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A system-reservoir nonlinear coupling model has been proposed to the situation when the system is driven
externally by a random force and the associated bath is kept in thermal equilibrium, in an attempt to put forth
a microscopic approach to quantum state-dependent diffusion and multiplicative noises in terms of a quantum
Langevin equation in the overdamped limit �quantum Smoluchowski equation�. We then obtain the analytical
expression for phase induced quantum current in a periodic potential when the external noise has finite
correlation time and explore the dependence of the current on various parameters related to the external noise,
for example, the noise strength.
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I. INTRODUCTION

For a heavy particle immersed in a fluid of lighter par-
ticles, Brownian motion is the fact of the former and is the
prototype of a dissipative system coupled to a thermal bath
with infinitely many degrees of freedom. In contrast to clas-
sical Brownian motion, where right from the beginning, the
work by Einstein and Smoluchowski had allowed us to con-
sider both weak and strong friction; for a long time, the
quantum-mechanical theory could handle the limit of weak
dissipation only. In this case, the interaction between the par-
ticle and the bath can be treated perturbatively and one can
derive a master equation for the reduced matrix of the par-
ticle �1�. This approach is based on so-called Born and Mar-
kovian approximations and has been very successful in quite
a number of fields �1,2�. However, to study the nonequilib-
rium transport like in ratchet potential, the analysis in the
opposite domain, i.e., in the strong friction limit is necessary.
Quantum Brownian motion in the strong friction limit is
much more involved than its classical analog since, in gen-
eral, tractable equations of motion do not exist. Some
progress has been made recently along this line �3� and
opens the door to study the dynamics of strong condensed
phase systems at low temperature.

The basic underlying physics of Brownian motor is that
by extracting energy fluctuations, Brownian motors operate
far from thermal equilibrium and generate work against ex-
ternal loads �4–6�. They present the physical analog of bio-
molecular motor that establishes intramolecular transport and
controls the motion and sensation in cells �6,7�. The
molecular-sized physical engines, however, depending on the
nature of particles to be transported and their operating tem-
perature, necessitate a description that accounts for the quan-
tum features such as tunneling, decoherence, etc. For this
class of quantum Brownian motors, recent theoretical studies
�3,8–10� reveal that the transport becomes distinctly modi-

fied as compared to its classical counterpart. In particular,
innate quantum effects such as tunneling induced current re-
versal, quantum Brownian heat engines, quantum thermody-
namic machines �11�, stochastic heat pump �12�, transport in
Bose-Einstein condensation �BEC� without any bias, etc.
have been reported with recent experiments �13–15�. In the
classical regime, the transport of macroscopic objects is well
elaborated in literature and well established �4–7,16�. It has
been observed that thermal diffusion in a periodic potential
has a prominent role in various systems such as Josephsons’s
junction �17,18�, system for diffusion in crystal surfaces
�19�, noisy limit oscillators �20�, etc. There is a renewed
interest in recent times in the field of transport of Brownian
particles moving in a periodic potential �5� with special em-
phasis on coherent transport and giant diffusion �21�. These
studies have been motivated in part by an attempt to under-
stand the mechanism of movement of protein motors in bio-
logical systems �22�. Several physical models have been pro-
posed to understand the transport phenomena in such
systems, such as vibrational ratchet �23�, rocking ratchet
�24�, flashing ratchets �25�, etc. Such ratchet models have a
wide range of applications in biology and nanoscale systems
�26� because of their wonderful success in exploring experi-
mental observations on biochemical motors, active in muscle
contraction �27�, observation on directed transport in photo-
voltaic and photoreflective materials �28�, etc. In all the
above models, the potential is taken to be asymmetric in
space. One can also obtain a unidirectional current in pres-
ence of spatially symmetric potential. For such nonequilib-
rium systems one requires time asymmetric random forces
�29� or space-dependent diffusion �30–32�. The common fea-
ture of an overwhelming majority of the ratchet systems is
that the system is thermodynamically closed �in presence of
external ratchet potential and thermal equilibrium bath�,
which means that the noise of the medium is of internal
origin so that the dissipation and fluctuations get related
through the fluctuation-dissipation relation. However, in a
number of situations, the system is thermodynamically open,
i.e., when the system is driven by an external noise which is
independent of the system’s characteristic damping �33� or,
when the reservoir is modulated by external noise agency
�34�. The system-bath model with random driving force was
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employed by Mollow and Miller �35� forty years ago in the
context of quantum optics. The distinctive feature of the dy-
namics in this case is the absence of any fluctuation-
dissipation relation. While in the former case a zero current
steady-state situation is characterized by an equilibrium Bolt-
zmann distribution, the corresponding situation in the latter
case is defined only by a steady-state condition, if attainable.
It may, therefore, be anticipated that the independence of
fluctuations and dissipation tend to make the steady-state dis-
tribution function depend on the strength and correlation
time of external noise as well as on the directed transport of
the system.

In contrast to the success in the classical regime, the
quantum properties of directed transport are only partially
elaborated in such a motor system �10�. One of the main
goals of stochastic method is to provide accurate theoretical
models to compute quantum current in recent times. Chal-
lenges arise in the quantum region because the transport usu-
ally strongly depends on the mutual interplay of pure quan-
tum effects such as tunneling and particle wave interference
with dissipation process, nonequilibrium fluctuation, and ex-
ternal driving. The present state of the art of the theory is
characterized by specific restrictions such as an adiabatic
driving regime, a tight-binding description, a semiclassical
analysis, or combinations thereof �8,36�. As such, the study
of quantum transport is far from being complete and there
exists an emergent requirement for further developments.
The analytic study of quantum Brownian transport for noise-
driven open system, even in a symmetric periodic potential
presents such a challenge. This goal has already been ad-
dressed in one of our pervious works �34�, where the under-
lying quantum dynamics was modeled by a recently pro-
posed ingenious quantum generalization of Langevin
dynamics �8�. The issue of quantum Brownian transport was
addressed �34� by proposing a system-reservoir nonlinear
coupling model when the associated bath is not in thermal
equilibrium, and is rather modulated by an external noise to
present a microscopic approach to quantum-state-dependent
diffusion and multiplicative noise in terms of quantum
Langevin description. Consequently, we explored the possi-
bility of observing the phase-induced quantum current.
Keeping in mind the fact that the direct driving of a system,
instead of the reservoir may be experimentally realized more
easily and is well documented in literature �33�, we extend
here our methodology to address the issue of quantum trans-
port where the system is modulated by an external noise. We
thus allow the Brownian particle in a potential field to be
driven by external stationary and Gaussian noise fluctua-
tions. Then, following the recently developed methodology
by Ray and co-workers �8�, starting from a microscopic
Hamiltonian picture of an external-noise-driven quantum
system, which is nonlinearly coupled with a harmonic bath,
we derive the C-number analog of the quantum Langevin
equation for the system mode in the overdamped limit. The
general expression for the stationary quantum current is then
obtained for �-correlated external noise where the underlying
potential is taken to be sinusoidal. We then extend our devel-
opment for exponentially correlated external noise. Conse-
quently, the various characteristics of the quantum current
are explored.

II. MODEL AND THE C-NUMBER LANGEVIN EQUATION

A particle of unit mass is connected to a heat bath com-
prising of a set of harmonic oscillators of unit mass with
frequency set �� j�. The system is driven externally by a ran-
dom force ��t�. The total system-bath Hamiltonian can be
written as

Ĥ =
p̂2

2
+ V�q̂� + �

j=1

N � p̂j
2

2
+

1

2
	� jx̂ j −

cj

� j
f�q̂�
2� − q̂��t� ,

�1�

where q̂ and p̂ are the coordinate and momentum operators
of the system, respectively, and �x̂j , p̂j� are the set of coordi-
nate and momentum of the bath oscillators. The potential
function V�q̂� is due to external force field exerted on the
system. The system is coupled to the heat bath oscillators
nonlinearly through the coupling function f�q̂� and cj is the
coupling constant. The coordinate and momentum
operators follow the commutation relation �q̂ , p̂�= i�; and
�x̂j , p̂k�= i�� jk. ��t� is an external classical noise, nonthermal
in nature, with the statistical properties that ��t� is a Gaussian
noise process and

���t�
 = 0; ���t���t��
 = 2D��t − t�� , �2�

where D is the strength of the noise and the average is taken
over each realization of ��t�. By the elimination of bath vari-
ables, one obtains the generalized operator Langevin equa-
tion for the system variable as

q̇̂ = p̂ ,

ṗ̂ = − V�„q̂�t�… − f�„q̂�t�…�
0

t

��t − t��f�„q̂�t��…p̂�t��dt�

+ f�„q̂�t�…�̂�t� + ��t� , �3�

where the noise operator �̂�t� and the memory kernel ��t� are
given by

��t� = �
j=1

N
cj

2

� j
2cos�� jt� , �4�

�̂�t� = �
j=1

N ��� j
2

cj
x̂j�0� − f�q̂�0��� cj

2

� j
2cos�� jt�

+
cj

� j
p̂j�0�sin�� jt�� . �5�

The noise properties of �̂�t� can be derived by using suit-
able canonical thermal distribution of bath coordinates and
momenta operators at t=0 to obtain

��̂�t�
QS = 0,
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1

2
��̂�t��̂�t�� + �̂�t���̂�t�
QS

=
1

2�
j=1

N
cj

2

� j
2�� j coth���/2kBT�cos � j�t − t�� . �6�

Here, � . 
QS implies quantum statistical average on bath de-
grees of freedom and is defined as

�Ô
QS =
Tr�Ô exp�− ĤB/kBT��

Tr�exp�− ĤB/kBT��

for any bath operator Ô�x̂j , p̂j� and

HB = �
j=1

N � p̂j
2

2
+

1

2
	� jx̂ j −

cj

� j
f�q̂�
2� at t = 0.

Now to construct the C-number Langevin equation equiva-
lent to Eq. �3�, following a recently developed methodology
of Ray et al. �8�, we carry out a quantum-mechanical aver-
aging of the operator Eq. �3� to get

�q̇̂
Q = �p̂
Q,

�ṗ̂
Q = − �V��q̂�
Q − �f�„q̂�t�…�
0

t

dt���t − t��

� f�„q̂�t��…p̂�t��
Q + �f��q̂��̂�t�
Q + ��t� , �7�

where the quantum-mechanical average � . 
Q is taken over

the initial product separable quantum states of the particle
and the bath oscillators at t=0, ��
��	 j
� ; j=1,2 , ¯N.
Here, ��
 denotes any arbitrary initial state of the system and
��	 j
� corresponds to the initial coherent state of the bath
oscillators. ��̂�t�
 is now a classical-like noise term, which
because of the mechanical averaging, in general is a nonzero
number and is given by

��̂�t�
Q = �
j=1

N ��� j
2

cj
�x̂j�0�
Q − �f„q̂�0�…
Q� cj

2

� j
2cos�� jt�

+
cj

� j
�p̂j�0�
Qsin�� jt�� . �8�

It should be pointed out here that we have considered the
uncorrelated system and reservoir at t=0 and thereby em-
ployed the so-called factorization assumption in what fol-
lows, though the factorization condition is strictly valid for
Markovian case. However, this is a widely used assumption
in the literature �1,37�, particularly in the context of quantum
optics and condensed-matter physics, and we consider the
Markovian case at the end of the day.

To realize ��̂�t�
Q as an effective C-number noise, we now
introduce the ansatz �8� that the momenta �p̂j�0�
Q and the

shifted coordinates �
� j

2

cj
�x̂j�0�
Q− �f�q̂�0��
Q� of the bath oscil-

lators are distributed according to a canonical distribution of
Gaussian form as

P j	�� j
2

cj
�x̂j�0�
Q − �f„q̂�0�…
Q�,�p̂j�0�
Q
 = N exp�−

��p̂j�0�
Q
2 +

cj
2

� j
2�� j

2

cj
�x̂j�0�
Q − �f„q̂�0�…
Q�2�

2�� j	n̄j�� j� +
1

2

 � �9�

so that for any quantum-mechanical mean value, �Ô
Q of the
bath operators, its statistical average � . 
S is

��Ô
Q
S =� ��Ô
QP jd�� j
2

cj
�x̂j�0�
Q − �f„q̂�0�…
Q�

� d�p̂j�0�
Q� . �10�

Here, n̄j�� j� indicates the average thermal photon number of
the jth oscillator at temperature T and n̄j�� j�
= �exp��� j /kBT�−1�−1 and N is the normalization constant.
The distribution P j given by Eq. �9� and the definition of
statistical average imply that the C-number noise ��̂�t�
Q
given by Eq. �8� must satisfy

���̂�t�
Q
S = 0

and

1

2
���̂�t��̂�t��
Q
S =

1

2�
j=1

N
cj

2

� j
2�� j coth	 �� j

2kBT

cos � j�t − t�� ,

�11�

which are equivalent to Eq. �8�.
Now to obtain a finite result in the continuum limit, the

coupling function cj =c��� is chosen as

c��� =
c0�

�
c

.

With this choice ��t� reduces to the following form:
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��t� =
c0

2


c
�

0

�

d�D���cos��t� , �12�

where c0 is some constant and �c= 1

c

is the cutoff frequency
of the bath oscillators. 
c may be regarded as the correlation
time of the bath and D��� is the density of modes of the heat
bath which is assumed to be Lorentzian,

D��� =
2

�

1


c��2 + 
c
−2�

.

With these forms of D��� and c���, ��t� takes the form

��t� =
c0

2


c
exp�− t/
c� =





c
exp�− t/
c� , �13�

where c0
2=
. For 
c→0 Eq. �13� reduces to

��t� = 2
��t�

and the noise correlation function �12� becomes

���̂�t��̂�t��
Q
S =



2
c
�

0

�

d��� coth	 ��

2kBT



�cos ��t − t��D��� . �14�

Equation �14� is an exact expression for two-time correla-
tion. We now make the following assumption. As
�� coth� ��

2kBT � is a much more smooth function of �, at least
for not too low temperature, the integral in Eq. �14� can be
approximated as �10�

���̂�t��̂�t��
Q
S �



2
c
��0 coth���0/2kBT��

0

�

d�

�cos ��t − t��D��� ,

where �0 is the average bath frequency. Thus, we have in the
limit 
c→0,

���̂�t��̂�t��
Q
S = 2D0��t − t�� , �15�

where

D0 =



2
��0	n̄��0� +

1

2

 , �16�

with n̄��0�= �exp���0 /kBT�−1�−1. It is pertinent to mention
here that the form of D0, given by Eq. �16� can be obtained if
and only if one extracts the �� coth��� /2kBT� term out of
the integral. Clearly, at very high temperature, 2kBT���,
the integrand in Eq. �14� reduces to 2kBT cos ��t− t��D���
and in this case Eq. �15� is strictly valid with D0=


kBT
2 , which

is the classical result. On the other hand, with our assump-
tion made below Eq. �14�, D0 will be given by Eq. �16�. Here
also kBT���0, and D0 reduces to its classical expression
namely, D0=


kBT
2 . Here, it is important to note that our above

assumption is valid only at high temperature. In this regard
our development does not account for the dynamics which
are fully quantum mechanical. Nevertheless, the ansatz �9�,
which is the canonical thermal Wigner distribution function
for a shifted harmonic oscillator and always remains positive

definite, contains some quantum information of the bath
comprised of a set of quantum-mechanical harmonic oscilla-
tors.

Now writing q= �q̂
Q and p= �p̂
Q, we can rewrite Eq. �7�
as

q̇ = p ,

ṗ = − �V��q̂�
Q − 
��f��q̂��2p̂
Q + �f��q̂�
Q��t� + ��t� ,

�17�

where ��t�= ��̂�t�
Q and is a classical like noise term. In
writing Eq. �17� we have made use of the fact that the cor-
relation time of the reservoir is very short, i.e., 
c→0.

We now add V��q�, 
�f��q��2p, and f��q���t� on both
sides of Eq. �15� and rearrange it to obtain

q̇ = p ,

ṗ = − V��q� + QV − 
�f��q��2p + Q1 + f��q���t� + Q2 + ��t� ,

�18�

where

QV = V��q� − �V��q̂�
Q,

Q1 = 
�f��q��2p − ��f��q̂��2p̂
Q,

Q2 = ��t���f��q̂�
Q − f��q̂�� . �19�

Referring to the quantum nature of the system in the Heisen-
berg picture we now write the system operator q̂ and p̂ as

q̂ = q + �q̂ ,

p̂ = p + �p̂ , �20�

where q�=�q̂
Q� and p�=�p̂
Q� are the quantum-mechanical
mean values and �q̂ and �p̂ are the operators which are quan-
tum fluctuations around the respective mean values. By con-
struction ��q̂
Q= ��p̂
Q=0 and they also follow the usual
commutation relation ��q̂ ,�p̂�= i�. Using Eq. �20� in V��q̂�,
�f��q̂��2p̂, and in f��q̂�, a Taylor-series expansion in �q̂
around q, QV, Q1, and Q2 can be obtained as

QV = − �
n�2

1

n!
Vn+1�q���q̂n
Q, �21�

Q1 = − 
�2pf��q�Qf + pQ3 + 2f��q�Q4 + Q5� , �22�

and

Q2 = ��t�Qf , �23�

where

Qf = �
n�2

1

n!
fn+1�q���q̂n
Q,

Q3 = �
m�1

�
n�1

1

m!

1

n!
fm+1�q�fn+1�q���q̂m�q̂n
Q,
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Q4 = �
n�1

1

n!
fn+1�q���q̂n�p̂
Q,

Q5 = �
m�1

�
n�1

1

m!

1

n!
fm+1�q�fn+1�q���q̂m�q̂n�p̂
Q. �24�

From the above expression it is evident that QV represents
quantum correction due to nonlinearity of the system poten-
tial, Q1 and Q2 represent quantum corrections due to nonlin-
earity of the system-bath coupling function. Using Eqs.
�21�–�23�, we arrive at the dynamical equations for system
variable from Eq. �18�,

q̇ = p ,

ṗ = − V��q� + QV − 
�f��q��2p − 2
pf��q�Qf − 
pQ3

− 2
f��q�Q4 − 
Q5 + f��q���t� + Qf��t� + ��t� . �25�

The above equations contain a quantum multiplicative noise
term Qf��t� in addition to the usual classical contribution
f��q���t�. The classical limit, apart from the term ��t�, was
obtained earlier by Lindenberg and Seshadri �38�.

In the overdamped limit, the adiabatic elimination of the
fast variable is usually done by simply putting ṗ=0. This
adiabatic elimination provides the correct equilibrium distri-
bution only when the dissipation is state independent. But for
state-dependent dissipation or when the fluctuation is state
dependent, which is a manifestation of the nonlinear nature
of system-bath coupling function f�q�, the conventional adia-
batic elimination of fast variable in overdamped limit does
not provide correct result. To obtain a correct equilibrium
distribution, an alternative approach proposed by Sancho
et al. �39� must be followed to obtain the dynamical equation
of motion for position coordinate in the case of state-
dependent dissipation. The methodology of Sancho et al.
�39� consists of a systematic expansion of the relevant vari-
ables in powers of 
−1 and rejection of the terms smaller than
O�
−1�. We follow the same procedure in our context. In this
limit, the transient correction terms Q4 and Q5 do not affect
the dynamics of the position, which varies over a much
slower time scale in the overdamped limit �8�. So the equa-
tions governing the dynamics of the system variables are

q̇ = p ,

ṗ = − V��q� + QV − 
h�q�p + g�q���t� + ��t� , �26�

where

h�q� = �f��q��2 + 2f��q�Qf + Q3,

g�q� = f��q� + Qf . �27�

The function g�q� arises due to nonlinearity of the system-
bath coupling function f�q�. One can now easily identify Eq.
�26� as the C-number analog of the quantum Langevin equa-
tion equivalent to the operator Langevin equation, Eq. �3�,
where 
h�q� is the state-dependent damping, ��t� is the ther-
mal noise and ��t� is the external nonthermal noise. Follow-
ing the method of Sancho et al., we obtain the Fokker-

Planck-Smoluchowski equation in position space
corresponding to the Langevin Eq. �26�,

�P�q,t�
�t

=
�

�q
�V��q� − QV


h�q� �P�q,t�

+ D0
�

�q
�g�q�g��q�


h2�q� �P�q,t�

+ D0
�

�q
� g�q�


h�q�
�

�q

g�q�

h�q��P�q,t�

+ D
�

�q
� 1


h�q�
�

�q

1


h�q��P�q,t� . �28�

According to Stratonovich description, the Langevin equa-
tion corresponding to the above Fokker-Planck-
Smoluchowski equation,

q̇ = −
V��q� − QV


h�q�
− D0

g�q�g��q�

h2�q�

+
g�q�


h�q�
��t� +

��t�

h�q�

.

�29�

Equation �29� is the C-number quantum Langevin equation
for multiplicative noise with state-dependent dissipation in
the overdamped limit when the system is externally driven
by a fluctuating �-correlated Gaussian noise and thus can be
regarded as the Langevin equation for open quantum system.

III. STATIONARY CURRENT

Equation �28� can be written in a more compact form as

�P�q,t�
�t

=
�

�q

1


h�q��V��q� − QV +
D0




�

�q

g2�q�
h���

+ D
�

�q

1

h�q��P�q,t� . �30�

Equation �30� is the required Smoluchowski equation corre-
sponding to the quantum Langevin equation where the noise
is multiplicative and the dissipation is state dependent and
where the system-reservoir combination is not thermody-
namically closed; rather the system is externally driven by a
noise.

Under stationary condition, �P
�t =0 and Eq. �30� reduces to

d

dq
�	D0




g2�q�
h�q�

+
D

h�q�

Pst�q�� + �V��q� − QV�Pst�q� = 0

�31�

from which we have the stationary probability distribution in
the overdamped limit as

Pst�q� =
N

R�q�
exp�− �

0

q V��q� − QV

R�q�
dq� , �32�

where N is the normalization constant and

R�q� = �D0



g2�q� + D�/h�q� . �33�

It is easy to observe that all quantum corrections QV etc.
vanish in the classical regime, where the quantum fluctua-
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tions around their mean value is zero. When the exact noise
is absent and for linear system-reservoir coupling, the above
expression for stationary probability density reduces to the
usual Boltzmann distribution in the classical limit

Pst�q� = N exp�−
V�q�
kBT

� .

The stationary distribution �32� is thus essentially a generali-
zation of Boltzmann distribution for state-dependent dissipa-
tion in a quantum open system. The space-dependent dissi-
pation stems from the inhomogeneity of the medium and can
be described phenomenologically. In inhomogeneous me-
dium, the diffusion term for Brownian particle may have
several structure. The microscopic origin of these terms, in
general, do not have a common Hamiltonian. Thus, the phys-
ics of diffusion in inhomogeneous media is somewhat model
dependent. Also, the various forms notwithstanding, the gen-
eralization of Boltzmann factor exp�−V�q� /kBT� for state-
dependent dissipation in the steady-state assumes a common
structure

Pst�q� � exp�− ��q��

with

��q� = �
0

q Ṽ��q�
R�q�

dq ,

Ṽ is the potential field and R�q� is the state-dependent diffu-
sion term. In our context, the effective potential ��q� be-
comes

��q� = �
0

q V��q� − QV

R�q�
dq , �34�

where R�q� is given by Eq. �33�. The above structure of the
diffusion term and steady-state distribution implies that the
effective potential ��q� is nonlocal in space. The generality
in the structure of ��q� is such that it may include the spatial
variation in temperature, diffusion, or drift coefficient as spe-
cific cases as considered by several authors �40�. In the
Langevin scheme of description, the state-dependent diffu-
sion has received attention under multiplicative noises �37�.
The microscopic origin of multiplicative noise within the
framework of standard paradigm of system-reservoir Hamil-
tonian that includes a variety of model calculations lies in the
nonlinear coupling between the system and the bath coordi-
nates, which leads to nonlinear dissipation. A thermodynami-
cally consistent approach was put forward by Lindenberg
and co-worker �38� and exact Fokker-Planck equation for
time- and space-dependent friction was derived by Pollak
et al. �41�. Tanimura and co-workers �42� extensively used
nonlinear coupling in modeling elastic and inelastic relax-
ation mechanisms and their interplay in vibrational and Ra-
man spectroscopy. The role of inhomogeneous dissipation in
reducing quantum decay rate has also been explored in the
recent past �43�. Along with the formal developments, the
theories of multiplicative noise and state-dependent dissipa-
tion have found wide applications in several areas like sto-
chastic resonance �44�, signal processing �45�, noise-induced

transitions �46�, etc. We extend the above studies to a ther-
modynamically open system in the context of directed trans-
port in the quantum regime. The thermodynamical openness
of the system is incorporated by subjecting the system to an
external noise.

From Eq. �30� the stationary current can be obtained as

J = −
1


h�q��V��q� − QV +
d

dq
�D0




g2�q�
h�q�

+
D

h�q���Pst�q� .

�35�

Integrating Eq. �35� we obtain the expression for the station-
ary probability density function in terms of stationary current
as

Pst�q� =
e−��q�h�q�

D0



g2�q� + D

� D0



g2�0� + D

h�0�
Pst�0�

− J�
0

q

h�q��e��q��dq�� , �36�

where

��q� = �
0

q �V��q�� − QV�h�q��
D0



g2�q�� + D

dq� �37�

is the generalized potential in which the particle is moving.
We now consider symmetric periodic potential with
periodicity 2� and periodic derivative of coupling function
with the same periodicity, i.e., V�q+2��=V�q� and
f��q+2��= f��q�. Consequently, QV, h�q�, and g�q� are also
periodic functions of q with period 2�. Now applying the
periodic boundary condition on Pst�q�, i.e., Pst�q+2��
= Pst�q�, we have from Eq. �36�

D0



g2�0� + D

h�0�
Pst = J�1 − e��2���−1�

0

2�

h�q�e��q�dq . �38�

By applying the normalization condition on stationary prob-
ability distribution given by

�
0

2�

Pst�q�dq = 1,

we get from Eq. �36�

�
0

2� 
e−��q�h�q�
Dog2�q� + 
D

�� D0



g2�0� + D

h�0�
Pst�0� − J�

0

q

h�q��e��q��dq��dq = 1.

�39�

Now eliminating ��
D0


 g2�0�+D� /h�0��Pst�0� from Eqs. �38�
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and �39� one obtains the stationary current as

J = �1 − e��2���/�	�
0

2� 
e−��q�h�q�
D0g2�q� + 
D

dq�
0

2�

h�q��e��q��dq�

− �1 − e��2����

0

2�

�	 
e−��q�h�q�
D0g2�q� + 
D

�
0

q

h�q��e��q��dq�
dq� . �40�

IV. EXPONENTIALLY CORRELATED EXTERNAL NOISE
AND STATIONARY CURRENT

At this point we consider that the random external force is
exponentially correlated and Gaussian in nature,

���t�
 = 0; ���t���t��
 =
De


e
exp	−

�t − t��

e


 , �41�

where De is the strength and 
e is the correlation time, re-
spectively, of ��t�. Proceeding as in Sec. II, we arrive at the
same Eq. �26�,

q̇ = p ,

ṗ = − V��q� + QV − 
h�q� + g�q���t� + ��t� �42�

with h�q� and g�q� being defined by Eq. �27�. The only dif-
ference is that here the additive nonthermal noise is not �
correlated, and direct use of the prescription of Sancho �39�
cannot be applied. To construct the Fokker-Planck-
Smulochowski equation valid in the overdamped case for
state-dependent dissipation, we proceed as follows:

We rewrite Eq. �42� in the form

u̇1 = F1„u1,u2,t;��t�,��t�… ,

u̇2 = F2„u1,u2,t;��t�,��t�… , �43�

where we use the following abbreviation:

u1 = q, u2 = p �44�

and

F1 = p ,

F2 = − V��q� + QV − 
h�q� + g�q���t� + ��t� �45�

The vector u with components u1 and u2 thus represents a
point in a two-dimensional “phase space” and the Eq. �43�
determines the velocity at each point in this phase space. The
conservation of phase points now asserts the following linear
equation of motion for density ��u , t� in phase space:

�

�t
��u,t� = − �

n=1

2
�

�un
Fn„u1,u2,t;��t�,��t�…��u,t�

or more compactly,

��

�t
= − � · F� . �46�

Our next task is to find out a different equation whose aver-
age solution is given by ��
, where the stochastic averaging
has to be performed over two noise processes ��t� and ��t�.
To this end we note that � ·F can be partitioned into two
parts: a constant part � ·F0 and a fluctuating part � ·F1�t�,
containing these noises. Thus, we write

� · F„u1,u2,t;��t�,��t�…

= � · F0�u1,u2� + 	 � · F1„u1,u2,t;��t�,��t�… , �47�

where 	 is a parameter �we put it as an external parameter to
keep track of the order of the perturbation expansion in 	
e;
we put 	=1 at the end of the calculation� and also note that
�f1�t�
=0. Equation �46� therefore takes the following form:

�̇�u,t� = �A0 + 	A1���u,t� , �48�

where A0=−� ·F0 and A1=−� ·F1. The symbol � is used for
the operator that differentiates everything that comes after it
with respect to u.

Making use of one of the main results for the theory of
linear equation of the form of Eq. �48� with multiplicative
noise, we derive an average for � ���
= P�u , t��, the probabil-
ity density of u�t�, as

�P

�t
= �A0 + 	2�

0

�

d
�A1�t�

�exp�
eA0�A1�t − 
e�
exp�− 
eA0��P . �49�

The above result is based on second-order cumulant expan-
sion and is valid in the case of small but rapid fluctuations
and the correlation time 
e is short but finite, i.e.,

�A1�t�A1�t��
 = 0 for �t − t�� � 
e.

Equation �49� is exact in the limit 
e→0. Using the expres-
sions for A0 and A1, we then obtain

�P�u1,u2,t�
�t

= �− � · F0 + 	2�
0

�

d
�� · F1�t�

�exp�− 
e � · F0� � · F1�t

− 
e�
exp�
e � · F0��P�u1,u2,t� . �50�

The operator exp�−
e� ·F0� in the above equation provides
the solution of the equation

�G�u,t�
�t

= − � · F0G�u,t� . �51�

G signifies the unperturbed part of �, which can be found
explicitly in terms of characteristic curves. The equation

u̇ = F0�u�

for fixed t determines a mapping from u�
=0� to u�
�, i.e.,
u→u
e with inverse �u
�−
=u. The solution of Eq. �51� is
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G�u,t� = G�u−t,0��d�u−t�
d�u�

� = exp�− t � · F0�G�u,0� ,

�52�

where � d�u−t�
d�u� � is a Jacobian determinant. The effect of

exp�−t� ·F0� on G�u� is as follows:

exp�− t � · F0�G�u,0� = G�u−t,0��d�u−t�
d�u�

� . �53�

The above simplification when we put in Eq. �50� yields

�P�u1,u2,t�
�t

= � · �F0 + 	2�
0

�

d
�d�u−
�
d�u�

�
��F1�u,t��−
 · F1�u−
,t − 
�


�� d�u�
d�u−
�

��P�u1,u2,t� . �54�

�−
 denotes differentiation with respect to �u−
�. We put 	
=1 for the rest of the treatment. We now identify

u1 = q, u2 = p ,

F01 = p, F11 = 0,

F02 = − V��q� + QV − 
h�q� ,

F12 = g�q���t� + ��t� . �55�

In this notation, Eq. �54� now reduces to

�P�q,p,t�
�t

= −
�

�q
�pP� +

�

�p
�
h�q�p + V��q� − QV�P

+
�

�p
�

0

�

d
��g�q���t� + ��t��

�� �

�p−
 �g�q−
���t − 
� + ��t − 
����P ,

�56�

where we have used the fact that the Jacobian obeys the
equation

d

dt
log�d�qt,pt�

d�q,p�
� =

�p

�q
+

�

�p
�− 
h�q�p + V��q�� = − 
h�q�

so that the Jacobian becomes exp�−
h�q�t�. As a next ap-
proximation, we consider the “unperturbed” part of Eq. �56�
and take the variation in p during 
 into account to first order
in 
. Thus we have

q−
 = q − 
p ,

p−
 = p + 
h�q�
p + 
V��q� . �57�

Neglecting terms O�
2�, Eq. �57� yields

�

�p−
 = �1 − 
h�q�
�
�

�p
+ 


�

�x
. �58�

With the help of Eq. �58�, Eq. �56� can be simplified after
some algebra to the following form:

�P�q,p,t�
�t

= −
�

�q
�pP�

+
�

�p
�
h�q�p + V��q� − QV − 2g�q�g��q�Inn�P

+ �Iee + g2�q�Inn�
�2P

�p � q
, �59�

+ �Jee − 
h�q�Iee + g2�q�Jnn − 
h�q�g2�q�Inn

− vg�q�g��q�Inn�
�2P

�p2 , �60�

where

Iee = �
0

�

d
���t���t − 
�

 ,

Inn = �
0

�

d
���t���t − 
�

 ,

Jee = �
0

�

d
���t���t − 
�
 ,

Jnn = �
0

�

d
���t���t − 
�
 .

The statistical properties of ��t� and ��t� ensure that Inn=0,
Jnn=D0, Jee=De, and Iee=De
e. Hence, Eq. �59� takes the
simpler form

�P�q,p,t�
�t

= −
�

�q
�pP� +

�

�p
�
h�q�p + V��q� − QV�P , �61�

+ De
e
�2P

�p � q
+ �De − 
h�q�De
e + D0g2�q��

�2P

�p2 .

�62�

For small 
e we neglect the non-Markovian contribution
De
e

�2P
�p�q and the phase-space probability density function

obeys the approximate Fokker-Planck equation,

�P�q,p,t�
�t

= −
�

�q
�pP� +

�

�p
�
h�q�p + V��q� − QV�P

+ �De − 
h�q�De
e + D0g2�q��
�2P

�p2 . �63�

The above assumption is equivalent to considering the
exponentially correlated noise with the underlying dynamics
is Markovian. As there is no fluctuation-dissipation relation
for ��t�, our assumption is physically relevant.
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In this part we now want to illustrate the relationship of
our recent formulation with other allied methods bearing kin-
ship with ours in vogue. The method conceptually closest to
ours is that of Steffen and Tanimura �48� �but deviates in a
number of details�. In the absence of external noise, that is,
for De=0, Eq. �63� reads

�P�q,p,t�
�t

= −
�

�q
�pP� +

�

�p
�
h�q�p + V��q� − QV�P

+ D0g2�q�
�2P

�p2 . �64�

It is to be noted that we have treated the system part
quantum mechanically and the dissipation part semiclassi-
cally. This situation is equivalent to the case that Caldeira
and Leggett �47� discussed for the linear-linear system-bath
coupling case. The nonlinear-linear system-bath coupling
with same condition is also considered by Steffen and Tan-
imura �48�, where they assumed the square-linear coupling
�in our notation f�q�= q2

2 �. To relate our method with that of
Steffen and Tanimura �48� it is more appropriate to consider
Eq. �64� as follows:

�P�q,p,t�
�t

= −
�

�q
�pP� +

�

�p
�V��q� − QV�P

+ q2

�

�p
	p +

D0




�

�p

P . �65�

In the work of Steffen and Tanimura �48�, the dissipative
part of the quantum Fokker-Planck is obtained as



�
�p �p+kBT �

�p �P and 4q2

�
�p �p+kBT �

�p �P+q
�2 �2P
�q�p for

linear-linear and square-linear system-bath couplings, re-
spectively. In our case, for linear-linear coupling, the dissi-
pative part reduces to the same form at high temperature, as
is evident from Eq. �64�. Also square-linear coupling, the
first term of the dissipative part of quantum Fokker-Planck
equation of Steffen and Tanimura �48� has the same q depen-
dence as that of our model. As we have neglected the small
non-Markovian contribution, the cross derivative term, i.e.,
�2P
�q�p , does not appear in our case. Thus, we may expect an
innate relation between path-integral formulation of dissipa-
tive dynamics and our present development. It is worth not-
ing that being quasiprobability distribution function, the
Wigner distribution function may not always be positive
definite, but it has been shown by Ray and co-workers �49�
that the ansatz Eq. �9� always remains a positive-definite
function. As a further development, one may consider a cor-
related noise �
c finite� instead of considering white-noise
process as discussed in Ref. �50�. These aspects will be ad-
dressed in future works.

Now introducing the auxiliary function G�q� and a Gauss-
ian �-correlated noise ��t� we may check that the above
Fokkerf-Planck Eq. �63� is equivalent to the Langevin
equation

q̇ = p ,

ṗ = − V��q� + QV − 
h�q�p + G�q���t� , �66�

where

G�q� = �De + D0g2�q� − 
h�q�De
e �67�

and

���t�
 = 0; ���t���t��
 = 2��t − t�� . �68�

In the above Langevin equation, the dissipation is state de-
pendent and the noise term ��t� appears multiplicatively. We
now apply the method of Sancho to get the overdamped
Langevin equation in space-dependent frictional medium as

q̇ = −
V��q� − QV


h�q�
−

G�q�G��q�

h2�q�

+
G�q�

h�q�

��t� . �69�

The corresponding Fokker-Planck-Smoluchowski equation
for the probability density P�q , t� of a particle at q at a time
t is

�P�q,t�
�t

=
�

�q
�V��q� − QV


h�q� �P�q,t� +
�

�q
�G�q�G��q�


h2�q� �P�q,t�

+
�

�q
� G�q�


h�q�
�

�q

G�q�

h�q��P�q,t� , �70�

which can be written in a more compact form as

�P

�t
=

�

�q

1


h�q��V��q� − QV +
1




�

�q

G2�q�
h�q� �P�q,t� .

�71�

Equation �71� is the required Smoluchowski equation corre-
sponding to the quantum Langevin equation, where the noise
is multiplicative, dissipation is state dependent, and the sys-
tem is externally driven by an exponentially correlated noise.
In the overdamped limit, the stationary current can be ob-
tained as

J = −
1


h�q��V��q� − QV +
1




d

dq
	G2�q�

h�q�

�Pst�q� . �72�

Proceeding as in the earlier case, the stationary current in a
symmetric periodic potential V�q� and for the periodic de-
rivative of coupling function f�q�, will be given by

J =
1


2��1 − eU�2���/�	�
0

2� h�q�
G2�q�

e−U�q�dq�
0

2�

h�q�eU�q�dq

− �1 − eU�2����

0

2� 	 h�q�
G2�q�

e−U�q��
0

q

h�q��eU�q��dq�
dq� .

�73�

In this case the generalized potential U�q� is

U�q� = 
�
0

q V��q� − QV

G2�q�/h�q�
dq . �74�

It is clear from the expression �74� for U�q� that the peaks
of the steady-state probability Pst�exp�−U�q�� are deter-
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mined not by minima of V�q� alone but are determined as a
combined effect of other dynamic parameters. Pst�q� may
even be peaked at positions which would be less likely to be
populated in the stationary situation, i.e., when the dissipa-
tion is not state dependent. From Eq. �74� it is easy to verify
that for 
e→0, U�q� reduces to ��q�.

At this juncture we are in a position to make some com-
ments regarding results of our recent work with respect to
our previous work reported in Ref. �34�. In both the cases we
studied the phase-induced quantum current in thermody-
namically open systems. But the nature of mechanisms that
make the systems open is completely different. As we have
already mentioned that in present work the associated heat
bath is kept in thermal equilibrium and the system is driven
externally, contrary to our previous work where the bath was
driven externally, instead of the system. It is pertinent to
mention here that the expression of current J is similar to that
of the current, Eq. �82� in Ref. �34�. The basic difference
between Eq. �73� of this work and Eq. �82� of Ref. �34� lies
in the structure of the effective potential through the function
G�q�. The close kinship between the structures of the current
appears due to the fact that in both the cases, the Brownian
particle is driven by effective multiplicative noises. But it
should be noted here that the nature of the state-dependent
part of the noises are different. The difference in the state-
dependent part makes the difference in the effective poten-
tial. Thus though the two expressions bear similar structure,
they explain different physical phenomena.

V. RESULT AND DISCUSSION

Before proceeding to examine the various features of the
current given by Eqs. �40� and �73� we calculate the quantum
correction terms. Following Ray et al., the details of the
calculations of quantum correction terms are shown in the
Appendix. Though the quantum dispersion terms ��q̂n
Q can
be obtained by direct numerical simulation of the coupled
Eq. �A1� subject to appropriate boundary conditions, it is
instructive to deal with quantum correction terms in an ana-
lytical way to find out the approximate value of quantum
dispersion terms. For overdamped limit we neglect the �ṗ̂
term from Eq. �A2� to obtain

d

dt
�q̂ =

1


�f��q��2 �− V��q��q̂ − 2
pf��q�f��q��q̂

+ ��t�f��q��q̂� + O��q̂2� . �75�

With the help of Eq. �75� we then obtain the equations for
��q̂n
Q

d

dt
��q̂2
Q =

2


�f��q��2 �− V��q���q̂2
Q − 2
pf��q�f��q���q̂2
Q�

+ ��t�f��q���q̂2
Q + O���q̂3
Q� , �76�

d

dt
��q̂3
Q =

3


�f��q��3 �− V��q���q̂2
Q − 2
pf��q�f��q���q̂3
Q

+ ��t�f��q���q̂3
Q� + O���q̂4
Q� , �77�

and so on. It is apparent from Eqs. �76� and �77� that in the

overdamped limit, the higher-order quantum contributions
are small since each successive order of correction is lower
than the preceding one by a factor 1


 . A simplified expression
for the leading-order quantum correction term ��q̂2
Q can be
estimated by neglecting the higher-order coupling terms in
the square bracket in Eq. �76� and rewriting it as

d��q̂2
Q = −
2


�f��q��2V��q���q̂2
Qdt .

On the other hand, the overdamped deterministic classical
motion gives

dq = −
V��q�


�f��q��2dt .

These together yield after integration

��q̂2
Q = �q�V��q��2, �78�

where �q= ��q̂2
Q
0 / �V��q0��2 and q0 is the quantum-

mechanical mean position at which ��q̂2
Q becomes mini-
mum, i.e., ��q̂2
Q

0 = �

2�0
, where �0 is the average frequency of

the bath as defined earlier.
For numerical implementation of our results, we consider

a sinusoidal periodic and symmetric potential

V�q� = V0�1 + cos�q + ��� , �79�

where V0 is the barrier height and � is the phase factor,
which can be controlled externally. The coupling function
f�q� is chosen as f�q�= �q+	 sin q� so that the derivative of
the coupling function becomes f��q�=1+	 cos q, where 	 is
the modulation parameter. Consequently, the second-order
quantum correction in the overdamped limit becomes

��q̂2
Q = − �qV0
2 sin2�q + ��

and the correction to the potential in the leading order are
given by

QV = −
1

2
�qV0

3 sin3�q + �� . �80�

The quantum corrections Qf and Q3 in the same order can be
estimated as

Qf = −
1

2
�q	V0

2 cos q sin2�q + �� , �81�

Q3 = �q	2V0
2 sin2q sin2�q + �� , �82�

and the functions h�q� and g�q� are given by

h�q� = �1 + 	 cos q�2 − �q	V0
2 cos q sin2�q + ���1 + 	 cos q�

+ �q	2V0
2 sin2 q sin2�q + �� , �83�

g�q� = 1 + 	 cos q −
1

2
�q	V0

2 cos q sin2�q + �� . �84�

In the unit of �=kB=1, we set the parameters ��q̂2
Q
0 = 1

2 , the
minimum uncertainty value, �q=0.5, V0=1.0, 	=1.0, T
=1.0, 
=1.0;. In Fig. 1, we plot the variation in effective
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potential U�q� for a particular correlation time 
e=0.01, to
observe the effect of De from which we see that a tilt to the
effective potential has been generated. This asymmetry in the
generalized potential makes the transition between left to
right and right to left unequal and consequently unidirec-
tional motion appears. The variation in current as a function
of phase difference � is shown in Fig. 2 for different values
of De. In an attempt to get a better insight, we also plot the
classical counter part of current �with D0=


kBT
2 � in Fig. 2.

Figure 2 clearly indicates the deviation of classical results
with respect to the quantum current increase with decreasing
value of De as the effective temperature increases with the
value of De. The behavior of system�s� described by the
quantum-mechanical theory reproduces the classical result in
the limit of high temperature. The variation in current as a
function of temperature is depicted in Fig. 3 for different De
values.

Our view is that the primary feature of the current profile
generated via our present formalism is very similar in nature

as that of our previous work published in Ref. �34� as the
basic Langevin equation used in both works are structurally
similar. This aspect bolsters our belief that our proposed
methodology to compute quantum current is quite promising
and can be used as a potential tool to study the transport
phenomena in nanoscale device like molecular motor.

VI. CONCLUSION

We have formulated a theory for the transport of a quan-
tum system when the system is driven by an external random
force by making it thermodynamically open. Our approach is
based on the system-reservoir model with nonlinear system-
bath coupling. We then derive the quantum Langevin equa-
tion with multiplicative noise �and with the additive external
noise� and a nonlinear dissipation. We then obtain the c num-
ber analog of the quantum Langevin equation in the Markov-
ian limit. Following Sancho we then derive the quantum ana-
log of the Smoluchowski equation for the state-dependent
diffusion of stochastically driven quantum system. We ap-
plied our formulation to the problem of diffusion of a quan-
tum particle in a periodic potential. Our tractable result holds
true away from the semiclassical limit and, more interest-
ingly, can be applied to an arbitrarily shaped ratchet poten-
tial, which we would like to address in near future. Our in-
vestigation can advantageously be put to work for quantum
ratchets on the microscale and nanoscale. Furthermore, the
structure of our quantum analogy of Smoluchowski equation
can be generalized to higher dimensional overdamped situa-
tions as for quantum noise-induced directed transport on sur-
faces and to optimize transport properties in superconductors
by controlling the motion of vortices and magnetic-flux
quanta �51�. In passing, we point out that very recently, an
experimental realization of quantum ratchets associated with
quantum resonance of the kicked particle for arbitrary values
of the quasimomentum has been reported �52,53�. However,
the theoretical study of the phenomena of quantum ratchets
remains wide open, and we hope that our study will be help-
ful to understand the various characteristics of such systems.
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APPENDIX: QUANTUM CORRECTION TERMS

Before embarking on our recent formulation based on the
c-number approach of Ray and co-workers �8�, it will be
useful to first present a brief resumé of the scheme of calcu-
lation of quantum correction terms of Ray and co-workers
�8�. This will motivate toward the essential ingredients which
should be embedded in our case. Hence, we describe briefly

here the essential aspects of the c-number approach of Ray
and co-workers �8� insofar as it is pertinent to our formula-
tion.

In the Heisenberg picture, one can write the system op-
erators q̂ and p̂ as q̂=q+�q̂ and p̂= p+�p̂, respectively. �q̂
and �p̂ describe the quantum fluctuations around their re-
spective mean values.

With the help of the operator Langevin Eq. �3� in the
Markovian limit, the time evolution of these correction terms
can be calculated via the following equations using quantum-
mechanical average over the initial product separable coher-
ent bath states:

q̇̂ = p̂ ,

ṗ̂ = − V��q̂� − 
�f��q̂��2p̂ + f��q̂���t� + f��q̂���t� + ��t� , �A1�

�q̇̂ = �p̂ ,

�ṗ̂ = − V��q��q̂ − �
n�2

1

n!
Vn+1�q���q̂n − ��q̂n
Q�

− ��2f��q�f��q��q̂ + 2f��q��
n�2

1

n!
fn+1�q���q̂n − ��q̂n
Q� + �

m�1
�
n�1

1

m!

1

n!
fm+1�q�fn+1�q���q̂m�q̂n − ��q̂m�q̂n
Q�p�

− ���f��q��2�p̂ + 2f��q��
n�1

1

n!
fn+1�q���q̂n�p̂ − ��q̂n�p̂
Q� + �

m�1
�
n�1

1

m!

1

n!
fm+1�q�fn+1�q���q̂m�q̂n�p̂ − ��q̂m�q̂n�p̂
Q��

+ ��t�� f��q��q̂ + �
n�2

1

n!
fn+1�q���q̂n − ��q̂n
Q�� . �A2�

From the work of Ray and co-workers �8�, it is clear that the operator correction equations can be used to yield an infinite
hierarchy of equations. Up to third order, we construct, for example, the following set of equations which are coupled to
quantum Langevin equations from Eq. �8�:

d

dt
��q̂2
Q = ��q̂�p̂ + �p̂�q̂
Q,

d

dt
��q̂�p̂ + �p̂�q̂
Q = − 2��q,p���q̂2
Q + 2��q̂2
Q − ��f��q��2��q̂�p̂ + �p̂�q̂
Q − ��q,p���q̂3
Q − 2�f��q�f��q���q̂2�p̂ + �p̂�q̂2
Q,

d

dt
��p̂2
Q = − 2��f��q��2��p̂2
Q − ��q,p���q̂�p̂ + �p̂�q̂
Q −

1

2
��q,p���q̂2�p̂ + �p̂�q̂2
Q − 2�f��q�f��q���q̂�p̂2 + �p̂2�q̂
Q,

d

dt
��q̂3
Q =

3

2
��q̂2�p̂ + �p̂�q̂2
Q,

d

dt
��p̂3
Q = − 3��f��q��2��p̂3
Q −

3

2
��q,p���q̂�p̂2 + �p̂2�q̂
Q,

d

dt
��q̂2�p̂ + �p̂�q̂2
Q = − 2��q,p���q̂3
Q + 2��q̂�p̂2 + �p̂2�q̂
Q − ��f��q��2��q̂2�p̂ + �p̂�q̂2
Q,
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d

dt
��q̂�p̂2 + �p̂2�q̂
Q = 2��p̂3
Q − 4��q,p���q̂2�p̂ + �p̂�q̂2
Q − 2��f��q��2��q̂�p̂2 + �p̂2�q̂
Q, �A3�

where

��q,p� = V��q� + 2�pf��q�f��q� − ��t�f��q� ,

��q,p� = V��q� + 2�pf��q�f��q� + 2�p�f��q��2 − ��t�f��q� .
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