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Patterned and disordered continuous Abelian sandpile model
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We study critical properties of the continuous Abelian sandpile model with anisotropies in toppling rules that
produce ordered patterns on it. Also, we consider the continuous directed sandpile model perturbed by a weak
quenched randomness, study critical behavior of the model using perturbative conformal field theory, and show

that the model has a random fixed point.

DOI: 10.1103/PhysRevE.80.046115

I. INTRODUCTION

The idea of self-organized criticality, introduced by Bak,
Tang, and Wiesenfeld (BTW) [1], provides a useful frame-
work for the study of nonequilibrium systems which dynami-
cally evolve into a critical state without the tuning of a con-
trol parameter. At critical state, these systems show scaling
behaviors characterized by critical exponents [2].

The BTW sandpile model, renamed Abelian sandpile
model (ASM) after Dhar’s work [3], is the simplest lattice
model that displays self-organized critical behavior. The
Abelian structure of the model allows the theoretical deter-
mination of many of its properties [4,5]. This model is usu-
ally defined on a square lattice. At each site of the lattice, an
integer height variable between 1 and 4 is assigned which
represents the number of sand grains at that site. The evolu-
tion of the model at each time step is simple: a grain of sand
is added to a random site. If the height of that site becomes
greater than the critical height #.=4, the site will be unstable;
it topples and four grains leave the site and each of the four
neighbors gets one of the grains. As a result, some of the
neighbors may become unstable and toppling continues. The
process continues until no unstable site remains and the ava-
lanche ends. To achieve this, one should let some grains of
sand leave the system and this happens at the boundary sites.
Every avalanche can be represented as a sequence of top-
pling waves such that each site at a wave topples only once
[6]. While the scaling behavior of avalanches is complex and
usually not governed by simple scaling laws, it has been
shown that the probability distributions for waves display
clear power-law asymptotic behavior [7]. Deviations of pure
power laws for avalanche distributions had been seen in
original simulations but were usually interpreted as finite
size effects due to avalanches which touch the boundary of
the lattice. However, it turns out these deviations exist even
for avalanches which do not reach the boundary of lattice
[8]. Hence, waves as objects that show simple scaling picture
are more useful for understanding of self-organized critical-
ity dynamics.

The scaling exponents of the system show little depen-
dence on parameters such as the number of neighbors. How-
ever, if we make the toppling rule anisotropic, then new uni-
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versality classes may emerge: by selecting a particular
transport direction in BTW model, Hwa and Kardar defined
an anisotropic sandpile model such that the grains are al-
lowed to leave the system only at one edge of the system [9].
They determined the critical exponents with a dynamical
renormalization group (RG) method. Dhar and Ramaswamy
defined a directed version of the BTW model and determined
the critical exponents and the two-point correlation functions
exactly in any dimension [10]. In [11], the effect of aniso-
tropy in a continuous version of sandpile model (Zhang
model) is investigated. In this paper, a d-dimensional lattice
is considered. This d-dimensional space is divided into two
a-dimensional and (d—a)-dimensional subspaces. It is as-
sumed that the energy (sand) is propagated differently for the
two subspaces, but inside the subspaces the propagation of
energy is isotropic. It is then shown that the peaked energy
distribution and critical exponents of the distribution of ava-
lanche sizes are affected by the anisotropy. In [12] two varia-
tions of continuous Abelian sandpile model are introduced,
the directed model and the elliptical model. It is shown that
the elliptical anisotropy does not change the universality
class of the isotropic model whereas the critical exponents
are sensitive to the directed anisotropy. Karmakar et al.
showed that in a quenched disorder sandpile model, the sym-
metric or asymmetric flows of sands in each bond of the
lattice determine the universality class of the undirected
model [13]. Also, a quenched disorder directed sandpile
model has the same critical exponents as the BTW model
when the local flow balance exists between inflow and out-
flow of sands at a site. Otherwise the model falls in the
universality class of the Manna sandpile model [14].

The original isotropic model could be represented with a
conformal field theory known as c=-2 theory [15]. When we
insert anisotropy in the toppling rules, the rotational symme-
try of the lattice is broken and the field theory associated
with the model cannot be a conformal field theory. However,
in an anisotropic sandpile model, it may be possible to re-
store the rotational symmetry at the large scales or statisti-
cally. To do this, one can introduce models in which the
toppling rules have some patterns on the lattice in a way that
at larger scales there will be no preferred directions; that is,
locally you have preferred directions which differ from site
to site in a regular pattern such that on larger scales the
system looks isotropic. Another possibility is to assume a
quenched randomness for anisotropy in the toppling of lat-
tice sites; that is, we add anisotropy to the toppling rule for
each site such that the amount of anisotropy and the pre-
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ferred direction of anisotropy differ from site to site ran-
domly. In this way there may be no preferred direction sta-
tistically.

The question we address in this paper is whether the uni-
versality class of these modified models is different from the
original sandpile model or not. We show that in some pat-
terned sandpile models the universality class is the same as
the isotropic Abelian sandpile model’s universality class.
However it turns out that the presence of disorder in a sand-
pile model may change the universality class of the system
[13]. Here, we investigate the effect of disorder exploiting
the replica technique; we consider anisotropy as a perturba-
tion to the original conformal field theory and use renormal-
ization group to describe the perturbative behaviors of the
system [16,17].

This paper is organized as follows: in Sec. II we insert
some anisotropies in the redistribution of sands in order to
create some ordered patterns. We obtain the free energy func-
tion for these models by using one-to-one correspondence
between the recurrent configurations of ASM and the span-
ning tree configurations on the same lattice [18]. The effect
of these types of anisotropies on the critical behaviors of the
system 1is investigated both theoretically and numerically.
Next we consider a position dependent randomness in the
toppling rule. Our procedure is based on the perturbative
renormalization group approach around the conformal field
theory describing the isotropic model and we obtain the
renormalization group equations for coupling constants.

II. PATTERNED CONTINUOUS SANDPILE
MODELS

It is known that the universality class of directed sandpile
model is different from ordinary ASMs [10,11]. In the di-
rected model, the sand grains always drift toward preferred
direction, say the up-right corner. We would like to see that if
the directedness is introduced to the model only in small
scales, does the universality class change or not? To this end
we add the directedness locally in a way that on average
there will be no preferred direction toward which the sand
grains move.

Consider the continuous ASM on a square lattice com-
posed of N lattice sites [19,20]. To each site, a continuous
height variable in the [0,4) interval is assigned. We divide
the sites into two groups, A and B, such that neighbors of one
site in group A belong to group B and vice versa. We impose
different anisotropic toppling rules for the points belonging
to these two sublattice: when a toppling occurs in an A-site
1+ € amount of sand is transferred to each of the right and up
neighbors and 1—e amount to the down and left neighbor
sites. In the case that a B site topples, 1+ e amount of sand is
given to each of the left and down sites and 1—e€ amount of
sand is transferred to the right and up neighbors. Here, € is a
positive real parameter less than 1 that controls the amount
anisotropy. For e=0 we will have the isotropic model and
e=1 characterizes the fully anisotropic model. This toppling
rule means that the A sites try to direct the avalanche toward
the up-left corner and the B sites try to direct the avalanche
to the down-right corner. Thus on average the sands do not
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FIG. 1. Patterned ASM.

move in any specific direction. In Fig. 1 such a lattice is
sketched. If a toppling occurs, the amount of sand transferred
via thick lines is 1+ € and the amount of sand transferred via
thin lines is 1—e. It is clear that for e=1 the sands are only
allowed to move along one of the thick zigzag paths and
therefore the system becomes essentially a set of one-
dimensional sandpile models. The elements of the toppling
matrix can be written in the following form:

-
4 for i=i', j=j'
AN <—(1ie) for i=i' =1 N
G (1 F e for j=j*1
L0 otherwise,
.
4 for i=i', j=j'
AP <—(11€) for i=i'" =1 2
G -1+ e for j=j *1
L0 otherwise.

A first step to deduce critical behaviors of the system could
be finding the free energy function. The closed form of the
free energy is obtained by enumerating the corresponding
spanning trees on the lattice. The formulation for enumerat-
ing spanning trees for general lattices is given in [21]. We
take the unit cells of two lattice sites as shown in Fig. 2.
Following the standard procedure, we obtain the free energy,

1 2w

2
=5, dafo d¢ In det F(6, ), (3)

where
F(6,¢) =4I —[a(0,0) + a(1,0)e” + a(— 1,0)e™"? + a(0,1)e'?
+a(0,- e+ a(1,1)e" ™ + a(= 1,- 1)e(*P],
(4)

a(n,n) are the 2 X2 cell adjacency matrices describing the
connectivity between sites of the unit cells n, 7,

0 1l+e 0 0
a(0,0):( 0 ) a(O,l):aT(O,—l)=< )

1+e€ 1+e O
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FIG. 2. (Color online) Unit cells of the patterned ASM.

0 1-€
a(—1,0)=a(—1,—1)=aT(1,0)=aT(1,1)=(0 0 )

(5)

With a straightforward calculation one finds

21 21
=# ) dofo dpIn[12-4€ —4(1 — é)cos -4
X(1+ é)cos p—2(1 - &)

Xcos(0+ ¢) —2(1 — €)cos(0— ¢p)]. (6)

Now it is seen that the model is equivalent to a free fermion
eight-vertex model with weights {w(1),...,w(8)} [22] that
are related to € with the following relations:

12-4€=w(1)*+w(2)* + w(3)* + w(4)?,
2(1 =€) =w2)w(4) = w()w(3),
(1-€)=w(5)w(6) - w(3)w(4),
2(1 + &) =w(2)w(3) = w(1)w(4),

0=w(5)w(6) —w(7)w(8).

The critical properties of the free fermion model are well
known [22]. It is found that for all values of € the free energy
function is analytical and the model shows no phase transi-
tion. It means although by inserting this kind of anisotropy

P(s) P(s)

20,
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some symmetries of the lattice are broken, but the broken
symmetry operator is irrelevant and takes the system to the
original critical fixed point. This fact can be checked by nu-
merical simulations. We have simulated the model on a
square lattice with sizes L=64, 128, 256, and 512. After the
system arrives at recurrent configurations, we began to col-
lect data. At each size 10% avalanches have been considered
to derive the wave statistics. Figure 3 displays the wave top-
pling distributions for different system sizes and three differ-

ent values of e. A power-law fit to these curves determines

(w)
the critical exponent TE,W) defined as P} (s)~s"" . In Fig. 4,

the extrapolated value of 7 for L—o is obtained: 7()
=1.00+0.01 for €=0.1, 7(*)=0.99+0.01 for €=0.4, and
7(0)=1.01=0.01 for €=0.8. As we see, the wave exponents
are independent of € and are consistent with the exact value
of 7'§,W)=l for €=0 [8].

It is possible to reformulate the partition function or the
number of the spanning trees on the lattice in terms of fer-
mionic path integrals. We place a two-component Grassman-
nian variable ¢,= (¢, 1,) on each unit cell n of the lattice. In
this representation, the action of the field theory is written in
the following form:

2
S=2> 2 Ylnay(nd)y i), (7)

(nny i,j=1

where a(n,n) are the adjacency matrices defined in Eq. (5).
In the continuum limit, this action is obtained to be

2

s— f dxdy S, [4(= D™ () hy) + 26
a,B=1

X(1 = a0 Pa(y) + 2Pyl (x) 501, (8)

where €*# is the Levi-Civita antisymmetric tensor. At the
first sight it may look strange that we have an action that
there is only first derivative in it, in contrast with the c=-2
action that has second derivative terms. Even if we take the
€—0 limit, it seems that the problem still exists. But if we
look more closely, we will see that at least in the above limit
one can write i, in terms of ¢; and its derivative and then
the second derivative terms emerge.

It may be argued that the above defined patterned system
actually has a preferred direction; the zigzag paths join the
down-left corner to the up-right corner. This is true, in fact
the system has an elliptical anisotropy at large scales and we

£ (5)
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FIG. 3. (Color online) Wave size distributions for €=0.1, 0.4, and 0.8 and for lattice sizes L=64, 128, 256, and 512.
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FIG. 4. (Color online) The exponent 7,(L) is a linear function of 1/log;, L. The intersection with vertical axis gives 7,().

know that the elliptical anisotropy does not change the uni-
versality class [12]. It is possible to introduce other patterns
in a way that the system is symmetric on large scales. Figure
5 shows such a pattern. In this model the thick lines charac-
terize bonds that carry 1+ € amount of sand and the thin lines
carry 1—e amount of sand after a site topples.

Following the standard procedure, the free energy of this
system can be shown to be

1 2 27 \ .
f= 167]2]0 dGJo d¢p In{132—136€ + 4€* +2(1 - €)

X (cos 260+ cos 2¢) — 64(1 — €*)(cos ¢ + cos 6)
—4(1 — é)*cos(0+ ¢p) +cos(8— P)T}, 9)

which is again a smooth function and similar to the previous
model, the self-organized criticality has the same universality
class as that of the undirected sandpile model.

Up to now, we have observed that the patterns that do not
produce a preferred direction in large scales do not change
the universality class. In Sec. III we will consider a quenched
random anisotropy to see if the universality class is changed
or not.

III. RANDOM DIRECTED CONTINUOUS
SANDPILE MODEL

In directed continuous sandpile model (DCSM) intro-
duced in [12], it has been assumed that after toppling of a
site, 1+ € amount of sand moves to left (and up) and 1-¢€
amount of sand moves to right (and down); that is there
exists a preferred direction for the transportation of sands. In
other words, the rotational symmetry is broken in this model.
In the continuum limit, It turns out that the action of the
theory assigned to the directed model is the action of c=-2
conformal field theory perturbed by the relevant scaling

fields p=—2636 and d=-2696. As these operators are rel-
evant, they grow under renormalization and take the system
to a fixed point [12].

In DCSM, € determines the strength of anisotropy and is
in the interval (—1,1). Positive € means that the sand grains
are pushed to the up-left corner and negative € means that
they are pushed to the down-right corner. In this model the
value of € is considered to be uniform throughout the lattice.
However, we may assume a statistical distribution for €, such

that it can take both positive and negative values on different
sites. The assumption that the mean value of e vanishes
means that there will be no preferred direction statistically
and the rotational symmetry will be restored to the model.
The question is if such a modification takes the system to a
new universality class or not. The assumption of a weak
randomness allows us to determine the critical behavior of
the model based on the pertubative renormalization group
technique.

In the continuous limit, the action of perturbed theory is
given as

S=S80+ J e(z,2[¢(2,2) + P(z.2)], (10)

where S is the action of ¢=-2 logarithmic conformal field
theory. One can obtain the effective action using the replica
method; that is, we have to take the average of € on N copies
of the system and then find its limit when N — 0. We assume
that the values of €(z) at different sites are independent and
have a Gaussian distribution on each site with a standard
deviation equals g,

(€(z1)€(z0)) = g00(z1 = 22). (11)

The effective action then is expressed as

FIG. 5. Order and symmetric patterned ASM.
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FIG. 6. The
randomness.

RG flow of the model with quenched

N

N
S=2 Soatgo| 2 [6u2.D$22) + $u(2.2)Byl2.2)

a=1 za#b

+ ¢,(2.2) hp(2.2)]. (12)

Although the coupling constants of the field operators ¢,
&, and ¢ are the same, as we will see, they have different
RG equations. Therefore we distinguish between the cou-
pling constants of these field operators and rewrite them as
80 8opg and g4, TESPECtively,

N
E [g0¢¢¢a(z7z) ¢b(z’z) + g()&&&a(zaz) &b(zaz)

za#*b

+ g0¢$¢a(Z’Z_.) sz(Z, ?)]

N
=| 2 a2, (13)

za#b

where the second line is an abbreviation of the first line. It is
easy to see that the coupling constants g are dimensionless;
that is, they are marginal. Therefore to see if they are mar-
ginally relevant or not, we have to expand the partition func-
tion to the second order of g. If it is marginally relevant we
would like to see if it grows to infinity or will introduce a
fixed point. This means that we have to consider at least up
to the third order of the coupling constants,

S b, | D b)) D)

za#*b 2! 21,20 a#b c#d

o S u)S Bue)S Byl +

3! 21,22,23 a#b c#d e#f

=8¢ E ¢a(ZaZ—)¢b(Z’Z) + 8od 2 &a(ZaZ—)(?)b(Z’Z)

za#b za#b

Y b2 d(z.2). (14)

za#b

+ 844

To proceed, we have to know the contraction of fields in

PHYSICAL REVIEW E 80, 046115 (2009)

different possible ways. The calculation is done using opera-
tor product expansion (OPE) relations of the perturbing op-
erators,

1
D(21,2) P22,20) = 5 + IP(20,70) + 2T(20.20) + * -,

(z1- 22)2
(15)
_ _ 1 _ _
H(z21.2)P22.2) = ———5 + Ih(22,7) + 2T(22,2) + -+,
(Zi—-2)
(16)
_ 1 (21,7, ,Z
D(21.2)) d(22.25) = >t #z1-2) - ¢_(Z1 il) + s
|ZI_Z2| [ B &) 91—
(17)

where T and T are the components of the energy-momentum
tensor.

At each order we contract all the fields using the above
OPE relations and only keep a pair of ¢ or ¢ fields. While
doing the integrations, we have to perform the regularization.
We do the regularization in cutoff scheme: we assume that
the distance between any pair of integration variables is re-
stricted to be between a, the lattice constant, and L, size of
the lattice. Up to the third order, the renormalized couplings
are obtained to be

8od= 80pd + 261’(N— 2)g0¢¢g0¢$+ 2(12(N— 2)

X[20562045(5N ~9) + 2038555 BN -1, (18)

833= 28033+ 2a(N —2)80338045 + 20°(N -2)
X[80538043(5N = 9) + 8048055 3N - D). (19)

2 3
866= 8005+ 20N =3)(80498055 + 80 yg) + 81845l (N=2)

X(N=1) +2(N=3)*]+ 804480588003
X[3(N=2)(N=1)+2(N-3)?]}, (20)

where a=4m lnlj and by the symmetry reasons, g 44=g 44 In
the limit N=0, we obtain the B functions up to third order,

984

— - 2 3
P = 1678 44840 167Ta(9g¢¢g¢¢+ T84

=a
ﬁg¢¢

(1)

9845 2 3
,Bgd,;: a—&a = 247T(g$)¢ + g(ﬁ(g) - 327Ta(5g¢($+ 6gé¢g¢g)).

(22)

It is clear from above equations that these fields are margin-
ally relevant. However, the coefficients of the terms propor-
tional to g are negative. Hence the renormalization flow
takes the system to a fixed point at g44,=g35=0, g¢$=ﬁ
(see Fig. 6). In the random fixed point, the rotational sym-
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metry of the lattice is restored so it is expected that the sys-
tem shows critical behaviors different from the deterministic
directed model.

We can compare our results with what Pan et al. [14] have
found. In the patterned case, the outflow and inflow of the
sand were balanced and we found that the universality class
is not changed in such cases. On the other hand in the model
with quenched randomness, there is not such a balance hence
it is expected that the random fixed point shall belong to
another universality class such as the universality class of the
directed Manna sandpile model. We say that it may corre-
spond to Manna model because in this model there is ran-
domness in the toppling rule, and we say it may because in
Manna model the randomness is annealed but in our model it
is quenched. Of course one may argue that the Manna model
and Oslo model are in the same universality class [23] and it
has been shown that the Oslo model is a quenched Edwards-
Wilkinson equation [24]. Therefore Manna model is related
to a model having quenched randomness and the connection
we mentioned becomes more plausible.

PHYSICAL REVIEW E 80, 046115 (2009)

IV. CONCLUSIONS

In this paper we have studied critical behaviors of the
continuous sandpile model with some patterned anisotropies
in the toppling matrices. Using the correspondence with the
spanning trees, we obtained the free energy function for the-
ses models. Both theoretic analysis and numerical simula-
tions for the probability distribution of waves indicate that
the anisotropic models are in the same universality class of
the continuous sandpile model.

Also we have investigated analytically the effect of
quenched randomness on the critical behavior as continuous
directed sandpile model. Our calculations are based on the
perturbed renormalization conformal field theory and replica
technique. Up to the third order in the perturbation expan-
sion, we obtained the renormalization group equations for
the coupling constants of the perturbing fields. We showed
that the perturbing fields are relevant and take the system to
a fixed point.
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