We notice that the vanishing of the total angular momentum
is intimately related or with the divergence free nature of the

field X, or with the behavior of the function U on the bound-
aries. This is not an unexpected result of classical field
theory: in general relativity, as an example, the asymptotic
angular momentum of a stationary black hole in vacuo is a
boundary term too [58]. Clearly in the last step in Eq. (30)

the vector field A is supposed to be smooth enough and 53 to
be an oriented piecewise smooth and simple closed curve, in
order not to violate Green’s theorem hypotheses. In analogy
with L_, corresponding relations for the x and y angular-
momentum components can be easily derived (in two dimen-
sions only the component L, exists). In chemical active me-
dia and electrophysiology usually Neumann zero flux is
adopted leading to time-dependent fields on the boundaries:
in these cases no angular-momentum conservation laws (nor
field momentum) are expected to hold although the noncon-
served Lagrangian observables are still physically meaning-
ful. Clearly the Lagrangian procedure here presented can be
extended to totally general RD models with more than two
variables (Hodgkin-Huxley, Beeler-Reuter, Luo-Rudy [2,51]
models and others), but in absence of space-time-dependent
heterogeneities in the diffusion tensors and/or in the dynam-
ics. In these more involved cases in fact a Lagrangian for-
mulation with explicit dependence of the Lagrangian density
on space and time should be adopted [37], as already dis-
cussed in Sec. IIT in the quantum context. This additional
problem, however, will not be investigated here.
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FIG. 1. (Color online) Case A: spiral waves of variable i, at ¢
=240; notice the Dirichlet boundary condition behavior of the spiral
to be confronted with case B simulations.

E. Numerical analysis

Our results, derived through analytical methods, have
been verified also numerically using the FHN codes de-
scribed in Refs. [59,60]. In Egs. (20) and (21) (antidiffusion
equations vanish identically) we have adopted the dimen-
sionless parameter’s choice: D=1, D,=0 together with «
=1, a;=0.1, a,=1, 5=0.005, 6=0.0125, and {=0. We have
selected then a two-dimensional squared domain centered in
the origin with side length of 80 units. Regarding the initial
data at t=0 we have chosen Gaussian-type functions, i.e.,

(x—10)2+0.5(y - 10)2”

0.5)=2 [
¥1(0.3) = Sexp) - 100

1 (x+10)2+0.5(y + 10)?
3(0,%) = ECXP{— { 100 ] }

1 { {(x— 15)2+0.5(y+5)2H
+ —exp) - .
10 100

Two types of boundary conditions have been selected for the
simulations: the case A adopts constant in time Dirichlet
boundary conditions, where the value of the fields on the
border at any time is exactly the value of the initial data
computed on the boundaries. The case B instead adopts zero
flux Neumann boundary conditions everywhere (i.e., -V,
=0 and 7i-V¢/3=0 where 7 is the unit normal to the bound-
aries). The numerical technique used is finite elements meth-
ods adopting COMSOL MULTIPHYSICS simulation environment
(see [59,60] again for more details). The domain has been
meshed in 10* equal squares of size Ax=0.8, while quadratic
Lagrange elements have been used. A direct parallelized
solver (PARDISO) has been adopted to solve the problem with
absolute and relative errors thresholds of 107°. Finally, the
software optimized the time steps choice for the integrations.
The results of the simulations are the following. For the case
A in Fig. 1 we plot the value of the variable i, at =240
clearly showing spiral waves circulating on the domain. In
Fig. 2 we show instead the value of the total angular momen-
tum L, and of the field momenta P, and P, (a two-
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FIG. 2. Case A: total angular momentum L, and total field mo-
menta P, and P, in time; conservation laws hold for all these
quantities.

dimensional integration has been performed) in time. As an-
ticipated constant in time Dirichlet boundary conditions lead
to conserved quantities. Regarding the case B instead in Fig.
3 we have again a snapshot of ¢ at r=240 while in Fig. 4 we
plot L., P,, and P, in time. In this case it is evident the lack
of conservation laws due to the time dependence of the fields
on the boundaries (we recall again that here we have Neu-
mann zero flux conditions). Although these selected numeri-
cal studies with particular domains, boundary conditions and
initial data have confirmed the conservation laws, a more
detailed numerical analysis of the entire problem will be pre-
sented in future works [53].

F. Hydrodynamics and advection terms

The variational procedure here exposed can be easily ex-
tended to more general reaction-diffusion systems defining
for any diffusing variable a companion auxiliary one to be
manipulated as in the case just discussed. It is important to
notice now that our formulation can describe also semilinear
parabolic differential equations [14] typical of hydrodynam-
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FIG. 3. (Color online) Case B: spiral waves of variable i, at ¢
=240; notice the typical Neumann zero flux boundary condition
behavior of the spirals.

046117-8



LAGRANGIAN FIELD THEORY OF REACTION-DIFFUSION

80
/ +PL /
40 -%-P,

50 100 ¢ 150 200 250

FIG. 4. Case B: total angular momentum L, and total field mo-
menta P, and P, in time; conservation laws do not hold for all these
quantities.

ics and gas dynamics. We shall study here a one-dimensional
case which shall give us the well known Burger’s equation
[61] describing the propagation of simple waves in a con-
tinuous medium with small dissipation. Starting from the hy-
drodynamical Lagrangian density

Ln== ((9}6)( r?x) 2(% Jt i (?f)

—lﬂlébz(a&_lil)’ (31)

we obtain from EL equations (B5) that

d
§?+w@m=+0éw,

d
§%+m¢%=—0é%, (32)

which, requiring the usual constant ¢, solution, gives the
well known Burger’s equation (which is connected to diffu-
sion equation by Hopf-Cole transformation). Although we
could develop a Lagrangian theory for higher dimensional
hydrodynamics and apply Nother’s theorem in search of con-
servation laws for Navier-Stokes equations (as well as for
Burgers equation), we prefer to continue our discussion of
diffusion problem only leaving such a more involved study
to a future publication [53]. We point out that in case of
diffusion equation with an advection term having (external)
constant velocity U, the quantity —¢,ind b in Eq. (31)
should be replaced by —#,0 4,1, and inserted in EL equations
leading to the well known advection-diffusion equation [62].
This case too, however, will be explored in detail in a future
study.

V. CONCLUSIONS

In this paper we have shown that reaction-diffusion theory
can be cast into the Lagrangian field theoretical framework.
Our study has been inspired by the Lagrangian formulation
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of nonrelativistic quantum mechanics connected with the
classical work of Morse and Feshbach on linear diffusion
equation. More in detail, we have successfully solved the
serious conceptual problems present in the latter analysis and
we have implemented then a least action principle procedure
for general RD systems, finally applying Néther’s theorem to
define total angular momentum, field momentum, and en-
ergy. In the discussion presented we have explicitly avoided
studying the problem of the heterogeneities in the dynamics
and in the diffusion tensor. Although it is well known that in
natural systems inhomogeneities and anisotropies are always
present (see [63] for an example in cardiac context), we have
preferred to postpone this study, which requires the use of
Lagrangians depending explicitly on space and eventually on
time, to a future work [53]. We conclude this discussion
remarking that our analysis has brought reaction-diffusion
theory in the framework of fundamental theoretical models,
giving perspectives toward a deeper quantitative understand-
ing of organized structures and patterns in a variety of dif-
ferent complex systems of nature.

APPENDIX A: TURING’S REACTION-DIFFUSION
THEORY

RD equations are mathematical models describing, in
chemistry, the concentration of one or more substances
which locally chemical react, being converted into each
other, and spatially diffuse. In more general biological con-
texts they are associated with Turing’s theory of animal coat
patterns [2] (not necessarily of spiraling form) and with the
propagation of electric signals in excitable tissues [3]. The
prototype of reaction-diffusion equations with two variables
only (the Turing morphogenes) and homogeneous and isotro-
pic diffusion tensors, for the sake of simplicity, is

du

LoDVt flu,),

ol 1\ Vou+ fu,v)

Jd

&—l;=D2V2v+h(u,v), (A1)

where f and & typically (but not always) are polynomials of
u and v, although in some cases an explicit dependence on
time and space may be allowed (heterogeneities). A RD sys-
tem shows diffusion-driven instability (Turing instability) if
the homogeneous state is stable against small perturbations
in absence of diffusion but gets unstable if diffusion is
present. This mechanism determines the spatial pattern. The
necessary conditions for instability obtained using standard
perturbation techniques are [2]

Suth, <0, f,h,—fh,>0, df,+h,>0,

(dfu + hv)2 - 4d(fuhv _fvhu) > 0’ (AZ)

with d=D,/D,. Here the notation f, stands for Jf/du and
similarly for the other derivatives with all these quantities are
computed at the steady state (u,v)=(ug,v,). A well known
result of reaction-diffusion theory is that when D;=D, (or
equivalently d=1), the conditions listed above are never sat-
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isfied and no Turing instability (i.e., steady-state spatially
heterogeneous patterns) arises. Suppressing space variations
in Eq. (A1), one gets a set of ordinary differential equations
whose form depends crucially by f and 4. In some cases the
medium is “excitable,” i.e., the system locally can make a
large excursion in phase space before returning to the resting
state or have a direct fast fall on the rest state: this is a
natural “analogical” two-state switch of interest in neuro-
science [51].

APPENDIX B: A REVIEW OF LAGRANGIAN
FIELD THEORY

We present here a short review of classical field theory
working explicitly in the simplest case of one space coordi-
nate only and giving then the general formulas for the higher
dimensional cases.

1. Euler-Lagrange equations

Let us start considering a scalar field ¢ and work for the
sake of simplicity in one space dimension first in order to
present to the reader not expert in Lagrangian field theory the
necessary procedures to operate with this tool. The action
integral is defined as

=Jdtf dxL(p, ¢, d,),

where ¢, stands for d,¢p and similarly for the spatial compo-
nent (an explicit dependence of £ on time and space is here
neglected although the extension is clearly possible [37]).
Performing a variation of S at fixed boundary (the domain of
definition of the fields does not change) we obtain

L
58S = Jdtfdx(—5¢+ﬁ_¢x§¢x 4,

where only if the field 6¢ and its derivatives vanish suffi-
ciently rapidly on the boundaries [15,31], we can replace
8p,=8(0,)=03,5¢) and 6¢,= 8. p)=0.(5¢p). Then inte-
grating by parts we obtain

J az)

55 = fdfd 9 9k
"\ 94 oxas, atad,

Jal Sgoo) )+ 2go9|
+ | dt a¢x¢x1 + | dx ¢t¢

where the second line terms vanish if the variation in the
field d¢ is assumed to vanish both at initial and final times
and on the boundaries leading to classical EL equations

L 9 L
ap  axag,

If the 8¢ field and its derivatives do not vanish on the bound-
aries the procedure here presented is not valid anymore and
additional terms must be taken into account [64]. The higher

(B1)

5¢;) . (B2)

(B3)

9 L
——=0. (B4)
at d o,
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dimensional cases for several n (treated independently)
fields, i.e., E=£(¢A,6M¢A) with A=1...n, are obtained simi-
larly as in the case just presented. Here and in the following
capital Latin letters label the various fields (multiplets).
Greek letters, on the other hand, range from 0 to 3 and mean
space and time indices. We have adopted here a four-
dimensional notation x*=(x°,x’)=(z,%), which incidentally
coincides with the relativistic formulation (with speed of
light ¢ set equal to 1). On the other hand, lower case Latin
letters range from 1 to 3 and stand for purely spatial indices.
The general EL equations (both valid in relativistic and non-
relativistic contexts) are then [15,31]

aL 9 aL 4 (9[1
— - - =0, A=1.
Iy Ix' (Ipslox') It 5,
i=1...3, (B5)
or in four-dimensional more compact notation
aL d aL
— ———————=0, A=1...n, wu=0...3,
z?(ﬁA ox* C?((?d)A/(?X'LL)
(B6)

where the quantities ¢4, may be columns (multiplets) of sca-
lar, spinor, vector, or tensor independent fields. The concept

f “independent fields” introduced above requires still a
clarification however. In electromagnetism as an example,
starting from the Lagrangian density, it can be shown that
given a vector potential A# the temporal component A° is a
dependent variable not a dynamical one (in Hamiltonian lan-
guage this statement is more clear) leading to subtle compli-
cations [15,31]. This implies that the geometric characteriza-
tion of the fields requires specific attention in the
manipulation of the variational relations. In this paper we
shall study specifically multiplets of real and complex scalar
fields only, whose geometric space-time structure is less
complicated than the one just described.

2. Conservation laws: Infinitesimal space and time translations

We can now approach the problem of conservation laws
for Lagrangian systems. Let us start with infinitesimal space
or time coordinate translation (rotations are excluded for the
moment) first. We shall start analyzing the 1+ I1-dimensional
field theory. Following Refs. [65,66], we suppose to perform
an infinitesimal time translation, i.e., t—f+a (a is a con-
stant) such that the field shall transform infinitesimally for a
close to zero (notice the appearance of a Lie derivative [67]
applied to scalars) as

P(t,x) — Pt + a,x) = P(t,x) + ad,p = P+ 5¢b.

As a consequence of this time translation our Lagrangian
density varies as

(B7)

oL
OL=—5
P (a &) a(a é)

which, using the Euler-Lagrange previously derived Eq.
(B4), leads to

o(d,p) + &d.¢), (BY)
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_<i L 9 IL )
“\oxaa,¢) " ataae) ﬁ(aqs)

* 30 )
NPT
=\36,0 %)t o\ s °?) (B9)

Now S6¢p=ad,¢, so that we get

_{ﬁ< oL ) i( L )] .
Lo a(0,¢)‘9’¢ "o a(ax¢)’9’¢ a. (B10)

On the other hand, the Lagrangian is scalar function so that
its variation gives

oL = %a. (B11)
at
Equating relations (B10) and (B11) we obtain
85 a( oL g L
o’ [5( 3(9,9) ’d’) (a(a ®) ’¢”a’
(B12)
which trivially gives
J { o gp— ] J (i(w) =0. (B13)
atl (o) " (9, 9)
Introducing the energy density [15]
aL
H= a(a,d))&’(ﬁ_ﬁ (B14)
our relation (B13) becomes
T+ i( a,¢>) =0. (B15)
ot ax\ a(d,)

Integrating this relation in a space interval x € [x;,x,], ex-
changing the integral with the derivative, and introducing the

t()tal el’lergy E—fildxH we get

dE f‘z il < L

dr o Yox\ a(9,0) o
which vanishes if the quantity F=a(;_i¢)‘9r¢ is zero on the
boundaries. If the field ¢ and its derivatives go to zero on the
boundary sufficiently rapidly the I" term should vanish too
(for “well behaved” Lagrangians at least) and if this happens
total energy E gets conserved in time. This is the simplest
demonstration of Nother’s theorem: any differentiable sym-
metry of the action of a physical system is associated with a
corresponding conservation law. We stress that if I" does not
satisfy these conditions, conservation law does not hold any-
more. In some field theories conservation laws do not de-
scend from a continuous Lagrangian symmetry but come
from constraints imposed by topological properties instead
(the conserved topological charges) [65]: in our analysis,

X1

i

(B16)
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however, we do not address these more delicate points
(which in quantum field theory are connected with spontane-
ous symmetry breaking, anomalies, and topological charges),
leaving them for future studies [53]. If we would have per-
formed an infinitesimal spatial translation instead of a tem-
poral one, i.e., x—x+b (implying S¢p=bd ) with b being a
constant, the corresponding conservation law procedure,
working as previously shown with formula (B9) for b close

to zero, would have led to
{a( i’ ) a( L
o\ o)\ aae)

This relation together with

a@ﬂb. (B17)

aL
oL=—b

ox

(B18)

finally gives

2 TR
at a(a,@a"‘ﬁ " ox a(ax@a*‘/’_ =0 (BI9)

Integrating in space, introducing the momentum density [15]

P o ded (B20)
)"
such that the total momentum results in P, = [ j?dex we ob-

tain the balance relation

dP, f n g ( oL
X _ dx
dt ), " ox\a(ap)

1

X2

-]

which gives a conserved quantity (i.e., P,) if the right-hand
side of the above relation vanishes. The procedure here de-
rived easily generalizes [31] for higher dimensions and n
independent fields ¢, giving the conservation equations for
the energy-momentum tensor 7, for infinitesimal spatial
and temporal translations x*— x*+[¥, i.e.,

-8 ,U.I/‘C:| »

(B22)

with &#(bA:&(ﬁA/&XME (ﬂqﬁA/&t,—V(]ﬁA) and &M(bA:&(ﬁA/é’x“
=(dpa! 3,V $,), while we recall g, =diag(1,-1,-1,-1) is
the flat space-time metric tensor used to raise and lower in-
dices. It is useful also to give this expression in mixed form,
ie.,

s

Ocp— ll)

(B21)

< L
3(d,)

J aL Jd
=0, Ty=| 0
I paldx,,) Ix"

i aL I

S E— -L&, 9,T"=0,
Y 0(d eyl Ixt) ax” vy

(B23)

which contains covariant derivatives only (&, is the Kro-
necker symbol). The conservation laws just introduced, inte-
grated in space, now read
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d3xTO fd3x— 'E—J‘ as.T.,
B
(B24)

dPV a
dt ot

where divergence theorem has been used and dS; is intended
as the vector equal in magnitude to the area of the surface
element, and normal to the element, or in more common
form dS;=n;d% where n; is the normal to the boundary and
d3, is the surface element. In three dimensions, if T}, is ex-
actly zero beyond a certain distance (or it goes to zero faster
than 1/7? in an infinite space domain) [68], then we can
define the conserved total field energy E=[d xTO and mo-
mentum P;=—] d%xT0 Clearly Egs. (B14) and (B20) are a
particular case of these relations. These are the general ex-
pressions of energy and momentum used in our analysis.
Before concluding, a comment on the common minus sign in
the definition of the field momentum must be given. Al-
though in this paper a Lagrangian theory for a nonrelativistic
problem is derived, we have found appropriate to continue to
use the relativistic Greiner’s monographs notation ([15,31])
ie, P,=(E ,—P). In fact we can still use the treatment of
special relativistic theory even for nonrelativistic actions
which do not have the requirements of Lorentz invariance.
Unfortunately, the signature’s choice with minus signs in the
spatial part in nonrelativistic cases leads to a difference in
sign between covariant and contravariant spatial vectors and
we have to take into account this fact for coherence. Inciden-
tally this choice shall give us for the quantum problem ob-
servables in agreement with the conventions of nonrelativis-
tic solid state physics books (see as an example Ref. [69] on
p. 167). It is important to conclude remarking, however, that
in any case the common sign of energy, momentum, and
angular momentum could be arbitrarily chosen due to the
possibility to multiply the whole Lagrangian up to a constant
factor which does not alter the field equations.

3. Conservation laws: Infinitesimal space and time rotations

One can perform also other types of infinitesimal trans-
formations, i.e., rotations both in time and space (boosts) or
in space only (proper rotations). The necessity to have at
least two space coordinates forces us to skip the simple x and
t scheme previously introduced. The necessary calculations,
however, are quite long, so we summarize here all the rel-
evant points referring to Greiner’s monograph [15] for all the
detailed derivations there performed “step by step.” Given
the infinitesimal rotation x* — x*+ dw*"x (5w’“’ is antisym-
metric) the n fields transform as ¢, — ¢A+25‘”uv(1M Y apPp
where in relativistic contexts the I’s are the infinitesimal gen-
erators of the Lorentz transformations which are antisymmet-
ric operators. The formulation just presented is valid also for
nonrelativistic fields. This is not unexpected: in fact the re-
stricted Lorentz group is generated by ordinary spatial rota-
tions and Lorentz boosts. While we will be interested in the
purely spatial rotations (we are studying a nonrelativistic
theory), the boosts will not be of interest (every time coor-
dinate is equivalent for the quantum and the diffusive prob-
lems analyzed in this paper). The continuity relation, ob-
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tained requiring invariance of the action integral again,
results in

1
#f,=0, f,= anV”Am, (B25)

with

(B26)

A,uv)\ = T,u)\xv - (IV)\)AB(bB’

. oL
BT G ()

which means that

d I 3.9 i
ZIMOV)\ = It d’xNg,\ = - d‘xa_x,-AiV)‘ =— | dS'Aj,.
(B27)

If A;,, vanishes on the boundary as discussed before, six
conservation laws arise, three for angular-momentum vec-
tors, i.e., (M2, M3, Ma3) and the remaining three ones
(Mo19> Mg, Myz) for the generalization of the center of
mass in relativity (not of interest for us). In order to define
angular momenta one must take into account spatial indices
only, so that one gets M, =M,,=L,+S,, where L,
= [d*x[x,Ty,— x,TOn] is the orbital angular-momentum tensor
while S,,=[d*x 0(?0 ™y )(I”l) Ap®p is the internal (spin) angular-
momentum tensor. For single and multiple scalar fields
(I",p drop out [70] leaving standard angular momentum
only. (See Ref. [15] on p. 99 for the explicit example of the
charged Klein-Gordon field.) Using Eq. (B22), the quantity
M, =L, can be rewritten then as

oL
(P py)

where we recall the notation x,=(t,-%) (so that x, give a
minus sign in our expression once explicitly expressed in
terms of physical coordinates). The three-dimensional
angular-momentum vector is finally given by J"=L"
=%e’””an, (e™ is Levi-Civita alternating symbol [20]) or in
components L=(My;,M5;,M,,). This is the expression of
angular momentum used in this paper.

M, =| & ( 5 - < )(;S (B28)
= X X X ,
n Toxl oxn) A

4. Conservation laws: Infinitesimal internal transformations

Fields ¢, can be subject also to transformations which
interest the internal index A, so that one usually says that the
fields have an internal structure [15,31]. An infinitesimal in-
ternal transformation then must mix these indices as follows:

ba— ba+ie2 Ny (B29)
B

If this transformation leaves action S invariant, using the
notation dx,=0 (no space-time transformation is performed)
and 8¢, =ieZp\ 5Pp, We can write for the Nother’s current
S* satisfying d,/*=0 that

lgE > a(a%A)

which gives the conservation law

i MsPss (B30)
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dQ d
dt dz

dx2 2

> et

fzz

x5 G I by) Mss

=->> | daS——

A B

Nap - (B31)

ﬁ(a’¢>A)

As in the previous cases, charge gets conserved in time if the
right-hand side of Eq. (B31) vanishes, i.e., if the argument of
the surface integral goes to zero on the boundary.

APPENDIX C: THE RETROGRADE DIFFUSION
PROBLEM

Let us suppose [45,46] to have to solve the initial value
problem
u,=—u,, ul0x)=1, xeR,t>0. (C1)
Obviously u(¢,x)=1 is a solution of this problem. On the
other hand, the function

PHYSICAL REVIEW E 80, 046117 (2009)

Uy (tx) =1+ %sin(nx)e”z’, neN (C2)
is a solution of the initial value problem
w,=—1u,, ul0x)=1+ %Sin(nx), xeR,t>0.
(C3)

The initial values of the two problems are different because
of the term %sin(nx) which converges to zero uniformly for
n—+o. However, the solution isin(nx)e"z’ at any fixed
value of x (except the values for which the sine vanishes)
diverges for n— +%. This means that the constant solution
u(t,x)=1 is unstable so that the problem is ill posed. We
point out that this result does not depend by the fact that we
are considering an infinite space domain. Solving the prob-
lem with boundary conditions u(—m,t)=u(,t)=1, the solu-
tion is again given by Eq. (C2), which is plagued by the
same problem. We can conclude this discussion pointing out
that the more general problem

pag) M(O,X) = ¢(X), xeR,t<0 (C4)

u=1u

is ill posed too.
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