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Weak signal transmission in complex networks and its application in detecting connectivity
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We present a network model of coupled oscillators to study how a weak signal is transmitted in complex
networks. Through both theoretical analysis and numerical simulations, we find that the response of other
nodes to the weak signal decays exponentially with their topological distance to the signal source and the
coupling strength between two neighboring nodes can be figured out by the responses. This finding can be
conveniently used to detect the topology of unknown network, such as the degree distribution, clustering
coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through
four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we
show that the features of network can be approximately given by investigating many fewer nodes than the
network size, thus our approach to detect the topology of unknown network may be efficient in practical

situations with large network size.
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I. INTRODUCTION

The complex networks have been intensively studied in
the past decade. It has been found that the dynamics on com-
plex network can be significantly influenced by its topologi-
cal structure, such as synchronization, epidemic spreading,
and packet delivering, etc. [1-3]. For most of the biological
systems, the structure and dynamics may influence each
other to form an optimal functional network, i.e., the final
observed network is a consequence of their interactions. As-
suming that the topology of the network is unknown, the
dynamics might be used to refer the connectivity [4-8].

Revealing connectivity is very important in the networks
of neurons, interacting proteins or genes, ecological food-
webs, and even the functional network of brain, etc., in
which the important aspects of network structure are largely
unknown. To know their connectivity is of great help to un-
derstand their behaviors. For example, the prediction of epi-
leptic seizure is still an unsolved problem although it has
been studied for a long time. Finding out how the connectiv-
ity of functional brain network changes between the normal
and abnormal function is the key to the prediction of seizure
[9.10]. The problem of revealing connectivity has been in-
tensively studied recently and several approaches have been
presented [4-8]. For example, Makarov et al. proposed a
method to identify the effective connectivity of neural net-
work by using extracellular spike recordings [4]. Yu et al.
estimated the topology of networks by designing control sig-
nals at each node [5]. Timme present an approach to infer the
connectivity by introducing constant external driving [7]. All
of these approaches need the global dynamics/information
among all the pairs of nodes to figure out the connectivity,
which cost a heavy calculation when the network size is
large. Therefore, an interesting question is whether it is pos-
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sible to give a simple method to reveal the links of a node
directly, i.e., tell the links of a source node directly from the
response of other nodes. This question is especially impor-
tant for the networks with large size where the global struc-
ture of network is unknown and attention is usually paid to
local areas or subnetworks.

On the other hand, signal transmission is of interesting
from both a fundamental and a clinical perspective, such as
in biological systems, and has been well studied in nonlinear
science. It is found that noise can sometimes enhance the
signal propagation [11-16]. However, previous works are
limited to one-dimensional (1D) or two-dimensional (2D)
regular lattices. Considering that many realistic systems can
be simplified as networks, it is interesting to know how sig-
nal is transmitted in complex networks. This problem has
been addressed recently. For examples, Acebron et al. stud-
ied the situation of scale-free (SF) network where all the
nodes receive the same external signal and found that the
amplitude amplification at the hub shows a resonance on the
coupling strength [17]. Batista et al. investigated the spiking-
bursting activity of neurons in a SF network with an external
signal and found the appearance of frequency locking be-
tween the bursting and driving phases [18]. And one of us
discussed the case of SF network with both signal and noise
and found a double-resonance phenomenon [19,20]. What
has been lacking is how a weak signal is transmitted in com-
plex networks.

Weak signals appear at many situations. For example, in
stochastic resonance, we usually consider the weak signal in
a noisy environment and aim to find an optimal noise
strength for the maximum signal-to-noise ratio [14,21-23].
In the visual and auditory systems of animals, there is a high
sensitivity to weak external signals [17,19]. Signal may be
produced by different ways. In biological systems, signal is
often produced in a local area and then spread to other parts,
such as pacemaker in human heart and epileptic foci in brain,
etc. [24,25].
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In this paper, we will present a simple network model of
coupled oscillators to show how a weak signal propagates
through the network. As an explicit example, we consider
networks of coupled double-well systems, a paradigmatic
model that has been successfully used to understand the sto-
chastic resonance of signal detection [11-16] and signal
transmission [17,19]. The double-well system has two wells
and thus, has two distinct behaviors. One is a local oscilla-
tion limited in one of the two wells, another is a jumping
behavior between the two wells. When the signal is not large
enough to induce the jumping behavior, an external noise
may help to induce the jumping and make the jumping to
follow the frequency of signal at an optimal noise strength.
This characteristic jumping behavior in the double-well sys-
tem can be used to model the two-state behaviors in biologi-
cal systems, such as fireflies, cicadas, crickets, tree-frogs,
and even neurons [26,27]. The behaviors of these systems
can be simplified as two states, i.e., quiescence and firing. It
has been pointed out that the firing transfers the information
and the residence-time distribution of a double-well system
can exhibit the main features of the interspike interval histo-
grams of firing neurons.

The coupled oscillators are usually used to study the syn-
chronization by increasing coupling strength. Little attention
has been paid to the desynchronization at weak coupling
strength. We here consider the case of weak coupling in our
model and aim to show the usefulness of desynchronization.
In detail, we randomly choose a node from the network to
add signal and investigate its subsequent influence on other
nodes. Very interesting we find that if both the signal and
coupling are weak, the signal transmission will be mainly
limited to its nearest neighbors and thus, provides an effi-
cient approach to detect the connectivity by directly measur-
ing the response of other nodes to the source signal. We
show both theoretically and numerically that the transmis-
sion of weak signal in networked double-well system decays
exponentially with the topological distance to the source. We
then use this finding to reveal the topology of network, such
as the degree distribution, clustering coefficient and commu-
nity structure, etc., by repeatedly choosing different nodes as
the signal sources for “pinging” of the network. We find that
the information on the network topology can be figured out
by a number of sources much smaller than the network size.
This approach is thus useful in practical situations where the
network size N is very large.

The paper is organized as follows. In Sec. II, we present
the model and show both theoretically and numerically that
the exponentially decay of signal transmission and the detec-
tion of coupling strength. Then in Sec. III, we show how the
approach can be used to detect the unknown networks, such
as the degree distribution, clustering coefficient and commu-
nity structure, etc. Finally we summarize our results in Sec.
Iv.

II. MODEL

Consider a network with hidden links among nodes, i.e.,
the network connectivity is unknown. In this case, all the
information about the connectivity must be gathered from

PHYSICAL REVIEW E 80, 046102 (2009)

Signal
source

FIG. 1. (Color online) Schematic illustration of how a signal is
transmitted in an unknown network. The solid lines represent the
detected links by the response of the nearest neighbors, the dashed
lines denote the hidden links connected to the nearest neighbors,
and the dotted lines denote the hidden links connected to the nearest
neighbors’ neighbors, and so on.

“sensors” placed at each node. A key problem is what kind of
oscillators can be used as the sensors and how the sensors
tell us the hidden links. We here present an effective ap-
proach to solve this problem. Our idea to figure out the hid-
den links can be illustrated by the schematic Fig. 1 where the
“dashed” and “dotted” lines represent the hidden links. We
randomly choose a node as the source node to add a signal.
Then we measure the “response” of other nodes and from
that to figure out the hidden links. The signal will propagate
from the source node to its nearest neighbors (see the “ar-
rows” in the center of Fig. 1), and then to the nearest neigh-
bors’ neighbors, and so on. Suppose the response of nodes
decays exponentially with their distance from the signal
source. The response at the nearest neighbors will be much
larger than that at the other nodes, thus, we can figure out all
the links connected to the source node and then replace them
with the “solid” lines, see Fig. 1. After that, we choose an-
other node as the source node and do the same steps to figure
out its links. In this way, we can figure out all the links of the
network by repeatedly choosing different nodes as the signal
sources.

As an example to implement the above steps, we here
consider a network model of N nodes where each node is
occupied by a double-well oscillator. We randomly choose
one node to which a weak signal A sin wf is added. The
evolution equation at each node can be described as follows:

N
Xi=xi—x?+5(i—i')A sin wt+82 hij(.Xj—xi), (1)

j=1
where i=1,2,...,N, §is the Kronecker delta function, x; is

the dynamical variable of the node i, and ¢ is the coupling
strength. The topology of network connections is determined
by the adjacency matrix H=(h;;): h;;=1 if the node j is con-
nected to the node i, and h;;=0 otherwise. The external signal
A sin ot is added to the node i’. We here consider the situa-
tion with weak signal and weak coupling strength to mimic
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FIG. 2. (Color online) Q; versus i for one pinging with N
=201 and £=0.01 where the i is ordered by the distance to the
source node and the “red circles,” “green triangles,” “blue dia-
monds,” “cyan stars,” and “magenta asterisks” represent the dis-
tance d=1-5 to the “black” source node and the “yellow pluses”
denotes the distance d>35. (a) Regular 1D network (p=0.0), (b)
small-world network (p=0.1), (c) random network (p=1.0), and (d)
scale-free network.

the slow spreading of signal in some biological systems
where synchronization will not be resulted in.

The added signal at the node i’ will be transmitted to its
neighbors and then to the neighbors’ neighbors and so on.
After the transient process, the system will reach a stationary
state. For measuring the transmission of signal, we calculate
the response of node i at the reference frequency [12,13]

Qi = \"[Qgin]z + [Qios]z (2)
with Qéinzlr S[xi6) =% ]sin wtdt, Qéosle oLxi0)

—X;]cos wtdt, and )?,-:lT Jtx(t)dt. Tn numerical simulations,
we fix ©=0.05 and T=27/w. We let A=0.02 so that the
signal is weak enough to make the source node oscillate only
around one of its two equilibriums. As examples, we con-
sider four typical networks, i.e., the regular 1D, small world
(SW), random (RA), and SF networks. The first three are
constructed by the Watts and Strogatz’s algorithm [28] where
the 1D network has degree k=6 and the SW and RA net-
works are formed by rewiring each link of 1D network with
probability p=0.1 and 1.0, respectively. The SF network is
constructed by the Barabasi and Albert’s (BA) algorithm [29]
with average degree (k)=6 and degree distribution P(k)
~ k3. Figure 2 shows the response Q' versus i for N=201
and £=0.01 where the horizontal axis i is ordered by the
distance to the source node and (a) to (d) represent the cases
of 1D, SW, RA, and SF networks, respectively. For clear-
ness, we let d be the distance of the node i to the signal
source i’ and use the “red circles,” “green triangles,” “blue
diamonds,” ‘“cyan stars,” and “magenta asterisks” to repre-
sent the nodes located at d=1~5, respectively, and use the
“yellow pluses” to represent the nodes at d>5. From Fig. 2
it is easy to see that Q' in all the cases are distributed at
different layers with the source at the top, its nearest neigh-
bors at the first layer, and so on, see the lines with d
=1,2,... in Fig. 2(a). Replace Q' by Q(d). Obviously, all the
Q/(d) in Figs. 2(a)-2(d) decay exponentially with d.
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To understand the mechanism why Q'(d) decays exponen-
tially with d, we transfer the network to a topological struc-
ture with different layers and use X, to denote the dynamical
variable of a node at the layer d. Noticing that Q'(d)
> 0/(d+1) and Q'(d)=Q/(d) in Figs. 2(a)-2(d), we assume
that the response to the signal at the layer-d is mainly coming
from the layer-(d—1). Thus, we ignore the influence from the
layers-d and -(d+1) and simplify the Eq. (1) as follows:

Xo= (1 —koe)Xy— Xy + A sin o,

Xdz(l —kds)Xd—X2+ adSXd—h (3)

where k( denotes the degree of the source node, k, the degree
of a node at the layer-d, a, the average links from the
layer-(d—1), and d=1,2,.... Obviously, we have ;=1 and
a,=1 for d=2.

When both A and ¢ in Eq. (3) are weak enough compared
with the potential barrier of the double-well oscillator, X ,(z)
will be conveniently linearized around one of the potential
minima. Then, the X,, in Eq. (3) can be solved and asymp-
totically for long-time yields

A
Xo(?) ~ Xo(0) + ——=sin(wt - ¢,), 4)
0 0 V(2 + koe)? + 0? 0
where tan(¢,)=w/(2+kye) and X,(0)= = 1 depending on the
initial condition. Inserting this solution into the X, in Eq. (3)
we obtain

Ae .
X,(0) ~ X,(0) + — sin(wr - g9 — @),
T2 +ke)* + 0]
i=0
(5)
where tan(¢;)=w/(2+k,€). Similarly, we have
d
AH aue d
i=1 )
X,(1) ~ X,400) + = sin| wr - E (p[) ,
i=0
[112+kie)* + o]
i=0
(6)

where tan(¢;)=w/(2+k;e). Substituting Egs. (4)-(6) into Eq.
(2) we obtain

d
AH e
i=1

0d)=—— | ™)
2+ /1112 + kie)? + 0]
i=0

If we approximately consider a;=a and k;=K, we have
In Q(d)=a(K)~b(K)d with a(K)=In;==== and b(K)

=—lnm. That is, Q(d) decays exponentially with the

increase of d, confirming what we have observed in Figs.
2(a)-2(d).
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From Egq. (7) we see that for the case of identical coupling
in all links, the coupling strength can be evaluated through

- k)

2klﬂ +\r4ﬁ +0)(
1- B3

, (8)

where B=0(1)/Q(0). For homogeneous network, we have
k;~ky and thus, from Eq. (7) we obtain
_AQ(1)
20(0)*

While for the case of nonidentical coupling in different links,
Eq. (3) can be approximately written as

)

b= (1= k&) Xk — (Xi)3 + A sin wr,

X{=(1-kig)X]| - (X})* + &, ;Xi. (10)

where Xj, denotes the signal source, X} one neighbor of node
i, and &; and &; are the average coupling strength of the nodes
i and j, respectively. Doing similar derivative with Egs. (7)
and (8) we obtain

10 =,=’

o0) VR +kiE) + o

Ql(l) _8& (11)
V2 +kE)* + o’

When k;=k; the coupling strength can be calculated ap-
proximately through

_AQ/(1)
Sisj - 2Ql(0)2 :

When kj is largely different from k;, such as the SF net-
work, Egs. (9) and (12) will not work again. However, con-
sidering that a SF network has only a few hubs, the degree
differences among the general nodes, excluding the hubs, are
not very large. We will use numerical simulations to confirm
this argument. In the following numerical simulations, we do
statistical average to get the needed quantity. That is, for a
set of parameters we make 20 networks or realizations and
for each network we make N times pinging. The measured
quantities are averaged on ensemble. We consider the BA
network with N=201 and calculate its histogram of degree
difference Ak. Figure 3(a) shows the result. It is easy to see
that the P(Ak) with Ak=10 takes most of the possibility.
That is, for a randomly chosen source node, it is very pos-
sible that its k, and k; has Ak= 10, indicating the Egs. (9)
and (12) may be still useful. This point can be also supported
by Eq. (11) for the case of weak coupling. In that situation,
the small difference between k; and k; (i.e., Ak=10) will not
make a signiﬁcant difference to the two denominators of Eq.
(11), i.e., j|<2 indicating that Eq. (12) is still ap-
proximate correct For checking the correctness of this argu-
ment, we consider the case of identical coupling and calcu-
late the error Ae between the real € and the estimated &, i.e.,
Ae=(|e’ —g|). Figure 3(b) shows how the relative error Ae/e
changes with Ak, where the “circles” denote the case of ¢

(12)
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FIG. 3. (Color online) (a) P(Ak) versus Ak and (b) Ae/e versus
Ak for BA network with N=201 and averaged over 20 realizations.
In (b), the “circles” denote the case of £e=0.01 and the “squares” the
case of £€=0.02.

=0.01 and the “squares” the case of £=0.02. Obviously,
Ag/e is very small for most of Ak except the hubs, confirm-
ing our argument.

We have also checked the other three typical networks.
Figure 4 shows the results with error bars. Obviously, &’ is
approximately equal to & for the 1D, SW, and RA networks,
and also for the SF network with & <0.02. Therefore, Eq. (9)
is approximate correct for all the networks with weak cou-
pling, i.e., €<0.02. Does this condition of weak coupling
work for the case of nonidentical coupling in different links?
For convenience, we here discuss the situation of symmetric
coupling with €; ;=¢;,; and denote the real coupling strength
as g;; and the predicted coupling strength from Eq. (12) as

For one pinging with s1gnal added at the node i, we can
get k; coupling strength e . from Eq. (12). After N times
pinging with each node as the source node, respectively, we
can get all the ¢/ ;. In numerical simulations, we let &;; be
umform randomly chosen from [0.005, 0.015] and calculate

L by (& +¢]; )/2 Figure 5 shows the relationship between
the predlcted €] ; by Eq. (12) and the real ;; where (a)-(d)
represent the cases of 1D, SW, RA, and SF respectively.
Obviously, most of the pairs si” ;™ & are distributed around
the diagonal line, indicating the consistence between the the-
oretical prediction Eq. (12) and the real couplings.

0.06 0.06
(a)1D (b)sSW

1
€ 0.03 0.03

00800 001 o002 00%o0 001 002 003
0.06 0.06
(c)RA (d)SF

]
€ 0.03 0.03

0'0(9.00 0.01  0.02 0.030'0(?.00 0.01 0.02 0.03
€ €

FIG. 4. Predicted &’ by Eq. (9) versus the real & for N=201 and
averaged over 20 realizations, where (a)—(d) represent the cases of
1D, SW, RA, and SF networks, respectively, and the diagonal line
denotes the ideal case.
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FIG. 5. Predicted a,-”/. by Eq. (12) versus the real g;; for N
=201, where (a)—(d) represent the cases of 1D, SW, RA, and SF
networks, respectively, and the diagonal line denotes the ideal case.

III. DETECTION OF NETWORK STRUCTURE

When the network size N is very large, it is difficult to
make N times pinging and thus in this situation how to obtain
the information on the network topology, such as the degree
distribution, clustering coefficient and community structure,
etc., becomes extremely important. We find that the feature
of exponential decay in the response Q'(d) may provide a
great help in solving this problem. From Fig. 2, one can
easily get some information on the degree distribution P(k).
Let n(d) denote the number of nodes at the layer-d in Fig. 2.
Obviously, n(d) is a constant for d=1~35 in Fig. 2(a), in-
creases approximate linearly with d in (b), increases with an
approximate power-law of d in (c), and increases faster than
power-law of d in (d). Thus, even one realization can tell us
some primary information on the topology of the unknown
network. To obtain more detailed information, we may use
the network sampling approaches which include the “vertex
sampling,” “edge sampling,” and ‘“snowball-sampling,” etc.
[30-32].

To estimate the degree distribution, we use the vertex
sampling to randomly choose N, nodes as the source nodes.
For each chosen source node, we focus only on the first
layer, i.e., n(1). Noticing that n(1) is in fact the degree of the
source node k, the obtained n(1) from the N, pinging will
tell us the information of degree distribution. Figure 6 shows
the histogram of n(1) at pinged times Ny=N/16, N/8, N/4
and N, respectively. Obviously, the four cases in each panel
of Fig. 6 have the similar shape, indicating that an approxi-
mate P(k) can be measured by only one tenth pinging of the
total nodes N.

The clustering coefficient represents the probability for
two of one’s neighbors to be neighbors also of each other.
For an individual pinging, n(1) nodes are all the neighbors of
the source node. If the number of links, E, among the n(1)
nodes can be figured out, we will have

co—E
a1y -1y

An easy way to obtain E is that we let the n(1) nodes be the
signal source, respectively, and only measure the links

(13)
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FIG. 6. (Color online) The measured degree distribution by
pinged times Ny=N/16, N/8, N/4, and N with N=1001, £€=0.01
and (a) to (d) represent the 1D, SW, RA, and SF network,
respectively.

among the n(1) nodes, i.e., edge sampling. Then we ran-
domly choose another source node and do the same proce-
dure. After m, times pinging, we obtain

HIO

C(mg) = LE C;.

my =1

(14)

An interesting question is how fast C(m,) approaches the
clustering coefficient C of the network. To answer this ques-
tion, we use the SF network as an example to calculate
C(my). Figure 7(a) shows how C(m) changes with m. From
Fig. 7(a) it is easy to see that C(m,) converges very fast and
approaches to C when my<N/10. As our SF network is
constructed by the BA algorithm [29], it has a very small
C=0.034. Considering that the unknown network may have
a larger C, we here increase the value of C but let P(k)
remain unchanged by the rewiring approach given in [33,34].
Figures 7(b) and 7(c) show how C(m,) changes with m, for
C=0.25 and 0.5, respectively. Obviously, C(m,) also con-
verges very fast and approach to C in both Figs. 7(b) and

0.1 0.6
(a) (b)
—~~
(=)
e 0.3
c
0.0 0.0
0 20 40 _60 80 100 0 20 40 60 80 100
m m
1.0 0 0
—~ @ 051 (q)
S 0.4 .
Eos 03
N
O 0.2 —5-mo0=25
0.1 —©-m0=50
0.0 0. —£-m0=100
o 20 40 60 80 100°8.0 01 02 03 04 05

0

FIG. 7. (Color online) (a)-(c) The measured C(m) versus my
for SF network with C=0.034 in (a), 0.25 in (b) and 0.5 in (c); (d)
the measured C(m,) versus the real C of the network where the
“circles,” “triangles,” and “stars” represent the cases of my=25, 50,
and 100, respectively. The parameters are N=1001 and £=0.01.
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7(c). To compare the difference between C(m,) and the real
C, we show C(my) versus C in Fig. 7(d) for three cases of
my=25, 50 and 100, respectively. It is clear that all the sym-
bols in Fig. 7(d) are around the diagonal line, indicating that
the clustering coefficient can be approximately figured out
by a small number of pinging mO:ﬁN = %N.

Community structures are prevalent in many real net-
works, such as social and biological networks, and is thus
another feature of complex networks. Our approach can be
also used to detect the existence of community structures in
an unknown network. The characteristic feature of a commu-
nity network is that it consists of groups and there is dense
connections in a group and few connections between the
groups [35,36]. Many algorithms have been proposed to de-
tect the community structure of a network [36-38]. A basic
assumption in these algorithms is that all the links or adja-
cency matrix are known. However, this condition is not al-
ways guaranteed. For example, for the situations considered
in this paper, we do not know the connectivity and thus these
algorithms cannot be directly used here.

Our idea to detect the community structures is through the
snowball sampling and can be described as follows: If there
is community structures in the unknown network, a random
chosen source node must be in a specific group. Starting
from this source node, we have shown that we can reveal its
neighbors, i.e., the nodes at the first layer with /=1, by add-
ing the weak signal in the source node. Then we let the nodes
on the layer-1 be the source nodes, respectively, to reveal
their links. By this way, one can get all the links of the local
nodes around the starting node. At the same time we need to
judge the “border” of the community. If the “border” is
reached, the outgoing process of detecting community
should be stopped; otherwise continue. Thus, a key element
is how to judge which node is the “border” of the commu-
nity. Fortunately, we find that the methods proposed by Refs.
[38-44]. is just designed for our situation to determine the
“border” of the community. We here would like to choose
three typical approaches from them, i.e., the Clauset method
in [39], the Luo, Wang, and Promislow (LWP) method in
[40], and the Bagrow method in [42]. The common idea of
the three approaches can be briefly summarized as follows:
Start with a node i as the community C and detect its k;
neighbors as B. At each subsequent step, one or more nodes
from B are chosen and agglomerated into C, then B is up-
dated to include any newly discovered nodes. The difference
of the three approaches is how to maximize the local modu-
larity. In the following, we will briefly introduce their main
procedure, respectively.

The Clauset method considers the local modularity [39]

> B;;8(i, )
ij
> Bj; ’
ij

R= (15)

where B; is the element of boundary-adjacency matrix with
at least one node in the boundary/border of Cyp,, 4, 8(i,J) is 1
when either a pair of connected nodes i € Cy,,4., and j € C or
vice versa, and is O otherwise. Each node in B that can be
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agglomerated into C will cause a change in R, AR. At each
time step, we calculate AR and let the node with the largest
AR be agglomerated. The modularity R will lie in the range
[0, 1] and its local maxima indicate good community sepa-
ration.

The LWP method introduces the number of edges internal
and external to C as M;, and M, respectively:

M;, = E Sij5(i’j)v

ij
M = 2 SiNi.j), (16)
ij

where S;; is the element of the matrix with at least one node
in C, 8(i,j) is 1 if both node i and node j are in C and 0
otherwise, and \(i,j) is 1 only one of node i and node j
belongs to C and 0 otherwise. The local modularity is defined
as

n (17)

Its agglomerating process is a little complicated, see Ref.
[40] for details. The algorithm will be repeated until no node
is added to C. If the M of the subnetwork C is large than 1
and C contains the started source node, the community is
found. Otherwise, no community will be found for the
started source node.

The Bagrow method can be stated as follows [42]. We
first calculate the “outwardness” (),(C) of node v € B from
community C:

0,0=1- 3 (i eCl-lieCh= |-k,

vien(v)

(18)

where n(v) are the neighbors of v. We agglomerate the node
with the smallest () at each step and update the community
and its boundary. Then we calculate M, and track M,
during agglomeration. The community has been fully ag-
glomerated when M, has a local minimum.

We here use the above three approaches to detect the
community from the links revealed by our approach. One
way that has been employed to test sensitivity in many cases
is to see how well a particular method performs when ap-
plied to ad hoc networks with a well known, fixed commu-
nity structure [39,41-44]. We here also use the ad hoc net-
works as an example to check our method. The ad hoc
network consists of 128 nodes divided into four equally sized
communities. Each node has degree k=k;,+k,,,=16, where
k,.: 1s the links of a node outside its community. As its com-
munity G is known, we can calculate the normalized mutual
information (NMI) [42,43] to compare the found community
C and the real G:
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FIG. 8. (Color online) NMI versus k,,, for three local methods
for the ad hoc network with N=128, £=0.01, and average degree
k=k;,+k,,,=16. R denotes the Clauset method, M the LWP method,
and () the Bagrow method.

XN
ij XX,

1(G,C) = , (19)

; X; ln<%> + ; Xﬂn(%)

where X is a 2 X2 matrix with X;; being the number of nodes
from real community i that detected in found community j,
X ;j=X,j+X;), and X; =X, +Xj,. Figure 8 shows the relation-
ship between [ and k,,. Notice that /=1 means a single
community has been discovered while /=0 corresponds to
the case where the algorithm’s partition provides no addi-
tional information about the true partition. From Fig. 8§ we
see that all the three approaches give the similar result when
k=5, indicating the correctness of detected connectivity.
We may need to point out that if the knowledge of the global
structure of the network is known, the community can be
found when k,,, persists until k,,,=12 [45,46].

Similarly, if we choose another source node which is not
in the discovered community, we can find the second com-
munity. Doing this process continuously, we can find all the
communities in principle. However, we have to point out that
comparing with other approaches of finding all the commu-
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nities [36—38], our approach is not so good. This disadvan-
tage can be easily overcome as follows. For a finite size
network, we can use our approach to reveal all the links and
then use any of the known method [36-38] to figure out its
communities. The advantage of our approach is to find the
information on the topology of network, such as the degree
distribution, clustering coefficient, and a particular commu-
nity in a large network by local connections.

IV. DISCUSSIONS AND CONCLUSIONS

The results obtained in this paper are based on the condi-
tion of weak signal and weak coupling. Without this condi-
tion, the added signal may induce synchronization in the net-
work and then our method cannot distinguish the links. That
is, there is a critical coupling strength ., which is related to
the signal strength A. Our method works for € <eg. in which
we have Q/(d)> Q/(d+1) and thus the nearest neighbors of
the source node have much larger response than other bodes.

In conclusions, we have proposed a networked model of
double-well systems to study the transmission of a weak sig-
nal in complex networks through weak coupling and found
both numerically and theoretically that the response of the
neighboring nodes decays exponentially and the coupling
strengths can be measured. One advantage of exponential
decay of response is that the nearest neighbors of the source
can be easily distinguished from others. We have used this
feature to show that the identification of network connectiv-
ity, such as the degree distribution, clustering coefficient and
community structure, etc., can be implemented by a number
of sources much smaller than the network size. This ap-
proach may be useful in the detection of connectivity for the
case of unknown network with large size where it is difficult
to let every node be the source for one time.
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