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Equivalence between the mobility edge of electronic transport on disorderless networks
and the onset of chaos via intermittency in deterministic maps
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We exhibit a remarkable equivalence between the dynamics of an intermittent nonlinear map and the
electronic transport properties (obtained via the scattering matrix) of a crystal defined on a double Cayley tree.
This strict analogy reveals in detail the nature of the mobility edge normally studied near (not at) the metal-
insulator transition in electronic systems. We provide an analytical expression for the conductance as a function
of the system size that at the transition obeys a g-exponential form. This manifests as power-law decay or few
and far between large spike oscillations according to different kinds of boundary conditions.
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Occasionally the detection of a deep running analogy be-
tween two apparently different physical problems allows for
the determination of elusive quantities and understanding of
difficult issues. Here, we present a relationship between in-
termittency and electronic transport. This development
brings together fields of research in nonlinear dynamics and
condensed-matter physics. Specifically, the dynamics at the
onset of chaos appears associated with the critical conduc-
tance at the mobility edge of regular self-similar networks
[1].

Recently, the dynamics at the transitions to chaos that
occurs along the three known universal routes from regular
to irregular behavior (in low-dimensional nonlinear maps)
has been analyzed with a good deal of detail [2—4]. This
effort has helped to establish the nature of the statistical-
mechanical structure obeyed by the dynamics associated
with nonmixing and nonergodic attractors [4]. On the other
hand, there are known connections between nonlinear dy-
namical systems and electronic transport properties. For ex-
ample, there are models for transport in incommensurate sys-
tems, where the Schrodinger equations with quasiperiodic
potentials [5] are equivalent to nonlinear maps with a quasi-
periodic route to chaos, and where the divergence of the
localization length translates into the vanishing of the ordi-
nary Lyapunov coefficient [6].

At the tangent bifurcation [2], the focal point of the inter-
mittency route to chaos, an uncommon but welcome simplic-
ity has led to analytical results in closed form for the dynam-
ics at vanishing Lyapunov exponent [2]. Here, we make the
full use of this circumstance showing that transport in a
model network, a double Cayley tree—resolved by means of
the scattering matrix—is given by the properties of a one-
dimensional nonlinear map. The model, in this study, does
not contain disorder; nevertheless, it displays a transition be-
tween localized and extended states. The translation of the
map dynamical features into electronic transport terms pro-
vides not only the description of the two different conducting
phases but, we believe, offers a rigorous account of the con-
ductance at the mobility edge. A type of localization length
in the incipient insulator mirrors the departure from expo-
nential sensitivity to initial conditions at the transition to
chaos.
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We recap briefly the usefulness of Cayley tree networks in
the study of electronic transport properties in the presence,
and in the absence, of disorder. A single Cayley tree spans
over a space of infinite dimensionality [7] and transport on it
exhibits a metal-insulator transition as a function of disorder
[8]. A scattering approach was applied in Ref. [9] for off-
diagonal disorder and shown that the metal-insulator transi-
tion occurs for connectivity K=2 (K+1 is the coordination
number). A single Cayley tree is a first approximation to an
ordinary regular lattice [8]; but, as shown below, a double
Cayley tree (two single Cayley trees joined conformally as in
Fig. 1) is a much better approximation (see also [10]). In
Ref. [11] it is shown that the conducting band of a disorder-
less double Cayley tree contracts and disappears as K in-
creases. In Ref. [12] the dynamic behavior of a chain of
scatterers was analyzed in the absence and in the presence of
disorder, while the localization transition for different types
of complex networks, including the double Cayley tree, was
studied in Ref. [13] via spectral statistics. Finally, the double
Cayley tree problem is relevant for transport in chaotic cavi-
ties with broken mirror symmetry [14]. Here, we show that
the electronic structure for K=2 can be determined by reduc-
ing the scattering matrix to a nonlinear map. This develop-
ment facilitates the band description of the conductance as a
function of energy including the location of the mobility
edge.

Here, we consider electronic transport in the double Cay-
ley tree (see Fig. 1). We refer only to the ordered crystal-like
system and reduce its associated scattering matrix to a non-
linear map. The number of times the trees are ramified, start-
ing from perfect join, is the generation n that quantifies the
size of the system. Also, for brevity, we will fix the tree

FIG. 1. A double Cayley tree of connectivity K=2 and lattice
constant a. Each bond is a perfect one-dimensional conductor.
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connectivity to K=2 where one lead, we call it the incoming
lead, is divided into two leads at a given node. The leads are
assumed to be equivalent to one-dimensional perfect wires
with length equal to the lattice constant a and are indepen-
dent of n. Hence, each node is described by the same 3 X 3
scattering matrix for which we assume the model [15]

~(a+B) Ve Ve
N node = V’; a IB ’ ( 1 )

\J: B «a

where €, a real number in the interval 0 =e= %, is the trans-
mission probability (or coupling) from the incoming lead to
the others, and vice versa. The reflection amplitude to the
incoming_lead is —(a+p), with a=—(1-V1-2€)/2 and
B=(1+1-2¢€)/2. When the incidence is only on one of the
other two leads, « is the reflection amplitude to the same
lead and B is the transmission amplitude to the other lead.

The scattering matrix of the system is 2 X 2 and satisfies a
recursive relation. If we denote by S, the scattering matrix at
generation n, the combination rule for scattering matrices
allows S, to be written in terms of the scattering matrix at a
previous generation n—1,

-1 —_— .
S,=— (V1 -2ee” %1 -5, 1), (2)
e7?ka] —\1-2eS,_, :

with 1 as the 2 X 2 identity matrix. The scattering matrix at a
generation n can be obtained iteratively starting from that for
the perfect union in the middle of our double Cayley tree:
So=0,, where o, is a Pauli matrix.

First, it can be seen that S, is a unitary matrix, which is
the condition of flux conservation. Then, time reversal in-
variance restricts S, to be a symmetric matrix. Finally, the
additional lattice spatial reflection symmetry implies that S,

has the form [14]
rn [n
Sy = ( ) 3)
tn rﬂ

where r, and 7, are the reflection and the transmission am-
plitudes. With this structure S, is diagonalized by a /4 ro-
tation [14]; that is,

el 0 1(11511—1 W
0 o) 2\-1 1/)7"02\1 1)

Here, 6, and 6, are the eigenphases that satisfy e'%=r,+1,

vy . . .
and e'%=r,~1,. In terms of the eigenphases the transmission

amplitude is given by 7,=3(e!%—e%). Moreover, the dimen-

sionless conductance (i.e., in units of 2e2/h) depends on the
eigenphases through the Landauer formula as [16,17]

8n= |ln|2' (5)

Therefore, the analysis of the eigenphases is of crucial im-

portance as they determine every transport property.
Central to our discussion is the fact that the recursive

relation (2) can be written in the diagonal form (4) and this
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FIG. 2. f(6,) of Eq. (6) for e=}: (a) ka=m/4 (dashed line),
27/4 (long dashed line), and 3m/4 (continuous line) and (b)
ka=2.6 (long dashed line), 37/4 (continuous line), and 2.1
(dashed line). The dotted lines correspond to the identity. Inset:
periodic and chaotic attractors.

implies the existence of a one-dimensional nonlinear map for
the phase 6,. The map 6,,,=/(6,) can actually be obtained in
the following closed form:

sin 6, +\1 - 2e sin 2ka )

f(6,)=2ka-6,+2 arctan( ,
cos 6, — 1 —2€cos 2ka

(6)

where the dependence on € and ka comes out clearly. In what
follows everything said about 6, is valid for ¢, as well. Per-
fect union at n=0 means 6,=0 and 6)=.

For a given value of € map (6) is periodic in ka (the
parameter related to the energy) with period 7. In the range
O=ka=m the attractor diagram presents a chaotic region
between two windows of period 1 [see inset of Fig. 2(b)],
separated by bifurcation points at

k.a= arccosx'Te, kea=m— arccosv"26, (7)

such that the chaotic region of the map takes place in the
interval k.a<ka<k.a, while windows of period 1 take
place in ka=<k.a and ka=k.a. As we see below Eq. (7)
gives the locations of the mobility edge as a function of the
transmission probability e. Fixed-point solutions 6, for 6,
n— o, are

0 for 0 =ka=ka
0,=160 for ka<ka<k.a (8)
0, for kpa=ka=m,
where 0=—ka+3m/2 and 6. is given by
sin ka(cos ka *+ \cos? ka — 2€)

tan 0. = — . 9)
1 — cos ka(cos ka = \cos” ka — 2e)

These fixed-point solutions indicate that, for large n, 6,
reaches the values 6. in the windows of single period, while
in the chaotic region 6, fluctuates according to an invariant
density with maximum at 6.

At the bifurcation points k.a and k..a, the fixed-point
phase 6., takes the critical values 06=—arccosxs’z+37r/2 and
0., =arccos 2e+/ 2, respectively, for 6., between 0 and 2.
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In Fig. 2(a) we plot map (6) for e=1/4 for the three param-
eter values ka=m/4,2/4,37r/4. It is evident that the tran-
sitions from chaotic behavior to the windows of period 1 are
tangent bifurcations as the map is tangent to the identity line
[2] at the critical values k.a=/4 and k.a=3m/4, where
0,=5m/4 and 6.,=3/4. Figure 2(b) shows three cases: se-
cant (ka=2.6) and tangent (ka=3/4) period 1 solutions and
a bottleneck (ka=2.1) that gives rise to intermittency as a
precursor to periodic behavior.

Information about transport can be obtained from the sen-
sitivity to initial conditions that characterize the dynamics of
the nonlinear map. For finite n it is given by

il

= exp[A,(n)n], (10)

n

_ ‘dﬁn
| d6,

where 6, is an initial condition and the exponential law after
the second identity defines the finite n Lyapunov exponent
A, (n). For n large A;(n) becomes the Lyapunov exponent
N\i, a number independent of 6, that according to its sign
characterizes periodic and chaotic attractors. At the tangent
bifurcation N;{=0 and the sensitivity adopts instead a
g-exponential form (see below) [2,18]. From Egs. (5), (6),

and (10) [and tn=%(ei("l—ei";z)] we obtain the recursion for-
mula

8n=8n-1 eXp(‘/\] (n)n)eXP(A; (n)n) > (1 1)

€
1-€e—\1-2ecos(b, +2ka)

Ay(n)=In (12)

where A|(n) is given by Eq. (12) with 6, replaced with 6.
We note that A, and A|, and hence g,, do not depend on the
initial conditions €, and 6. The Lyapunov exponent \; is
given by Eq. (12) with 6, replaced with 6.,.

The dynamical properties of map (6) translate into the
following network properties: (i) in relation to the attractors
of period 1 that take place along O0=ka<k.a and
k.ra<ka= 1, we corroborate from Egs. (8) and (12) that X\,
is negative and therefore the conductance g, decays expo-
nentially with system size n, g,=exp(2\;n), implying local-
ization, with the localization length being {;=a/|\,|. In the
left panel of Fig. 3 we see a clear exponential decay of g, as
a function of n at ka=0.5, where we compare g, computed
directly from Eq. (5) with that obtained from \,. We notice
that the conductance for the localized states of an ordered
system displays the same behavior as that in the insulating
regime of a disordered wire in quasi-one-dimensional con-
figuration [19]. (ii) With respect to the chaotic attractors that
occur in the interval k.a<ka<k.a, we observe that A be-
comes positive and the recursion relation (11) does not let g,
to decay but makes it oscillate with n (not shown here) indi-
cating that conduction takes place. In our model g, does not
scale with the system size as in the metallic regime of quasi-
one-dimensional disordered wire where Ohm’s law is satis-
fied [19]. In the parameter region where the map is incipi-
ently chaotic, say ka =k a, the network grows with n with an
insulator character, but interrupted for other intermediate val-
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FIG. 3. Conductance as a function of generation for e:i: ka
=0.5 (left panel) and ka=r/4 (right panel). Continuous lines rep-
resent g, obtained directly from the map through Eq. (5) while
dotted lines correspond to g,=exp(2\n) and g,=exps»(2\3,,n) for
left panel and right panel, respectively. The two curves in right
panel differ because of a proportionality factor [see Eq. (14)].

ues of n by conducting crystals. In the map dynamics these
are the laminar episodes separated by chaotic bursts in inter-
mittent trajectories.

The most distinct outcome of our treatment is the descrip-
tion obtained of the mobility edge from the dynamics at the
critical attractors located at ka=k..a and ka=k.a. There,
\;=0 and according to Eq. (11) not much can be said about
the size dependence of the conductance when n>1.
However, we can use to our advantage the known properties
of the anomalous dynamics occurring at these attractors
once they are identified as tangent bifurcations [see Fig. 2(b)
for ka=3/4]. At a tangent bifurcation of general nonlinear-
ity z>1 the sensitivity obeys a g-exponential law for
large n [2],

gn = En>1 = equ()\qn) = [1 - (q - I)Aqn]:l/(q_l)’ (13)

where A, is a g-generalized Lyapunov coefficient given by
N,=Fzu, q=2-1/z, where u is the leading term of the ex-
pansion up to order z of 6, close to 6. (or 6.); ie.,
6,—6.=(6,_,—6.)+ul6,_,—6,+---. The minus and plus
signs in Eq. (13) and in A, correspond to trajectories at the
left and right, respectively, of the point of tangency ..
Equation (13) implies power-law decay of &, with n when
0,—0.<0 and faster than exponential growth when
6,—6.>0. (We recall that any choice of S, other than the
Pauli matrix translates into another initial condition for the
map). By making the expansion around 6, (or 6.,) for our
map (6) we find (as evidently anticipated) z=2 implying
q=3/2, u=vy(1-2¢€)/2¢, and the g-generalized Lyapunov
exponent is N3p=—2v(1-2€)/2e. Following the same
steps that lead to Eq. (11), the recursion relation for
g, at each Dbifurcation point takes the form
8n=8n-1 €Xp3pl Azp(m)nlexpyp[Ajp(n)n],  so  that  when
6, 0.<0 [see Eq. (13)], g,=exp3(2\3n), or
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gn o (1= 3hgm) ™" (14)

In the right panel of Fig. 3 we compare the results from Eq.
(5) (continuous line) and Eq. (14) (dashed line). It is clear
that g, decays as a power law (with quartic exponent) rather
than the exponential in the insulating phase. We emphasize
that a localization length given by {3,=a/\;, can still be
defined at the mobility edge. To our knowledge this property
has not been reported before. When 6,—6.>0, \j,
=2(1-2€)/2€>0 and the recursion relation for g, de-
scribes, as the result of the diverging duration of the laminar
episodes of intermittency, large n intervals of vanishing g,
between increasingly large spike oscillations.

In summary, we can draw significant conclusions about
electronic transport from our study. These arise naturally
when considering the dynamical properties of the equivalent
nonlinear map near or at the intermittency transition to
chaos. Since the iteration time in the map translates into the
generation n of the network, time evolution means growth of
system size, reaching the thermodynamic limit (and true self-
similarity) when n— 0. In that limit, windows of period 1
separated by a chaotic band correspond, respectively, to lo-
calized and extended electronic states. Further, in the re-
ferred parameter (ka,e€) regions, the conductance g, of the
model crystal shows either an exponential decay with the
system size, with localization length given by ¢; (as in the
case of a quasi-one-dimensional disordered wire [19]), or an
oscillating property signaling conducting states. The pair of
tangent bifurcation points of the map correspond to the band
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or mobility edges that separate conductor from insulator be-
havior. At these bifurcations the sensitivity to initial condi-
tions &, exhibits either power-law decay (when 6,< 6, or
6> 0,) or faster than exponential increase (6., <6,<6.)
and consequently the conductance inherits comparable decay
or variability with the system size n. Notably, as we have
seen we can still define a localization length, the
g-generalized localization length {, with a fixed value of
g=3/2. This expression is universal, i.e., it is satisfied by all
maps that in the neighborhood of the point of tangency have
quadratic term, i.e., z=2 [2]. This quantity can be obtained
directly by the evaluation of g, [in Eq. (5)] when
n— 0. At the mobility edge {; '=_lim, ., n~! In g, vanishes
because In g, no longer decreases linearly with n, as it is the
case in the insulating phase. However, the use of
&y '=—lim, . n! In, g, leads to a finite number for one par-
ticular value of ¢, g=3/2, when the degree of deformation ¢
in the ¢ logarithm restores linear behavior. Otherwise, ,
vanishes or diverges. In spite of the unusual features of the
double Cayley tree transport model, the complete set of exact
solutions derived from it provides a comprehensive picture
about nonexponential behavior of central quantities like the
conductance at the transition between the insulator and con-
ductor regimes.

We are indebted to P. A. Mello for pointing out and intro-
ducing us to the model and techniques to study the mobility
edge presented here. A.R. recognizes support by DGAPA-
UNAM and CONACYT (Mexican agencies).
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