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Previous works on the queuing model introduced by Barabási to account for the heavy tailed distributions of
the temporal patterns found in many human activities mainly concentrate on the extremal dynamics case and
on lists of only two items. Here we obtain exact results for the general case with arbitrary values of the list
length L and of the degree of randomness that interpolates between the deterministic and purely random limits.
The statistically fundamental quantities are extracted from the solution of master equations. From this analysis,
scaling features of the model are uncovered.
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I. INTRODUCTION

Many human activities, such as mail and electronic-mail
exchanges, library loans, stock market transactions �1�, or
even motor activities �2�, display heavy tailed interevent and
waiting time distributions. To account for these heavy tails
�1�, a priority queuing model has been proposed by Barabási
�3� that since then stimulated an active field of research with
potential practical applications �e.g., see Refs. �4–8��.

Within Barabási priority queuing model �BPQM�, each
item in a list of fixed length L has a priority value. At each
time step, the maximal priority task is executed with prob-
ability p, otherwise, a randomly selected one is accom-
plished. Once a task is executed, it is substituted by a new
one �or the same� that adopts a new randomly selected pri-
ority value drawn from a probability density function �PDF�
��x�. This simple model yields power-law tailed distributions
of interevent times, mimicking the empirical histograms of
many human activities.

Besides the value of queuing models for diverse practical
questions, another issue that makes BPQM attractive is its
connection with diverse other physical problems such as in-
vasion percolation �8,9� or self-organized evolutionary mod-
els �10–12� as soon as the roles of priorities and fitness can
be identified.

Variants of the BPQM with variable list length have been
analytically treated in the literature �5,9�. However, special
attention has been given to the particular and more tractable
case of extremal dynamics when p→1 �1,5,8,9�, while non-
null degree of randomness �1− p�0� may also display inter-
esting features. Moreover, for the fixed length BPQM, exact
results both for steady �6� and transient �8� regimes have
been obtained for the simplest instance L=2 only. Although
lists of two items already display the power-law decay of the
distribution of waiting times when p approaches unity, natu-
rally, other features are missed in the simplest case. Then, in
the present work, we tackle the BPQM with arbitrary values
of p and L.

The paper is organized as follows. In Sec. II we show
exact results for the PDFs of priorities in lists of arbitrary
length L by recourse to a master equation �ME�. In Sec. III
we obtain an approximate expression for the waiting time
distribution. Section IV deals with exact results for “ava-

lanches,” which provide the time that higher priority tasks
�above a threshold� remain in the list, and is also related to
waiting time duration. Section V contains final remarks.

II. EXACT TREATMENT

A fundamental quantity is the probability, Pn,t�x�, that
there are n tasks with priority higher than a given value x at
time t. Its time evolution is ruled by a ME of the form

Pn,t+1 = Mn,n+1Pn+1,t + Mn,nPn,t + Mn,n−1Pn−1,t �1�

for n=0,1 , . . . ,L.
If at a given time t there are n tasks �0�n�L� with

priorities above x, in the following step that quantity t+1 can
either �a� decrease by one unit, �b� remain the same, or �c�
increase by one unit, with transition probabilities Mn−1,n,
Mn,n, and Mn+1,n, respectively. The non-null matrix elements
can be obtained as follows.

�a� The transition n→n−1 occurs if �i� the selected task
has priority above x �be either the largest one, selected with
probability p, or one among the n, randomly chosen with
probability �1− p� /L� and �ii� it is replaced by a new task
with priority below x �which arises with probability R�x��.
Then Mn−1,n=prob�i�prob�ii�= �p+ �1− p�n /L�R�x� for 0�n
�L.

�b� The number n remains constant if either �i� a task with
priority above x is selected �as in �a�� and it is replaced by a
new task that acquired a priority also above x or �ii� a task
with priority below x �one among the L−n tasks, randomly
chosen with probability �1− p� /L� is selected and replaced by
a new one also having priority below x. This leads to Mn,n
= prob�i��1−R�x�� + prob �ii�R�x�= �p+ �1− p�n /L��1−R�x��
+ �1− p���L−n� /L�R�x� for 0�n�L. Exception occurs for
n=0, in which case the largest priority is necessarily below
x, thus M0,0= pR�x�+ �1− p�R�x�=R�x�.

�c� The transition n→n+1 occurs if a task with priority
below x �that can only be chosen randomly among L−n
tasks, with probability �1− p� /L� is replaced by a new task
with priority above x. Hence, Mn+1,n= �1− p��L−n� /L�1
−R�x�� for 0�n�L. Also in this case, exception occurs for
n=0 for the same reason as in �b�, thus M1,0= p�1−R�x��
+ �1− p��1−R�x��=1−R�x�.
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Then, for ��x�=1, the elements of the tridiagonal matrix
M are given by

Mn−1,n�x� = px + �1 − p�xn/L ,

Mn,n�x� = p�1 − x� + �1 − p��x�L − n� + �1 − x�n�/L ,

Mn+1,n�x� = �1 − p��1 − x��L − n�/L �2�

for n=1, . . . ,L and additionally M1,0�x�=1−x, M0,0�x�=x.
Of course, Mn,m=0 if at least one of the subindices is smaller
than 0 or larger than L. For notation simplicity, we will con-
sider the expressions in Eq. �2�, however, generality can be
recovered at any time, if desired, simply by redefining the
threshold through x→R�x�=�0

x��x��dx�.
Notice that the ME �Eqs. �1� and �2�� signals a biased

random walk with reflecting boundaries at n=0 and n=L,
setting the basis to write a continuum limit approximation.
However, for arbitrary L, drift and diffusion coefficients are
state dependent and the approach of biased diffusion success-
fully applied �5� to determine the scaling of the waiting time
distribution, in other queuing systems with constant coeffi-
cients, becomes more tricky in the nondeterministic case p
�1.

Then, let us find the exact steady solution of the ME �Eqs.
�1� and �2�� for arbitrary length L. By recursion, one gets

Pn�x� =
L ! ��a + 1��1 − x�n

�L − n� ! ��a + n + 1��1 − p�xn P0�x� �3�

for 1�n�L, where a= pL / �1− p�, and from normalization

P0�x� = �1 + �
n=1

L

Pn�x�/P0�x��−1

. �4�

The distribution Pn, given by Eqs. �3� and �4�, can be used
now to evaluate diverse meaningful quantities. In particular,
the PDF of the nth largest priority value, pn, can be extracted
from the relation �0

xpn�x��dx�=�m=0
n−1 Pm�x�, hence

pn�x� =
�

�x
�
m=0

n−1

Pm�x� . �5�

Figure 1 shows the exact PDFs of the two largest priori-
ties in the list, p1�x�= P0��x� and p2�x�= P0��x�+ P1��x�, for L
=5 and different values of p, compared to the results of
numerical simulations of the BPQM.

In the fully random case p=0, Eqs. �3� and �4� yield
Pn�x�= � L

n ��1−x�nxL−n, hence pn�x�=L� L−1
n−1 ��1−x�n−1xL−n, in

accord with straightforward combinatorial analysis. In the
opposite limit p→1, p1�x� gets closer to a unit step function
at x=0 while p2�x� approaches the Dirac delta function ��x�.
This is expected since those tasks that have entered the list
more recently and adopted priority values uniformly distrib-
uted in �0, 1� have more chances to be chosen again, while
the older tasks are more and more likely to remain in the list
forever as p tends to 1; then the second priority value �and
together with it the remaining ones� collapses to zero.

For large enough L �namely, L / �1− p��1�, Eqs. �3� and
�4� lead to p1	H�x−1+ p� / p, where H is the Heaviside unit
step function and p2	�1− p��1 /x2−1�H�x−1+ p� / p2. In

fact, the matrix elements of the ME �Eqs. �1� and �2�� be-
come independent of n either in the limit of large L for fixed
n �hence neglecting terms of order n /L in the matrix ele-
ments� or also when p→1. In such case, from the recurrence
relation, one obtains

Pn�x� 	
�1 − p�n−1�1 − x�n

pnxn P0�x� for 0 � n � L , �6�

which, for x�1− p, can be summed up to obtain

P0�x� 	 �x − 1 + p�/p . �7�

For x�1− p, all Pn’s tend to vanish in the large L limit.
Figure 2 illustrates the performance of this approximation in
comparison with exact results. The assumption n�L fails as
soon as the probability that n�O�1� becomes non-
negligible. For each x�1− p, the exact Pn is peaked around
n	�x−1+ p�L / �1− p�. The approximate expression for Pn
becomes exact both in the limits of L→	 and p→1 and will
be used later.

The PDF of all priorities x in the list, p�x�, represents a
kind of average that verifies �n=1

L pn�x�=Lp�x�. Its time evo-
lution is given by

p�x,t + 1� = p�x,t� + ���x� − pp1�x,t� − �1 − p�p�x,t��/L ,

�8�

which in the long-time limit leads to the relation
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FIG. 1. PDFs of the largest �upper panel� and the second largest
�lower panel� priority values for L=5, different values of p indi-
cated on the figure, and R�x�=x. Solid lines correspond to exact
results and symbols to numerical simulations of the BPQM per-
formed as in previous figures. In the insets, the average values are
displayed as a function of p.
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pP0�x� + �1 − p�P�x� = R�x� , �9�

where P�x�=�0
xp�x��dx�.

Let us call old tasks, those items, whose priority has not
been assigned at a given step. The cumulative PDF of old
task priorities, O�x�, can be obtained from the relation

LP�x� = R�x� + �L − 1�O�x� �10�

and, by means of Eq. �9�, it can be expressed as

O�x� =
�L + p − 1�R�x� − pLP0�x�

�L − 1��1 − p�
. �11�

In the particular case L=2, Eqs. �3� and �4� give P0�x�
= �1+ p�x2 / �1− p+2px� and recalling that its derivation was
carried out for uniform ��x� but the general case is recovered
simply through the mapping x→R�x�, then, Eq. �11� allows
us to reobtain the result of Vazquez �6�, namely, O�x�= �1
+ p�R�x� / �1− p+2pR�x��.

Figure 3 illustrates the behavior of O�x� for different val-
ues of p and L=20. The distribution of the bulk of old values
for arbitrary L is qualitatively similar to that obtained for L
=2 in Ref. �6�.

For L�2, however, P�x� and O�x� are average or mean-
field quantities, while more meaningful is the distribution of
the largest old priority O1�x� �that, of course, for L=2 coin-
cides with O�x��. It verifies

P0�x� = R�x�O1�x� �12�

because the probability that there are no tasks above x, P0�x�,
is the product of the probability that the freshly assigned
�new� priority value is below x times the probability that the
highest old task priority �hence also the remaining ones� is
below x. For the particular case p=0, O1�x�=RL−1�x�, while
in the opposite limit p→1, it tends to a unit step function at
x=0.

Let us call on the nth largest old priority value. The prob-
ability that there is only one task above x, P1�x�, is
prob�new 
x�prob�o1�x�+prob�new�x�prob�o2�x�o1�,
where prob�o2�x�o1�=prob�o2�x�−prob�o2�x∧o1�x�
=O2�x�−O1�x�. Thus, the distribution of the second largest
old priority O2�x� can be extracted from the identity

P1 = �1 − R�O1 + R�O2 − O1� . �13�

More generally, setting O0�x�
0 and OL�x�
1, then,
prob�on+1�x�on�=On+1�x�−On�x� for 0�n�L−1 and Eq.
�13� can be straightforwardly generalized to obtain

Pn = �1 − R��On − On−1� + R�On+1 − On� �14�

for 1�n�L−1. Therefore, by knowing �Pn� given by Eqs.
�3� and �4�, the whole family of stationary old task distribu-
tions �On� can be build from Eq. �14� by recursion.

Exact results for O1�x� and O2�x� are compared to the
outcomes of numerical simulations of the BPQM in Fig. 4
for L=20, different values of p, and R�x�=x. Observe that
O2�x� is bounded from below by O1�x� and more generally
O1�x��O2�x�� ¯ �OL−1�x�.

III. WAITING TIME DISTRIBUTION

The family of distributions of old values �On ,1�n�L
−1� should in principle allow us to compute exactly the dis-
tribution of waiting times Pw��� in the steady regime.

Pw��� can be obtained as
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FIG. 2. Probabilities P0�x� �for different values of p, upper
panel� and Pn�x� �for different values of n and p=0.6, lower panel�
at L=100 and R�x�=x. Solid lines correspond to exact results;
dashed lines to the large L / �1− p� approximation.
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FIG. 3. Cumulative PDFs of old task priorities for L=20, dif-
ferent values of p, and R�x�=x. Symbols correspond to numerical
simulations of the BPQM performed as in previous figures; black
lines correspond to the exact results from Eq. �11�.
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Pw��� = 

0

1

dR�x�r��x� , �15�

where r��x� is the probability that a task �let us call it X� with
freshly acquired priority value x at a given time t= t0 �once
attained the steady state� is again selected for the first time at
t= t0+�.

The task X can be selected again at the following step, t
= t0+1, either �i� with probability p if it has the largest pri-
ority value �which occurs with probability O1�x�� or �ii� by
random selection with probability �1− p� /L. Then, for �=1,

r1�x� = pO1�x� + �1 − p�/L . �16�

Hence Pw�1�=1 /L when p=0 and it tends to 1 in the oppo-
site case p→1. Moreover, by means of the approximate Eq.
�7� for P0�x�, one has Pw�1�	 p+ �1− p�ln�1− p�+ �1− p� /L.

For �=2, X must not be selected at t= t0+1 and it must be
selected at t= t0+2. To obtain r2, recall that prob�on+1�x
�on�=On�x�−On+1�x� for 0�n�L−1, with O0�x�=0 and
OL�x�=1, and let us consider the different possible relative
ordering positions of the new priority x in the list at t= t0.
Then one has the following possibilities.

�1� For o1�x: given that any of the L−1 old tasks is
selected at t0+1 �with probability �
�1− p� /L�, X can be
selected at t0+2 with probability pR+�. Then the desired
probability is r2

�1�= �O2−O1���L−1��pR+��.
�2� For o2�x�o1: given that the first old task is selected

at t0+1 �with probability p+��, X can be selected at t0+2
with probability pR+�, while given that one of the L−2

remaining tasks is selected at t0+1 �with probability ��, X
can be selected at t0+2 with probability �. Then r2

�2�= �O2
−O1���pR+���p+���+ �L−2��2.

�3� For on�x�on−1, with n�2: given that the first old
task is selected �with probability p+�� or one of the L−2
remaining ones is selected �with probability �� at t0+1, X
can be selected at t0+2 with probability �. Then r2

�n�= �On+1
−On���p+����+ �L−2��2.

Summing up over all the cases, one obtains r2=�n=1
L r2

�n�,
namely,

r2�x� = ��1 − r1� + pR��p + ��O2 + ���L − 2� − p�O1� .

�17�

Recalling that OL
1, one recovers the expression found in
Ref. �6� for L=2, namely, r2= �1−r1��pR+ �1− p� /2�.

Alternatively, notice that the probability that instead of X
the first old task is selected at t= t0+1 is p�1−O1�x��+�,
while the probability that any other old task is selected �for
L�2� is �. Given each one of these L−1 cases, one has a
different probability of selection of X at the second step �t
= t0+2� which will be a function of O1 and O2. More gener-
ally, the exact calculation of Pw���, for ��1, will require to
consider a branching process, with L−1 paths at each node,
such that for L�2, r��x� does not factorize. This tree gener-
alizes the binary one considered in analogy to invasion per-
colation for p=1 and L=2 �8�. As already remarked in Ref.
�8�, L plays the role of the coordination number while p
represents a sort of temperature, but a mapping exists be-
tween the branching processes in invasion percolation and
queued tasks.

At further time steps the branching will lead to an exact
but nonreadily manageable form. Then, let us proceed to find
an approximate expression for P��� by analyzing its inte-
grand r�, whose behavior is illustrated in Fig. 5.

Notice, in Fig. 5, that for small �, P��� is dominated by
the integral of r� in the interval x
1− p, the more the larger
L. This is due to the propensity �the higher, the closer p to 1�
of such values to be rechosen early. That is, in the first steps
�up to ��L�, the statistics will be conditioned by the
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FIG. 4. Cumulative PDFs of the first �upper panel� and second
�lower panel� largest old task priorities for L=20, different values of
p, and R�x�=x. Symbols correspond to numerical simulations of the
BPQM performed as in previous figures; black lines correspond to
the exact results from Eqs. �12� and �13�.
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memory of previous selections �aging regime�.
Contrarily, for large enough �, r� �and hence Pw� will gain

the main contribution from the purely random �uncondi-
tioned� selection from the bulk of relatively small x values
�as can be seen in Fig. 5, for large �, r��x� becomes a de-
creasing function of x�. This is expected to apply also when
p→1 at any �
2.

For such cases, one can assume that there is an effective
�or average� probability that task X is selected at some given
step t �with t� t0+1� and it is reasonably given by f�x�
= pP0�x�+ �1− p� /L as soon as P0=RO1 is the probability that
there are no tasks with priorities higher than x �notice that it
does not discern between old and new tasks�. Then, although
the exact probability does not factorize, one would approxi-
mately have

r��x� 	 �1 − r1�x���1 − f�x���−2f�x� . �18�

A comparison between numerical and approximate forms
of r� is displayed in Fig. 5. In particular, for p=0, f�x�= �1
− p� /L and it correctly yields the pure exponential decay
Pw���= �1−1 /L��−1 /L for all � �3�. In the opposite case p
→1 and using the approximation given by Eq. �7� for P0
�with the aid of MAPLE�, Eq. �15� leads to the asymptotic
behavior,

Pw��� �
1

�
exp�− �/�0� , �19�

where �0=1 / ln�L / �L−1+ p���L / �1− p�.
This expression for the characteristic time �0 applies for

any p, indicating that the characteristic exponential decay
time �0 is shifted to larger � when p→1 as well as when L
increases.

Analytical predictions obtained by substituting Eq. �18�
into Eq. �15� are compared to numerical simulations in Fig.
6. One observes that the approximate expression �18� ac-
counts for the exponential cutoff in all cases as well as for
the scaling regime in the limit p→1 although it fails to pre-
dict the −3 /2 power law neatly observed in numerical simu-
lations for 0� p�1 as L→	 �notice in the lower panel of
Fig. 6 the deviation for ��L, leading to a spurious power-
law exponent −2�. This is due to the fact that the aging
regime is overlooked by this approximation.

Let us remark that a −3 /2 exponent is also found in clas-
sical queuing models with fluctuating length �3,5� and the
return time distribution of a random walk is at its origin. We
will solve next a closely related problem.

IV. AVALANCHES

We will consider now the events between two successive
times when the number n of priorities above a given thresh-
old x vanishes �avalanche�. Avalanche duration is relevant in
the present context as soon as it provides the duration of
intervals in which there are queued tasks with priorities
above a threshold to be executed. From the viewpoint of
random walks, this is a first passage problem. Following the
lines in Ref. �12�, let us define Qn,t�x�, the probability of
having n values with priorities higher than x, given that the

ongoing avalanche started t time units ago. Qn,t follows the
same ME �Eqs. �1� and �2�� as Pn,t does, except for M0,1
=0, and the initial conditions are Q1,0=1−x and Qn,0
=0 ∀ n�1. Thus, the probability that an avalanche, rela-
tive to threshold x, has duration t is

qt�x� = xQ1,t−1�x� , �20�

where the factor x comes from the probability of hopping
from n=1 to n=0.

The ME of Qn could in principle be solved analytically
through diverse standard methods �13,14�. Yet, we are inter-
ested in the large L limit. For large L and fixed n, the ME
describes a simple biased random walk, with an absorbing
boundary at n=0 and probabilities to step either to the right,
to the left, or remain still, given by m+= �1− p��1−x�, m−

= px, and m0=1−m+−m−, respectively. From this viewpoint,
qt�x� is the probability that the first return to the origin occurs
t time units after the avalanche started �that we take as being
at t=0�, while Q1,t�x� is the probability of reaching n=1 at
time t−1, without having visited n�0. Thus, q just differs
from Q1 in appending the last step from 1 to 0. Therefore, for
any n, Qn,t�x� can be found by first solving the unbounded
random walk problem and then, to account for the absorbing
barrier, by resorting to the reflection �or images� method
�see, for instance, Ref. �16��. Moreover, if we are concerned
with the asymptotic behavior, we can directly take advantage
of the central limit theorem, which for the unbounded prob-
lem leads to the Gaussian approximation, Qn,t�n0
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�lower panel�, R�x�=x. Solid lines join the analytical results from
Eqs. �15� and �18� and symbols correspond to numerical simula-
tions of the BPQM. Insets: rescaled plots of the numerical histo-
grams, where �0=1 / ln�L / �L−1+ p��. Dashed lines with slopes −1
�upper inset� and −3 /2 �lower inset� are drawn for comparison.
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�e−�n − n0 − ct�2/�2�2�, where in our case the initial value is n0
=1 and c
m+−m−=1−x− p and �2 are the mean and vari-
ance of each single step of the random walk, respectively.
Finally by the reflection principle for the biased walk �15�,
one has Qn,t= �1−x��Qn,t�1

0 −m− /m+Qn,t�−1
0 �, where the prefac-

tor 1−x corresponds to the initial step from n=0 to n=1.
Hence,

Qn,t�x� � �1 − x�
e−�n − 1 − ct�2/2�2t −

m−

m+e−�n + 1 − ct�2/2�2t

�2��2t
,

�21�

where, notice, the dependence on x is also embodied in the
mean and variance.

In the limit of large t, Eq. �21� readily leads to the
asymptotic behaviors

qt�x� = xQ1,t−1�x� � �t−3/2 if c = 0

t−1/2e−c2t/2�2
otherwise,� �22�

that is, an exponential decay dominates the long-time decay
in the biased cases; meanwhile, if c=0 �hence x=1− p�, a
power-law arises, in agreement with the well known results
for a driftless random walk �16�.

Figure 7 illustrates the scaling that comes up as L→	, for
any p at the critical threshold x=1− p. Exact results were
obtained by numerical integration of the ME for Qn and com-
pared to the results of numerical simulations of the BPQM.
Notice that the scaling region increases with L and shifts
toward larger times as p→1.

Let us remark that there is a connection with the ava-
lanches observed in a variant of the BPQM with lists of
growing length �related to invasion percolation� which
present the same critical scaling �9�. There is also a corre-
spondence with the random annealed Bak-Sneppen model,
where the same scaling is observed for any K at the critical
threshold x=1 /K �12�. Notice that in the Bak-Sneppen model
the transition matrix for the associated ME has 2K non-null
diagonals, and a generic univoque relation between p and K
does not emerge. However, concerning avalanches, the
equivalence between both models occurs for K=1 / �1− p�.
Due to the threshold being an upper or lower bound in each
case, that relation is complementary to K=1 / p which arises
by identifying ratios of deterministic and/or random sites �1�.

V. FINAL COMMENTS

Summarizing, we obtained analytical results for the
BPQM with queues of arbitrary length. Exact expressions
were shown to be in agreement with the outcomes of numeri-
cal simulations of the dynamics. Progress has still to be made
to obtain the exact waiting time distribution for arbitrary L
that besides the purely exponential decay �at p=0� and the
power-law decay with unit exponent �at p→1� displays a 3/2
power-law regime when L→	. However, an approximate
expression has been shown to account for most of the distri-
bution traits. Moreover, we have shown that avalanches, at
the critical threshold x=1− p, constitute another scale-free
feature of the BPQM for p�0. Besides the main applications
here illustrated, the present results may allow us to estimate
many other relevant statistical quantities of the BPQM and
can be extended to other queuing systems. Furthermore, our
exact results set the basis to further explore the correspon-
dence between BPQM and other related models.
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