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We consider a driven quantum harmonic oscillator strongly coupled to a heat bath. Starting from the exact
quantum Langevin equation, we use a Green’s function approach to determine the corresponding semiclassical
equation for the Wigner phase space distribution. In the limit of high friction and high temperature, we apply
Brinkman’s method to derive the quantum Smoluchowski equation for the probability distribution in position
space. We further determine the range of validity of the equation and discuss the special case of a Brownian
parametric oscillator.
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I. INTRODUCTION

The investigation of Brownian motion in the overdamped
regime is of fundamental importance both from a theoretical
and experimental point of view. In the limit of high friction,
the velocity part of the phase space distribution of a Brown-
ian particle quickly relaxes to equilibrium. Then for times
much larger than the velocity relaxation time, a description
in terms of the position distribution alone becomes possible
and the Kramers equation reduces to the simpler Smolu-
chowski equation �1,2�. Recently, a quantum generalization
of the Smoluchowski equation for systems strongly coupled
to a heat bath has been put forward �3,4�. The quantum
Smoluchowski equation provides a semiclassical description
of the evolution of the diagonal matrix elements of the sys-
tem density operator in the coordinate representation; it al-
lows to study the influence of thermal as well as quantum
fluctuations. The quantum Smoluchowski equation has been
applied to problems involving both undriven and driven sys-
tems; examples include the study of the quantum decay rates
for driven potential barriers �5�, quantum phase diffusion and
charging effects in Josephson junctions �6�, quantum diffu-
sion in tilted periodic potentials �7,8�, and quantum exten-
sions of nonequilibrium fluctuation theorems �9�. However,
the exact expression of the quantum Smoluchowski equation
for undriven systems is still the subject of discussions
�10–14� and a rigorous derivation for driven quantum sys-
tems is lacking.

The aim of this paper is twofold: we first present a trans-
parent derivation of the quantum Smoluchowski equation
that makes use of controlled approximations, in order to
complement the mathematically involved path integral deri-
vation of Ref. �3� and the heuristic approach of Ref. �12�.
Second, we provide the first derivation of the driven quan-
tum Smoluchowski equation and determine its range of va-
lidity. In the following we consider a quantum harmonic os-
cillator with arbitrary time-dependent frequency. We employ
a simple Green’s function approach to determine the semi-
classical expression of the diffusion coefficients appearing in
the evolution equation of the Wigner phase space distribu-
tion, starting from the known exact quantum Langevin equa-
tion. In the limit of large friction and high temperature, we
then apply the method introduced by Brinkman �15� to de-
rive the quantum Smoluchowski equation. In the undriven
case, we recover the equation of Ref. �12� and the semiclas-
sical expression of the one of Ref. �14�. In the driven case,

on the other hand, we show that the quantum Smoluchowski
equation remains valid provided the driving rate is smaller
than the velocity relaxation rate. We finally apply our results
to the important example of the Brownian parametric quan-
tum harmonic oscillator �16�.

II. QUANTUM LANGEVIN EQUATION

The starting point of our discussion is the quantum
Langevin equation for a harmonic oscillator with time-
dependent potential, V�x , t�=m�2�t�x2 /2, linearly coupled to
a bath of independent harmonic oscillators �17,18�,

mẍ + �
0

t

dt���t − t��ẋ�t�� +
�V

�x
= − ��t�x0 + F�t� . �1�

In the above equation the damping kernel is given by
��t− t��=1 /��−�

� d��J��� /��cos ��t− t��, where J��� is the
spectral density of the bath. In the sequel we focus on the
Ohmic regime where J���=m��, the parameter � denoting
the friction coefficient. The fluctuating force operator F�t�
verifies the correlation function

�F�t�F�t�� + F�t��F�t��

= ��
−�

� d�

�
J���coth	���

2

cos ��t − t�� , �2�

where the average is taken over the initial bath degrees of
freedom. Equation �2� is exact and is derived under the as-
sumption that the initial density operator of system plus bath
factorizes. The solution of the Langevin Eq. �1� can be writ-
ten as

x�t� = mẋ0G1�t� + mx0G2�t� + X�t� , �3�

where x0 and ẋ0 are the initial position and velocity of the
quantum system and X�t�=�0

t dt�G�t , t��F�t�� is the fluctuat-
ing position operator. The two functions G1�t� and G2�t� are
solutions of the homogeneous Langevin Eq. �1� with vanish-
ing member on the right-hand side. By introducing the two
solutions, 	1�t� and 	2�t�, of the equation ÿ+
2�t�y=0
with 
2�t�=�2�t�−�2 /4, we can explicitly write G1�t�
= �1 /m�exp�−�t /2�	1�t� and G2�t�= �1 /m�exp�−�t /2�	2�t�.
The Green’s function G�t , t�� is then given by the combina-
tion of the two functions 	1 and 	2 taken at different times t
and t�,
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G�t,t�� =
e��t−t��/2

m
�	1�t�	2�t�� − 	1�t��	2�t�� . �4�

A detailed derivation of the Green’s function �4� for the time-
dependent harmonic oscillator can be found in Ref. �19�. The
two functions 	1�t� and 	2�t� are linearly independent and
their Wronskian obeys 	̇1�t�	2�t�−	1�t�	̇2�t�=1 for all time
t. By fixing the initial conditions, 	1�0�= 	̇2�0�=0 and
	2�0�= 	̇1�0�=1, the Green’s function G�t , t�� verifies the re-
lations G�t , t�=0 and G�1,0��t , t�=−G�0,1��t , t�=1 /m. Here
G�i,j��t , t�� denotes the ith �jth� derivative with respect to the
first �second� time argument. Moreover, since the system is
initially decoupled from the heat bath, we have
�x0F�t��= �ẋ0F�t��=0.

III. WIGNER FUNCTION

The phase space dynamics of a quantum system is conve-
niently described using the Wigner quasiprobability distribu-
tion �20�. The evolution equation of the Wigner function
W�q , p , t� for a harmonic oscillator coupled to a bath of har-
monic oscillators is of the general form �21–23�,

�

�t
W = −

p

m

�

�q
W + m
̃2�t�q

�

�p
W + 2��t�

�

�p
�pW�

+ Dpp�t�
�2

�p2W + Dqp�t�
�2

�q � p
W . �5�

An expression for the time-dependent parameters 
̃2�t�,
2��t�, Dpp�t�, and Dqp�t� for a driven harmonic oscillator can
be directly derived from the quantum Langevin Eq. �1� by
generalizing the method introduced in Ref. �24�. The first
step is to rewrite Eq. �1� in a form that is local in time �25�.
This can be done by first inverting Eq. �3� and its first time
derivative in order to express the initial coordinates x0 and ẋ0
in terms of the time-dependent variables. The latter coordi-
nates are then injected into the second time derivative of Eq.
�3�, leading to a Langevin equation with time-dependent co-
efficients,

ẍ + 2��t�ẋ + 
̃2�t� = F�t�/m . �6�

Here we have defined the function 2��t�
= �G1�t�G̈2�t�−G2�t�G̈1�t�� /L�t� and the parameter 
̃2�t�
= �Ġ2�t�G̈1�t�− Ġ1�t�G̈2�t�� /L�t�. The denominator is given

by L�t�=m�G2�t�Ġ1�t�−G1�t�Ġ2�t��. In the Ohmic regime,

we simply have 2��t�=� and 
̃2�t�=�2�t�. The second step
is to derive an equation similar to Eq. �6� from the evolution
equation of the Wigner function �5� by evaluating the
first moments of the position and momentum operators,
�x�=�−�

� dq�−�
� dp�q+ �i� /2��p�W�q , p , t� and �p�=m�ẋ�

=�−�
� dq�−�

� dp�p− �i� /2��q�W�q , p , t�. This yields

�ẍ� + 2��t��ẋ� + 
̃2�t��x� = 0. �7�

Since the Langevin equation and the equation for the Wigner
function describe the same process, the average of Eq. �6�
must be equal to Eq. �7�, implying that the time-dependent

parameters 2��t� and 
̃2�t� are identical in both equations.
By repeating the same argument for the second moments of
the position and momentum operators, the diffusion coeffi-
cients Dpp�t� and Dqp�t� can be related to the fluctuating po-
sition operator X�t� and the noise operator F�t� via �23,24�,

Dpp�t� =
m

2
�Ẋ�t�F�t� + F�t�Ẋ�t�� ,

Dqp�t� =
1

2
�X�t�F�t� + F�t�X�t�� . �8�

IV. SEMICLASSICAL DIFFUSION COEFFICIENTS

The diffusion coefficients Dpp�t� and Dqp�t� can be further
expressed in terms of the correlation function �2� of the noise
operator and the Green’s function �4� by using the definition
of the fluctuating position operator X�t�. We find,

Dpp�t� =
m

2
�

0

t

dt�G�1,0��t,t���F�t��F�t� + F�t�F�t��� ,

Dqp�t� =
1

2
�

0

t

dt�G�t,t���F�t��F�t� + F�t�F�t��� . �9�

It is important to notice that the Green’s function G�t , t�� is
the same for quantum and classical oscillators and that the
quantum-mechanical nature of the process is solely encoded
in the noise correlation function. A semiclassical approxima-
tion of the diffusion coefficients can accordingly be obtained
by expanding the noise correlator �2� in powers of �. From
Eq. �2�, we obtain up to second order for an Ohmic bath,

�F�t��F�t� + F�t�F�t��� =
4�m

�
��t − t�� − �2�m�

3
���t − t��

+ O��3� . �10�

The first term on the right-hand side corresponds to the clas-
sical noise correlation function, while the second term ac-
counts for the first quantum corrections. We next evaluate the
classical and quantum contributions to the diffusion coeffi-
cients Dpp�t� and Dqp�t�, Eqs. �9�, separately. The classical
expression of the coefficient Dpp�t� reads

Dpp
c �t� =

m

2
�

0

t

dt�G�1,0��t,t��
4�m

�
��t − t�� =

m�

�
, �11�

where we have used the relation G�1,0��t , t�=1 /m. Since
G�t , t�=0 the classical coefficient Dqp�t� vanishes,

Dqp
c �t� =

1

2
�

0

t

dt�G�t,t��
4�m

�
��t − t�� = 0. �12�

In the limit �→0 the diffusion coefficients are thus constant
and Eq. �5� reduces to the familiar classical Klein-Kramers
equation �1,2�.

The quantum expressions of the diffusion coefficients on
the other hand are obtained by considering the quantum cor-
rections to the noise correlation function �10�. For the coef-
ficient Dpp�t�, we have,
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Dpp
q �t� =

m

2
�

0

t

dt�G�1,0��t,t��	−
��2m�

3
���t − t��


=
2�m2


�
��2�t� − �2� , �13�

where we have used G�1,2��t , t�=−��2�t�−�2� /m and intro-
duced the parameter 
=�2�2 /24m �12�; the latter measures
the magnitude of quantum fluctuations. By noting moreover
that G�0,2��t , t�=−� /m, we find that the quantum contribution
to Dqp�t� is

Dqp
q �t� =

1

2
�

0

t

dt�G�t,t��	−
��2m�

3
���t − t��
 =

2�2m


�
.

�14�

By combining Eqs. �11�–�14�, we eventually arrive at the
following expressions for the semiclassical diffusion coeffi-
cients, up to second order in ���,

Dpp�t� =
m�

�
+

2�m2


�
��2�t� − �2� , �15�

Dqp�t� =
2�2m


�
. �16�

Several points are worth emphasizing. First, for undriven
systems, the diffusion coefficients are constant in time and
Eq. �5� describes a Markovian process. This is due to the
Ohmic regime and the semiclassical limit that we consider
here. Incidentally, in this regime the nature of the initial in-
teraction between system and bath, decoupled or thermal, is
not of importance. Furthermore, the quantum corrections Dpp

q

and Dqp
q are proportional to the friction coefficient � and

therefore become negligible in the limit of vanishing cou-
pling. We note in addition that the terms �2 appearing in
Dpp

q �t� and Dqp
q �t�, Eqs. �15� and �16�, are absent in the dis-

cussion of Ref. �12�. This difference can be traced back to
the heuristic approach used in this work, which consists in
taking the limit �→0 for the evaluation of the diffusion
coefficients. No such assumption is made here.

It is instructive to check the correctness of expressions
�15� and �16� by computing the second moments of the po-
sition and momentum operators for an undriven harmonic
oscillator, �2�t�=�0

2. Starting from the equation for the
Wigner function �5�, one can show that �26,27�,

�x2� =
t�1/�

1

�0
2	 Dpp

m2�
+

Dqp

m

 =

1

�m�0
2 +

2


�
, �17�

�p2� =
t�1/�

Dpp

�
=

m

�
+

2m2


�
��0

2 − �2� , �18�

which are in agreement with the results obtained directly
from the Langevin Eq. �1�.

V. QUANTUM SMOLUCHOWSKI EQUATION

We are now in the position to derive the quantum Smolu-
chowski equation from the evolution equation of the Wigner

function �5�, in the limit of large friction. To this end, we use
the method developed by Brinkman �15� and expand the
Wigner function in the basis of Weber functions Dn�x�
�12,28�,

W�q,p,t� = e−�p2/4m�
n=0

�

Dn	p� �

2m

�n�q,t� , �19�

where Dn�x�=2−n/2e−x2/2Hn�x� and Hn�x� are the Hermite
polynomials. The Weber functions are orthogonal,
�−�

� dyDn�y�Dp�y�= ��n!��n,p, and obey the recurrence rela-
tions, yDn�y�= �nDn−1�y�+Dn+1�y�� /�2 and �yDn�y�
= �nDn−1�y�−Dn+1�y�� /�2. By now inserting the expansion
�19� into Eq. �5� and integrating over the momentum variable
after multiplying by �� /2m exp��p2 /4m�Dn�p�� /2m�, one
obtains the exact recurrence equation for the functions
�n�q , t�,

�t�n + �n�n = −
1

��m
��q�n−1 + �n + 1��q�n+1�

−��

m

�V

�q
�n−1 + 	�Dpp

m
− �
�n−2

− Dqp��

m
�q�n−1. �20�

In the high damping limit, or equivalently in the noninertial
limit m→0, terms of the form �t�n /� in Eq. �20� become
negligible for n�1 and the Brinkman hierarchy can be sim-
plified to

��0

�t
= −

1
��m

��1

�q
, �21�

�1 = −
1

���m
	 ��0

�q
+ 2

��2

�q
+ �V��q,t��0
 − 2�m

�
�


��0

�q
,

�22�

�2 = −
1

2���m
	 ��1

�q
+ 3

��3

�q
+ �V��q,t��1


+ �
V��q,t� − m
�2��0 −�m

�
�


��1

�q
. �23�

In the limit m→0, the function �2�q , t� further reduces to
�2�q , t�= �
V��q , t�−m
�2��0�q , t� and the set of three Eqs.
�21�–�23� is closed �the latter can be seen by multiplying Eq.
�23� on both sides with �m and by taking the m dependence
of 
 explicitly into account�. The probability density for the
position of the Brownian particle is P�q , t�=�dpW�q , p , t�
=�0�q , t�. Solving Eqs. �21�–�23� for �0�q , t�, we then obtain
the quantum Smoluchowski equation,

�P�q,t�
�t

=
1

�m

�

�q

V��q,t� +

1

�

�

�q
De�q,t��P�q,t� , �24�

with V��q , t�=m�2�t�q and the diffusion coefficient
De�q , t�= �1+2
V��q , t��. In the undriven case, Eq. �24� is
equivalent to the equation derived in Refs. �12,14� �in con-
trast to the one proposed in Refs. �3,13��. Note that for ther-
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modynamic reasons �10,11�, the effective diffusion coeffi-
cient De�q , t� should be regarded as the first order expansion
of De�q , t�=1 / �1−2
V��q , t�� �the argument presented in
Refs �10,11�. only depends on the diffusion coefficient and
not on the explicit form of the potential�. The present semi-
classical derivation is restricted to the high-temperature limit
and to harmonic potentials. A discussion for arbitrary tem-
peratures �including the known logarithmic corrections �3��
and arbitrary potentials will be given elsewhere.

The domain of validity of the semiclassical quantum
Smoluchowski Eq. �24� can be determined from the condi-
tion �t�n /���n �12�. By introducing the characteristic
length scale �2�t�=D� /�2�t� and using the replacement
�x�1�q , t���1���t� , t� /��t�, the requirement �t�1 /���1
leads to ��t���, ���t��kT and �t��t���2, which, respec-
tively, correspond to high-friction, high-temperature and
moderate-driving conditions. The constraint �t�2 /���2 fur-
ther yields ���kT. The condition �t��t���2 imposes that
the driving rate is smaller than the velocity relaxation rate
and ensures that the nondiagonal elements of the density
operator remain negligible at all times. We note that the driv-
ing rate can be quite large in the limit of high �.

VI. PARAMETRIC HARMONIC OSCILLATOR

An important example of a driven quantum system is the
parametric oscillator with time-dependent frequency, �2�t�
=�0

2+�2 cos�
dt+�� �16�. Here �0 is the fixed frequency of
the oscillator, 
d the modulation frequency, �2 the amplitude
of modulation and � an initial phase. For this exactly solv-
able system, the two functions 	1�t� and 	2�t� are given by

Mathieu functions �16�. We mention that the properties of a
classical parametric oscillator have recently been investi-
gated experimentally in optically trapped water droplets �29�.
For the case of the parametric oscillator, the moderate-
driving condition of the quantum Smoluchowski equation
translates into �
d��2, showing that for fixed friction coef-
ficient, the restrictions on the driving frequency become
more stringent, the larger the modulation amplitude.

VII. CONCLUSION

We have presented a transparent and careful derivation of
the quantum Smoluchowksi equation for a driven quantum
system strongly coupled to a heat bath. Starting from the
exact quantum Langevin equation of a damped harmonic os-
cillator, we have combined a simple Green’s function ap-
proach and a truncation of the Brinkman hierarchy in the
strong friction limit to obtain the evolution equation of the
semiclassical position distribution. Our findings confirm the
results obtained in Refs. �12,14� in the undriven case. On the
other hand, we have established the range of validity of the
quantum Smoluchowski equation for a driven system and
shown that it restricts the driving rate to be smaller than the
velocity relaxation rate. We have finally discussed the impor-
tant case of the parametric harmonic oscillator.

ACKNOWLEDGMENTS

We thank S. Deffner, P. Talkner and P. Hänggi for discus-
sions. This work was supported by the Emmy Noether Pro-
gram of the DFG �Contract No. LU1382/1-1� and the cluster
of excellence Nanosystems Initiative Munich �NIM�.

�1� H. Risken, The Fokker-Planck Equation �Springer, Berlin,
1989�.

�2� W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Lange-
vin Equation �World Scientific, Singapore, 1996�.

�3� J. Ankerhold, P. Pechukas, and H. Grabert, Phys. Rev. Lett. 87,
086802 �2001�.

�4� J. Ankerhold, H. Grabert, and P. Pechukas, Chaos 15, 026106
�2005�.

�5� J. Ankerhold, Phys. Rev. E 64, 060102�R� �2001�.
�6� J. Ankerhold, Europhys. Lett. 67, 280 �2004�.
�7� L. Machura, M. Kostur, P. Talkner, J. Łuczka, and P. Hänggi,

Phys. Rev. E 73, 031105 �2006�.
�8� W. T. Coffey, Yu. P. Kalmykov, S. V. Titov, and L. Cleary,

Phys. Rev. E 78, 031114 �2008�.
�9� S. Deffner and E. Lutz, e-print arXiv:0902.1858.

�10� L. Machura, M. Kostur, P. Hänggi, P. Talkner, and J. Łuczka,
Phys. Rev. E 70, 031107 �2004�.

�11� J. Łuczka, R. Rudnicki, and P. Hänggi, Physica A 351, 60
�2005�.

�12� W. T. Coffey, Y. P. Kalmykov, S. V. Titov, and B. P. Mulligan,
J. Phys A: Math. Theor. 40, F91 �2007�.

�13� R. Tsekov, J. Phys A: Math. Theor. 40, 10945 �2007�.
�14� J. Ankerhold and H. Grabert, Phys. Rev. Lett. 101, 169902�E�

�2008�.

�15� H. C. Brinkman, Physica 22, 29 �1956�.
�16� C. Zerbe and P. Hänggi, Phys. Rev. E 52, 1533 �1995�.
�17� G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 37,

4419 �1988�.
�18� G.-L. Ingold, Path Integrals and Their Application to Dissipa-

tive Quantum Systems, Lecture Notes in Physics Vol. 611
�Springer, New York, 2002�, pp. 1–53.

�19� H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,
Polymer Physics, and Financial Markets �World Scientific,
Singapore, 2006�, Chap. 3.

�20� E. P. Wigner, Phys. Rev. 40, 749 �1932�.
�21� P. Schramm, R. Jung, and H. Grabert, Phys. Lett. A 107, 385

�1985�.
�22� B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843

�1992�.
�23� J. J. Halliwell and T. Yu, Phys. Rev. D 53, 2012 �1996�.
�24� G. W. Ford and R. F. O’Connell, Phys. Rev. D 64, 105020

�2001�.
�25� P. Hänggi and H. Thomas, Phys. Rep. 88, 207 �1982�.
�26� T. Mai and A. Dhar, Phys. Rev. E 75, 061101 �2007�.
�27� J. P. Paz and A. J. Roncaglia, Phys. Rev. A 79, 032102 �2009�.
�28� J. L. Garcìa-Palacios and D. Zueco, J. Phys. A 37, 10735

�2004�.
�29� R. Di Leonardo et al., Phys. Rev. Lett. 99, 010601 �2007�.

BRIEF REPORTS PHYSICAL REVIEW E 80, 042101 �2009�

042101-4


