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Neuronal cells in isolation or as an assembly exhibit bursting behavior on two different time scales. We
introduce a simple one-dimensional model which requires only one phase variable to describe the phenomenon
of parabolic bursting. The analysis in the continuum limit reveals that for any unimodal distribution of fre-
quencies, the qualitative properties of the full and the reduced model are identical. Further, we derive analyti-
cally an exact low-dimensional description of a globally coupled network of bursting oscillators for our model.
Study of the stability for this low-dimensional model reveals different dynamical signatures in the parameter
space. We demonstrate that the structure of the parameter space remains independent of the number of spikes
per burst.

DOI: 10.1103/PhysRevE.80.041930 PACS number�s�: 87.19.ll, 87.19.lj, 87.19.lm

Bursting is a dynamic phenomenon that alternates be-
tween slowly changing quiescent states and periods of activ-
ity. Neuronal cells, whether in isolation or part of an assem-
bly, exhibit such behavior and the study of generating
mechanisms for bursting is an area of active research �1–6�.
Neural bursting can occur due to external forcing or due to
interplay of fast and slow time scales of the system �7�. Spe-
cifically in parabolic bursting, at the start and end of the
active phase the spike frequency is smaller compared to the
middle of the active phase. This type of bursting has been
observed in the R-15 neuron in abdominal ganglion of Aply-
sia and has been qualitatively modeled and studied �8�. Para-
bolic bursting is modeled using either three- or two-
dimensional nonlinear dynamic systems, of which the latter
has been shown to be reducible to a canonical form �9�. In
this paper we introduce a simple one-dimensional phase
model, which captures all the characteristics of parabolic
bursting. Integrated in small networks analytical techniques
become applicable due to the model’s simplicity, whereas
large bursting network models will benefit from the fact that
it is simple to integrate and computationally inexpensive. As
an example, we will study a population of bursters with
phase coupling and derive an exact low-dimensional descrip-
tion for the complex order parameter of the population dis-
playing bifurcation phase diagram with the different types of
synchronization. In previous studies, similar couplings have
been used in populations of coupled limit cycle oscillators
�Kuramoto oscillators� in the context of pacemaker cells in
the heart, circadian behavior of neural cells in the brain, and
others �10,11�. This paper is organized as follows: first we
formally introduce our model, then we present our results of
network dynamics of globally coupled network of oscilla-
tors; subsequently we derive a low-dimensional reduced sys-
tem in the continuum limit and study the bifurcations of the
reduced system.

The class of models that has been shown to exhibit para-
bolic bursting can be generically represented in the following
form:

ẋ = f�x� + �2g�x,y,�� , �1�

ẏ = �h�x,y,�� , �2�

where x�Rn , y�Rm and for smooth functions f ,g ,h and
��1 it has been shown that burstlike solutions exist under
the assumptions: �a� ẋ= f�x� has an attracting invariant circle
and �b� ẏ=h�0,y ,0� has a stable limit cycle solution �9�. It
has also been shown that the canonical form of the bursting
equations written in terms of phase variable ��S1 assumes
the form

�̇ = �1 − cos �� + �1 + cos ��sin � , �3�

�̇ = � , �4�

where sin��� is the slowly varying periodic driving �9�. Es-
sentially the canonical form is of the following form:

�̇ = 1 − cos � + A�x,y� , �5�

ẋ = �x�x���� − x�; ẏ = �y�y���� − y� , �6�

where A�x ,y� is an activation function dependent on the slow
variables �x ,y� of the system �7�. The function A�x ,y� is a
smoothly varying periodic function changing signs such that
the system alternately undergoes saddle node on an invariant
circle bifurcation. The slow variables A�x ,y� determines the
bifurcation pattern as shown in Fig. 1.

In the above class of models the fast subsystem is driven
by a slow subsystem involving a separate dynamical sub-
system for the slow variables. In this paper we propose a
model that shows parabolic bursting involving only the
phase variable �,

�̇ = a − cos��� − cos��/n� , �7�

where cos�� /n� is the slow term, a being the bifurcation
parameter and n determines the number of spikes per burst.
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Without the slow term the system shows saddle node bifur-
cation on an invariant circle. Incorporating the slow term the
dynamics rides on the slowly varying sinusoidal function and
burst/spikes and interburst intervals are governed by the fast
term and slow term, respectively. For a�2 all the fixed
points have imaginary values giving rise to oscillatory be-
havior and the time period of oscillations can be obtained as
follows: Let �=�−�� be the deviation from the fixed point
�� and Eq. �7� gives

�̇ = a − cos��� − cos��

n
� = a − 2 +

n2 + 1

2n2 �2 + h . o . �8�

Let r=a−2 and x=��n2+1� /2n2� then 	ẋ=r+x2, where
	=�2n2 / �n2+1�. The time period T is

T = 	�
−


+
 dx

r + x2 = 	
�

�a − 2
. �9�

It is easy to see that as a→2, time period T→
. Thus by
tuning the control parameter it is possible to obtain parabolic
bursts separated by our desired interburst gap. The time evo-
lution of a single oscillator is shown in Fig. 2�a�, where a
voltagelike quantity V=−cos �, plotted as a function of time,
shows the regular parabolic bursting. We have introduced
inter burst variability by adding noise in Eq. �7�. In Fig. 2�b�
we show the time evolution of the stochastic version of Eq.
�7� which is integrated with noise using Euler-Maruyama
method �13�. The noise allows interburst interval to vary and
is determined by the noise strength, �.

Now we study the effect of coupling on a network of
bursting oscillators. The coupled system with stochastic time
evolution can be written as

d�i = 	ai − F„cos��i� + cos��i/n�… +
�

M


j=1

M

sin��i − � j��dt

+ �dWi, �10�

where � is the coupling strength, F is the forcing strength,
M is the number of oscillators, and dWi denotes a Weiner
process. The synchronized behavior can be studied by
computing a complex order parameter defined as
R�t�= 1

M 
 jexp�i� j�t��, where for a synchronized state �R�=1
and for a completely unsynchronized state �R�
0 for large
n ,M. First we consider two coupled oscillators and show the
time evolution of V�t� for �=0.2 and �=2.0, a1=a2=2.01 and
F=1.0 �Fig. 3�. For random choice of initial phases and for
�=0.0, V�t� evolves independently, implying �R�t���1. For
�=0.2 after a few initial transients the bursts synchronize but
the spikes do not as reflected in the behavior of the order
parameter R�t�. For high coupling strength �=2.0 there is
complete synchronization and the order parameter stays
close to 1 for all times. The variation in coupling strength
results in a transition to the synchronized state from the com-
pletely unsynchronized state. The phase transition is demon-
strated for an all-to-all coupled network for varying n
�Fig. 4�.

A(x,y) > 0 A(x,y) = 0 A(x,y) < 0

FIG. 1. Saddle-node bifurcation on an invariant circle. Black
dot, open circle, and thick open circle indicates stable, unstable, and
semistable fixed points, respectively.
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FIG. 2. V�t�=−cos���t�� is plotted as a function of time in arbi-
trary units, a=2.01, n=7; �a� without noise, �b� with noise, noise
strength �=0.02.
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FIG. 3. The temporal dynamics of two coupled bursters is shown in first and second row. The third row shows the order parameter for
coupling strength; �a� left: �=0.2, burst synchronization; �b� right: �=2.0, spike synchronization. Other parameters are chosen as in Fig. 2.
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The analysis of phase oscillators is often done in the con-
tinuum limit �M→
�, where the state of the coupled system
can be described by a density function f�� ,a , t�, where f is
defined such that the fraction of oscillators with phases lying
between � and d� and frequencies between a and da is given
by f�� ,a , t�d�da �10,14�. The natural frequencies are drawn
from a distribution g�a� such that

�
−



 �
0

2�

f��,a,t�d�da = 1, �
0

2�

f��,a,t�d� = g�a�

�11�

For the conservation of oscillators of frequency a the conti-
nuity equation is written as

� f

�t
+

��fv�
��

= 0. �12�

The velocity v�� ,a , t�=d� /dt is now written as

v��,a,t� = a − F sin��� − F sin��/n�

+ ��
−



 �
0

2�

sin��̂ − ��f��̂, â,t�d�̂dâ , �13�

where without loss of any generality but for analytic simplic-
ity we use sin functions instead of cos functions in Eq. �7�.

In the continuum limit the complex order parameter z can
be defined as

z�t� = �
−



 �
0

2�

ei�f��,a,t�d�da . �14�

Using the above it is easy to see that the expression for the
velocity becomes

v��,a,t� = a − F� ei�/n

2i
−

e−i�/n

2i
�

+
1

2i
���z + F�e−i� − ��z + F��ei�� , �15�

where � indicates the complex conjugate. The distribution
function can be expressed as a Fourier series

f��,a,t� =
g�a�
2�

	1 + 

k=1




fk�a,t�eik� + c . c .� . �16�

The above infinite-dimensional system is difficult to analyze.
However, the ansatz of Ott and Antonsen �12� has been
shown to be successful in obtaining the low-dimensional de-
scription of the globally coupled phase oscillators. The an-
satz imposes a restriction on the Fourier coefficients
fk�a , t�= ���a , t��k for k
1 and has been shown to be a rea-
sonable guess under different scenarios �12�. This restricted
class of functions readily reduces our continuity equation to
an �-independent form

d�

dt
=

1

2
��z + F�� − ia� −

1

2
��z + F��2 − F��1+1/n

2
−

�1−1/n

2
� ,

�17�

with z satisfying z�t�=�−


 ���a , t�g�a�da. If we assume a

Lorentzian distribution g�a�=1 /���a−a0�2+1�. z�t� can be
evaluated by contour integration with poles at a=a0− i and
we obtain the exact evolution equation of order parameter z,

dz

dt
= ia0z − z +

�z + F

2
− � �z� + F

2
�z2 − F� z1+1/n

2
−

z1−1/n

2
� .

�18�

The above equation can be expressed in polar coordinates if
we substitute z=� exp�i��, giving evolution equations for �
and �,

d�

dt
=

�

2
��1 − �2� − � +

F

2
�1 − �2�cos �

+
F�

2
��−1/n − �1/n�cos��

n
� , �19�

d�

dt
= a0 −

F

2
�� +

1

�
�sin � −

F

2
��1/n +

1

�1/n�sin��

n
� .

�20�

For the Lorentzian distribution the above equation is exact;
however, for arbitrary unimodal distributions of frequencies
we have not seen any qualitative differences in the behavior
of the reduced model and the full model.

For the choice of n=1 and F=2 the Eqs. �25� and �26� are
identical to the reduced equations studied by Childs et al.
�15�. On the other hand, retaining F but setting n=1 we
obtain a similar set of equations except a factor of half which
results in no qualitative difference in the bifurcation diagram
as in Childs et al. �15� other than shifting the values in the
�a0 ,F� parameter plane. The above set of equations is diffi-
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FIG. 4. �Color online� Time averaged order parameter ��R�����t

is plotted as a function of coupling strength, �, for varying n. Num-
ber of bursters, M =100.
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cult to study analytically for n�1. We present here the nu-
merical studies carried out for the above set of equations and
are mainly interested in characterizing the different dynami-
cal regimes for the reduced system. In order to obtain the
stability diagram in the �a0 ,F� parameter plane �Fig. 5� we
employ the following scheme: determine the saddle node
bifurcation curve by imposing the conditions d� /dt=0,
d� /dt=0, Det J=0, where J is the Jacobian matrix. Solving
these simultaneously and sweeping � and � over their full
ranges 0���1, −����� we consider pairs of values of
�a0 ,F� that are positive. Similarly we determine the Hopf
bifurcation curve by imposing the conditions d� /dt=0,
d� /dt=0, Tr J=0. The bifurcation curves can also be ob-
tained by using the MATLAB numerical continuation package
MATCONT �16�. The selection of � is guided by the choices
made in the previous studies by �12,15�. For coupling con-
stant �=4.0 and n=1, . . . ,9 the bifurcation diagram remains
identical as shown in Fig. 5 for the case when n=2. The
study of the bifurcation properties for n=2 is sufficient as we

find the local dynamics is independent of the number of
spikes. The stability diagram is divided mainly in three re-
gions, A, B, and C, by the bifurcation curves labeled Saddle
node, Hopf, and SNIPER �saddle node infinite period bifur-
cation�. In the region A the order parameter approaches a
stable fixed point, implying that the dynamics is phase
locked to the driving term. The region B also shows forced
entrainment. Forced entrainment is lost in region C, which
has a globally attracting limit cycle with stable period. The
phase of the order parameter increases monotonically rela-
tive to the forcing parameter F and the system entrains itself
mutually �15,17�. Moreover, we observe that the two
branches of the saddle curve and the Hopf curve intersect
tangentially, which necessitates the presence of a Takens-
Bogdanov point. Takens-Bogdanov point also implies that
there will be a emergent homoclinic orbit as a result of a
global bifurcation �18�. Thus there will be a region where
there coexists a saddle and a limit cycle implying bistability.
However, in our numerically evaluated bifurcation diagram
this occurs in a very small region and the homoclinic orbit is
difficult to identify and remains a problem for future studies.

In this paper we studied the mechanism of parabolic
bursting phenomena using a simple phase model. This model
has inherent simplicity in comparison to earlier models as it
requires only one phase variable to capture all the qualitative
properties of bursting phenomena. On the one hand, for a
neuronal network composed of identical units of such phase
oscillators it allows mathematical tractability and, on the
other hand, reduces significant amount of computational
complexity. Furthermore, as the number of spikes per burst
increases the scope of analytical study becomes generally
restricted. Here we demonstrated that for a fixed coupling
strength the parameter space structure remains independent
of the number of spikes per burst. This allows to study the
network model for single spike bursts and infer the local
dynamics of the coupled more general multispike system.
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