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The author’s nonequilibrium probability distribution is tested for time-varying mechanical work. Nonequi-
librium Monte Carlo �NEMC� is used to simulate a Brownian particle in a soft-sphere solvent, driven by a
moving external potential. Results are obtained for the phase lag and amplitude for drive frequencies ranging
from the steady state to the transient regime. This now extends the application of the NEMC algorithm to a
time-varying nonequilibrium system. The results are shown to agree with those obtained by nonequilibrium
stochastic molecular dynamics and by Nosé-Hoover molecular dynamics, from which it is concluded that the
nonequilibrium probability distribution correctly describes time-varying mechanical work and that it provides
a fundamental basis for nonequilibrium statistical mechanics.
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I. INTRODUCTION

The Boltzmann distribution for the phase-space probabil-
ity is the foundation upon which classical equilibrium statis-
tical mechanics is erected. In contrast, there is no consensus
for the form of the probability distribution for nonequilib-
rium systems, and, consequently, there is currently no recog-
nized foundation upon which to formulate a general theory
for nonequilibrium statistical mechanics.

Many workers, implicitly or explicitly, invoke the equilib-
rium Boltzmann distribution for nonequilibrium systems. But
this is readily demonstrated to be incorrect because the Bolt-
zmann distribution is a function of the square of the molecu-
lar velocities and as such it is insensitive to the direction of
time. The correct nonequilibrium probability distribution
should depend upon the arrow of time, as mandated by the
second law of thermodynamics.

At least two candidates for the nonequilibrium probability
distribution that do depend upon the direction of time have
been proposed. One due to Yamada and Kawasaki �1,2�, and
others �3,4�, invokes the equilibrium Boltzmann distribution
evaluated at some time in the past on an adiabatic trajectory
from the present point in phase space. This would be appro-
priate for a subsystem originally in thermal equilibrium but
subsequently isolated from the heat reservoir during the per-
formance of the work or the application of the time-varying
potential. Unfortunately, this is not the case for real nonequi-
librium systems. Further, the Yamada-Kawasaki distribution
cannot be generalized to steady-state thermodynamic sys-
tems such as heat flow. Finally, computer simulations, evalu-
ating the past trajectory with and without a thermostat, have
shown the Yamada-Kawasaki distribution to be intractable
�5–8�.

The second candidate for the nonequilibrium probability
distribution is the one proposed by the present author �9,10�.
This, like the equilibrium Boltzmann distribution, is simply
the exponential of the reservoir entropy �11�. Unlike the
equilibrium case, the latter is not determined solely from the
current point in phase space but requires the calculation of
the previous history of the nonequilibrium system up to the
present time, which is where the arrow of time enters. As
discussed further below, this can be cast in a form tractable

for computation and for mathematical analysis. Although this
nonequilibrium probability distribution has been successfully
tested for steady heat flow �9�, it has yet to gain wide-spread
acceptance. Conceivably, there might be something special
about the steady-state limit, and a more stringent test is
called for. Time-varying work, for example, would go be-
yond those zero-frequency results and would provide a con-
vincing demonstration of the general solution to the nonequi-
librium problem.

The motivation for the present paper is to show that a
closed-form expression for the nonequilibrium probability
distribution does indeed exist and to test it in the case of a
time-varying externally applied potential. This extends the
earlier tests for a steady thermodynamic gradient �9� to a new
time regime and to a qualitatively different nonequilibrium
system, namely, a time-varying mechanical potential. The
success of the theory in this case would extend the regime of
validity beyond the steady-state regime and beyond the ther-
modynamic regime, and it would provide one with increased
confidence in the generality of the approach.

The nonequilibrium probability distribution is here tested
using nonequilibrium Monte Carlo �NEMC� simulations �9�.
Given the increasing importance of computer simulation
techniques in modern statistical mechanics �11,12�, new al-
gorithms are important in their own right. To date nonequi-
librium simulations have been dominated by molecular dy-
namics �MD�, either deterministic �8,12� or stochastic
�SMD� �13�. The latter, which is derived by maximizing the
second entropy that appears in the transition probability
�10,14�, has been applied to two nonequilibrium cases,
namely, steady heat flow and time-varying mechanical work
�10,13�. The development of a Monte Carlo algorithm for
nonequilibrium systems provides an alternative to the
molecular-dynamics approaches. In principle, Monte Carlo
techniques offer advantages in complex systems with slow
dynamics due to the inherent mathematical flexibility and
potential for optimization that comes from sampling a prob-
ability distribution �11�.

The present paper uses NEMC to directly test the non-
equilibrium probability distribution for a mechanical tran-
sient case. Simulations are performed for a Brownian particle
in a solvent bath and trapped by an externally applied poten-
tial, whose position varies harmonically with time. NEMC
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results for the amplitude and phase lag of the driven particle
are shown to be in quantitative agreement with results ob-
tained using the nonequilibrium SMD algorithm �13� and
MD results with a Nosé-Hoover chain thermostat �15�. The
agreement between all three methods proves the author’s
nonequilibrium probability distribution for time-varying
systems.

Some may be skeptical that it is possible to use Monte
Carlo to describe a nonequilibrium system. There are two
points to make. First, it is shown below that the present
nonequilibrium Monte Carlo results are in quantitative agree-
ment with those obtained by two established molecular-
dynamics algorithms. So one can be assured that nonequilib-
rium Monte Carlo does work, even if one cannot at this stage
appreciate how it is possible. Second, the reason for skepti-
cism about nonequilibrium Monte Carlo could quite rightly
concern the arrow of time and how this can possibly be part
of a Monte Carlo algorithm since points in phase space can
have no instantaneous knowledge of the second law of ther-
modynamics. As is shown with mathematical precision be-
low, for each sampled point in phase space two trajectories
over time are generated, and this is where the arrow of time
enters the algorithm. Of course, it is not at all obvious how
one might cast such an idea in a computationally tractable
form, but one of the benefits of having a complete nonequi-
librium theory is that it provides a framework to do just that.

II. PROBABILITY DENSITY

In the present author’s theory for nonequilibrium thermo-
dynamics and statistical mechanics, the nonequilibrium prob-
ability density in the subsystem phase space is the exponen-
tial of the reservoir entropy �9,10�

���,t� = eSr��,t�/kB/Z�t� . �2.1�

Here ���qN ,pN� is a point in the subsystem phase space, t
is time, Z�t� is the partition function, which normalizes the
integral of the probability density to unity, and kB is the
Boltzmann constant. This result follows from the fact that a
point in the subsystem phase has no internal entropy �11�.
The subsystem is connected to a thermal reservoir, whose
entropy comprises an equilibrium and a nonequilibrium part
�10�,

Sr��,t� = Seq��,t� + Sne��,t� . �2.2�

The equilibrium part is that part of the reservoir entropy that
would exist if the system had no memory. In the present case
of a mechanical nonequilibrium system in contact with a
thermal reservoir of temperature T, the subsystem Hamil-
tonian has an explicit time dependence H�� , t�, and the equi-
librium part of the reservoir entropy is

Seq��,t�/kB = − �H��,t� , �2.3�

where ��1 /kBT. In general, the equilibrium part of the res-
ervoir entropy is insensitive to the direction of time,

Seq��†,t� = Seq��,t� , �2.4�

where the conjugate phase-space point has the momenta re-
versed �†��qN , �−p�N�. For the potential trap used in the

present simulations, with minimum located at b�t�x̂, there is
also a spatial symmetry involving reflection of the solute and
solvent coordinates in the trap minimum. Defining �‡

���b�t�x̂−q�N ,pN�, one has as well

Seq��‡,t� = Seq��,t� . �2.5�

This spatial symmetry operation is required below �see also
Sec. 5D2 of Ref. �10��.

The nonequilibrium part of the reservoir entropy removes
the adiabatic contribution from the change in the equilibrium
part of the reservoir entropy �10�,

Sne��,t� = − �
t0

t

dt�Ṡeq
0
„��t�	�,t�,t�… . �2.6�

Here ��t� 	� , t� is the most likely trajectory proceeding back-
ward in time from the current point in phase space �9,10,13�.
Strictly speaking, the nonequilibrium part of the reservoir
entropy is the sum over all possible trajectories to the present
point. Hence, this expression approximates this by the largest
term, which is the most likely trajectory and neglects the
contribution of fluctuations about this trajectory. For a long
enough trajectory, the two termini are uncorrelated and the
nonequilibrium part of the reservoir entropy has at most a
trivial dependence on t0, and this may be replaced by t−� for
some ��0 �9,10,13�. For the present case of mechanical
work, since energy is conserved under Hamilton’s equations
of motion, the adiabatic derivative of the equilibrium part of
the reservoir entropy is

Ṡeq
0 ��,t� =

− �H��,t�
T � t

. �2.7�

Only the time-dependent external potential contributes to
this. Here T is temperature, which is the usual energy deriva-
tive of the first entropy. According to the present theory,
temperature is well defined in all circumstances for equilib-
rium and nonequilibrium systems �10,11,16�. The superscript
0 denotes adiabatic here and throughout.

One now introduces three approximations �10�. First, all
of the sensitivity of the nonequilibrium probability density to
the arrow of time is contained the nonequilibrium part of the
reservoir entropy, and so this may be approximated by its
odd projection,

Sne��,t� 
 Sne
odd��,t�

=
− 1

2
�

t−�

t

dt��Ṡeq
0
„��t�	�,t�,t�… − Ṡeq

0
„��t�	�†‡,t�,t�…� .

�2.8�

Note that both time and space symmetries are invoked in
defining this odd function �see Sec. 5D2 of Ref. �10��. The
twin justifications for this are that the even projection is neg-
ligible compared to the equilibrium part of the reservoir en-
tropy and that this only differs from the true nonequilibrium
part of the reservoir entropy on unlikely points of phase
space, which occur with negligible probability in the thermo-
dynamic limit �10�. At large times, the integrand goes to zero
because the adiabatic rate of entropy production is indepen-
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dent of the starting point of the trajectory �9,10�,

Ṡeq
0
„��t�	�,t�,t�… → Ṡeq

0 �t��, 	t� − t	 → � . �2.9�

This means that for large enough values of �, the odd pro-
jection is insensitive to the value of �, a point that will be
tested by the simulation results below.

The second approximation is that the integrand is approxi-
mately an even function of time. This follows because a
fluctuation in the most likely flux is as equally likely to be
returning to the optimum state as it is to be coming from the
optimum state. Hence, one has

Sne
odd��,t� 


− 1

2
�

t

t+�

dt��Ṡeq
0
„��t�	�,t�,t�…

− Ṡeq
0
„��t�	�†‡,t�,t�…� . �2.10�

For this to be meaningful, for t�� t one has to define a future

Hamiltonian H̃�� , t� ; t�=H�� ,2t− t�� and calculate the fu-
ture most likely trajectory using it. This is required to avoid
violating time causality: the future behavior can only be the
same as in the past if the time variation in the external po-
tential in the future is the reverse of what it was in the past.

Third, the future most likely trajectory is approximately
equal to the future adiabatic trajectory, so that

Sne
odd��,t� 
 Sne

odd;0��,t�

�
− 1

2
�

t

t+�

dt��Ṡeq
0
„�0�t�	�,t�,t�…

− Ṡeq
0
„�0�t�	�†‡,t�,t�…� . �2.11�

This is somewhat akin to Onsager’s regression hypothesis
that the subsidence of a fluctuation is the same in an isolated
system as in one exchanging with a reservoir. This equality
only holds in the future.

In view of the time reversibility of an adiabatic trajectory
under Hamilton’s equations, the definition of the future
Hamiltonian means that one has exactly

�0�t�	�†‡,t� = ��0�2t − t�	�,t��†‡. �2.12�

�The double dagger means reflection in b�t�x̂ on the left-hand
side, and in b�2t− t��x̂ on the right-hand side.� Because the
motion of the external potential trap has been reversed for
t�� t, it is necessary to both reverse velocities and to reflect
the positions in the trap minimum. �For an adiabatic system
with time-dependent potential, if �2=�0�t2 	�1 , t1�, then �1
=�0�t1 	�2 , t2�, which is just a statement of the uniqueness of
the trajectory. If one has a Hamiltonian that is not explicitly
dependent on time H��� then the reversibility of the equa-
tions of motion in addition implies �1

†=�0�2t2− t1 	�2
† , t2�.

This last result does not hold for an explicitly time-
dependent Hamiltonian, in which case it has to be replaced
by Eq. �2.12�.� Equation �2.12� allows the odd adiabatic non-
equilibrium reservoir entropy to be rewritten exactly as

Sne
odd;0��,t� =

− 1

2
�

t−�

t

dt��Ṡeq
0
„�0�t�	�,t�,t�…

− Ṡeq
0
„�0�t�	�†‡,t�,t�…�

=
1

2T
�

t−�

t

dt��Ḣ0
„�0�t�	�,t�,t�…

− Ḣ0
„�0�t�	�†‡,t�,t�…� . �2.13�

This uses the result that the adiabatic derivative satisfies

Ṡeq
0 ��†‡ , t�=−Ṡeq

0 �� , t�. Of course, one can formally evaluate
this integral because the integrand is an exact differential, but
nothing is to be gained by this.

With these three steps, the nonequilibrium probability dis-
tribution becomes

���,t� =
1

Z�t�
e−�H��,t�eSne

odd;0��,t�/kB. �2.14�

The Monte Carlo simulations reported below calculate the
nonequilibrium part of the reservoir entropy that appears
here by calculating the two adiabatic trajectories backward in
time and evaluating the integral with the trapezoidal rule or
Simpson’s rule. Using this probability density in the Monte
Carlo simulations tests both the fundamental probability den-
sity and the three steps leading to the final form.

III. RESULTS FOR DRIVEN BROWNIAN MOTION

A. System details and Monte Carlo algorithm

A Brownian particle in a moving potential trap was simu-
lated, using the same model treated in Refs. �13,15�. The
subsystem consisted of a solute atom in a bath of N
=500–1000 solvent atoms. The solute and solvent interacted
via a soft-sphere potential,

u���r� = ����/r�12. �3.1�

The solvent had a mass m1=1, a length scale �11=0.5, and a
potential cutoff of Rcut;11=1.2. The solute had m0=10, it in-
teracted with the solvent via �10=2.25, and Rcut;10=5.2. The
temperature was 3 in these units. The potential trapping the
solute was a harmonic potential along the x axis, oscillating
along that axis,

U�x,t� = 	�x − b�t��2/2, �3.2�

with 	=16.81, and b�t�=B cos 
t, with B=0.2, unless stated
otherwise.

A bulk system was simulated with periodic boundary con-
ditions. A cube of edge length 8.98 or 11.31 was used �for
N=500 or 1000 solvent atoms, respectively� and the solvent
density was 0.69. A spatial neighbor table with small cells of
edge length 
0.3 was used, which is about a factor of 3–10
more efficient than the conventional choice of neighbor cells
of size equal to the cut-off radius �16�.

In a given simulation the radial frequency 
 was fixed.
The Metropolis algorithm and umbrella sampling was used.
The umbrella potential was based upon the equilibrium Bolt-
zmann distribution �see below�. The number of Monte Carlo
cycles in each simulation was 500–1650.
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A Monte Carlo cycle consisted of the following. First, a
trial move for the position of each solvent atom, with the
solute fixed at the origin. Each solvent was moved succes-
sively. Each trial move was accepted or rejected based upon
the usual Metropolis criteria, using the solvent-solvent and
solvent-solute potentials �11,12�. At this stage, the external
potential does not enter. The step length was chosen to give
an acceptance rate of about 50%. This was repeated 10–25
times, �i.e., 10–25 moves per solvent atom per cycle�. Then
the solvent velocities were randomly chosen from the
Maxwell-Boltzmann distribution, which is a Gaussian of
variance �kBT /m1. Next, the solute velocity was chosen from
a Gaussian of variance �kBT /m0. Then for the solute posi-
tion, the y and z coordinates were left unchanged at the ori-
gin, and the x coordinate was chosen from a Gaussian of
variance �kBT /	. All the solvent x coordinates were shifted
by this value of the solute x coordinate, so that their position
relative to the solute remained unchanged. At this stage of
the cycle, the procedure is equivalent to choosing the phase-
space position of the solute and solvent from an equilibrium
Boltzmann distribution with the external potential being lo-
cated at the origin, �i.e., the position of the trap minimum
being located at the origin�. This phase-space coordinate
�solute plus solvent� ��, is stored, and after the following
loop of trajectories and averages, it is used as the starting
point for the next set of trial moves, by shifting the solute
and solvent by the solute x coordinate to bring it back to the
origin while maintaining the relative solvent positions.

Now a loop is performed over a set of 10 times, t1 , t2 , . . .,
typically evenly spaced on the interval �0,2� /
�. Each time
defines the location of the external potential bi=B cos 
ti.
For each time, the solute and the solvent x coordinates are
shifted by the amount bi, so that their position relative to the
trap is maintained. This phase-space coordinate may be de-
noted ��,i. For each such coordinate, two adiabatic trajecto-
ries were calculated backward in time �0�t� 	��,i , ti� and
�0�t� 	��,i

†‡ , ti�, for t�� �ti , ti−��. The maximum time interval
was �=7. The second-order Verlet algorithm �11,12� with a
time step of 2�10−2 was used for the trajectory calculation.
The time variation in the external potential was included in
the calculation of the trajectories. A running integral of the
partial time derivative of the external potential was per-
formed over each trajectory, one was subtracted from the
other, and Sne

odd;0���,i ; ti ,��� was stored for 20 values of ��
uniformly spaced in the interval �0,��.

After this loop averages were collected. Any given phase
function f�� , t� has 200 distinct averages: one for each ti, and
one for each ��. In view of the umbrella sampling �the um-
brella weight is the equilibrium Boltzmann factor�, an aver-
age value is

�f�ti�
�� =

�
�

f���,i,ti�eSne
odd;0���,i;ti,���/kB

�
�

eSne
odd;0���,i;ti,���/kB

. �3.3�

The two main quantities averaged in each simulation were
the solute position x�t� and the solute velocity ẋ�t�, and from
them the amplitude and phase lag of the response from the
functions �x�ti�
��=A cos�
ti+
�, �ẋ�ti�
��=−A
 sin�
ti+
�.

For each ti and ��, these can be inverted to obtain the ampli-
tude and phase lag Ai=�xi

2+ ẋi
2 /
2 and 
i=tan−1��ẋi

+
xi� / �ẋi−
xi��. Values of 
 in the first quadrant were
shifted to the third, so that 
� �−� ,0�. For each ��, these
were simply averaged over the 10ti to obtain the average
amplitude and phase, A��, and 
��, and an estimate in the
standard error in the mean of this average. Statistical error
creates problems with the phase lag for small values of the
lag due to the branch cut. Hence, an alternative approach was
also used, in which the two trigonmetric response functions
were fitted in a least-squares sense to all the data at the 10ti
to obtain A�� and 
��. Except for the smallest values of ��
�see discussion�, the two methods gave very similar results.

Two minor modifications to the umbrella weight were ex-
plored. In the above procedure, the insensitivity of the Bolt-
zmann distribution to the reflection operation H��†‡ , t�
=H�� , t�, and the definition of the odd projection
Sne

odd;0�� ; t ,��=−Sne
odd;0��†‡ ; t ,�� means that one can calculate

the phase-space average for both ��,i and ��,i
†‡ with no addi-

tional work �two configurations per ti per cycle�.
A second recipe for umbrella sampling was explored. In

this case for each configuration �, a solute position x̃� and
velocity x̃̇� were chosen randomly from the Gaussians as

above. A nominal amplitude Ã and phase lag 
̃ were fixed at
the start of the simulation, and the actual position and veloc-
ity of the solute for configuration � and time ti were taken as

x�,i= x̃�+ Ã sin�
ti+ 
̃� and ẋ�,i= x̃̇�+ Ã
 cos�
ti+ 
̃�. �It can
be shown that the exact fluctuations about the most likely
position and velocity in the nonequilibrium case are given by
the above variances �10�.� The weight used in the averages in
this procedure is then

e−�H���,i,ti�eSne
odd;0���,i;ti,���

e−�	x̃�
2 /2e−�m0x̃̇�

2 /2
. �3.4�

Only one configuration can be used at a time with this um-
brella weight. The average amplitude and phase lag should

be independent of the choice of Ã and 
̃, although one might
expect the statistical error to be reduced by choices close to
the final averages, and by reducing the width of the
sampling.

B. Results

Figure 1 shows typical results of the nonequilibrium
Monte Carlo simulation. The average position and velocity
of the solute were obtained at ten different times in the drive
cycle. The error bars are the standard error on the mean,
which was obtained by breaking the simulation into in this
case 25 blocks, and obtaining the variance of the averages. It
can be seen that the data define quite well trigonometric
curves, from which the phase lag and amplitude are readily
extracted.

The data in Fig. 1 yielded �A /B
=0.76�0.05 and �


=−1.31�0.05. These data were obtained with umbrella sam-

pling with Ã=0.66B, and 
̃=−1.20. Umbrella sampling in-

stead with Ã=0.60B, and 
̃=−1.00 yielded �A /B

=0.75�0.06 and �

=−1.14�0.11. Using instead the Bolt-
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zmann distribution for the umbrella sampling yielded
�A /B
=0.736�0.007 and �

=−1.23�0.01, using 2.5 times
the number of trajectories �effectively five times the number
of configurations�. One can conclude from this that the aver-
ages are independent of the umbrella weighting. The compu-
tational efficiency �i.e., number of trajectories required to
obtain a specified statistical error� of the two types of um-
brella weight tested here is slightly better for the Boltzmann
weighting than for the Gaussian weighting.

It should be understood that if one had carried out ordi-
nary equilibrium Monte Carlo on this system �i.e., sampled
the Boltzmann distribution itself�, then one would have ob-
tained data scattered about the drive position itself �i.e., for
the position, no phase lag and response amplitude equal to
the drive amplitude, and an average velocity of zero�. Of
course, it is physically unreasonable to have a time-varying
average position but a zero average velocity. This is just
another way of saying that the Boltzmann distribution is not
the correct probability distribution for a nonequilibrium sys-
tem. The nonequilibrium part of the reservoir entropy in the
present nonequilibrium probability distribution is an essen-
tial addition to the Boltzmann factor to produce a nontrivial
response to the time-varying force.

The dependence of the nonequilibrium part of the reser-
voir entropy on the time interval used to calculate it is ex-
plored in Fig. 2. Here, the NEMC averages for the phase lag
and for the amplitude ratio are plotted as a function of the
time interval over which the trajectories were integrated to
obtain the averages �i.e., �

��, and �A /B
���. As the time
interval is increased, the averages become constant. This is
consistent with the claim made in the text that for large
enough �, the nonequilibrium part of the reservoir entropy is
insensitive to the value of the time interval. In this case, the
figure shows that the averages have reached their asymptotic
values for ���3.

As ��→0, the nonequilibrium part of the reservoir en-
tropy vanishes. As discussed above, this limit is equivalent to
using the Boltzmann distribution as the probability distribu-

tion, in which case one would obtain �x�t�
eq=B cos 
t and
�ẋ�t�
eq=0. The inconsistency of these two results from the
fact that the Boltzmann distribution is inappropriate for a
nonequilibrium system. The data in Fig. 2 at small � are less
reliable, in part because statistical noise makes estimates of

 for small 
 problematic due to the branch cut, and in part
because of this inconsistency in the fitted functions �i.e., fit-
ting to position alone would give A=B and fitting to velocity
alone would give A=0�. One can conclude from Fig. 2 that
one should use a large enough value of � for the data to have
attained its asymptotic value. Recording averages as a func-
tion of � in order to retrospectively confirm that the data have
indeed reached their asymptotes creates no extra computa-
tion time because the umbrella weight can be saved as a
running integral of ��.

Figure 3 shows the phase lag of the solute as a function of
the drive frequency. The solute oscillates almost in phase
with the trap at low frequencies and increasingly lags the trap
as the frequency is increased, going through 
=−� /2 at ap-
proximately 
=1.3. The results of the present NEMC algo-
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FIG. 1. Nonequilibrium Monte Carlo simulation results for the
average position �open triangles� and velocity �filled circles� of the
solute at 10 times ti during the drive cycle �
=0.8, B=0.2, �
=7�. The solid curves are the trigonometric functions x�t�
=A cos�
t+
� and ẋ�t�=−A
 sin�
t+
�, where A and 
 are ob-
tained from a simple average of the 10A�x�ti� , ẋ�ti�� and

�x�ti� , ẋ�ti��. The enveloping dashed curves are a guide to the es-
timated error. The bold solid and dashed curves are the position b�t�
and velocity ḃ�t� of the trap, respectively �dimensionless units here
and throughout�.

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8

τ'

A
/B

φ

FIG. 2. Nonequilibrium Monte Carlo simulation results for the
average relative amplitude �A /B
�� �triangles� and phase lag �

��
�circles� of the solute as a function of the time interval �� used for
the averages �
=0.8, B=0.2�.
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FIG. 3. Phase lag of the solute as a function of the drive fre-
quency. The crosses are MD simulations with the equilibrium Nosé-
Hoover chain thermostat �15�, the circles are nonequilibrium sto-
chastic molecular-dynamics simulations �13�, and the triangles are
the present nonequilibrium Monte Carlo simulations ���=7�. The
dotted line is the Langevin steady-state theory �D=0.105, linear
order in frequency�, and the solid curve invokes the first non-
Markov correction to the Langevin equation �n=3, �=1, quadratic
order� �15�. The error bars are the standard error on the mean and
are, in most cases, smaller than the symbols.
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rithm are compared with conventional Nosé-Hoover simula-
tions that employ a chain thermostat �15� and with the
author’s stochastic molecular-dynamics algorithm, which is
based upon the second entropy for the transition probability
�13�. All three simulation results are in good agreement,
which supports the validity of all three. That the two
molecular-dynamics algorithms agree is expected; as has
been shown �10,13�, the particular thermostat has negligible
influence in the thermodynamic limit of the solvent for this
type of mechanical work applied only to a single solute �see
Secs. SSIII.B.7 and VI.C.3 of �10�, and Sec. II.B.3 of �13��.
However, the test of the NEMC is more significant as this is
a qualitatively different approach to the molecular-dynamics
approaches. It relies upon the correct weighting of phase
space. The fact that the phase lag obtained in this approach is
the same as that given by the molecular-dynamics simula-
tions is strong evidence for the validity of the nonequilibrium
probability distribution that is invoked. One can conclude
that the NEMC algorithm and the underlying nonequilibrium
probability distribution are valid over the whole temporal
regime from steady state to transient.

The low-frequency data in Fig. 3 correspond approxi-
mately to the steady state. This regime is well described by
the Langevin theory, and in it the particle moves with the
instantaneous velocity of the trap x̄̇�t�= ḃ�t� and lags the trap
such that the drag force is equal and opposite to the trap
force −�	�x̄�t�−b�t��= ḃ�t� /D �15�. In this case to the lead-
ing order in frequency, A=B+O�
2� and 
=−
 /�	D
+O�
3�, with diffusion constant D=0.105 obtained from the
position autocorrelation function in the absence of a trap
�15�. �The most likely position and velocity given by this
equation are self-consistent only to the leading order in fre-
quency.� Also shown in Fig. 3 is the first-order correction to
Langevin theory, which accounts for the leading memory
effects in the solvent �i.e., essentially a time-dependent dif-
fusion constant� �15�. It can be seen that this works well up
to intermediate frequencies but underestimates the magni-
tude of the phase lag at higher frequencies. The high-
frequency regime can be called the transient regime, and in
this region there is a significant phase lag between the par-
ticle and the trap.

Figure 4 shows the ratio of the amplitude of the solute
response to the amplitude of the driven trap. It can be seen
that the response amplitude decreases with increasing fre-
quencies. Again, there is good agreement between the three
simulation methods.

There is some evidence for a weak nonlinear dependence
of the amplitude response at higher drive amplitudes. For
example, in the case of nonequilibrium SMD simulations,
drive amplitudes of 5, 2.5, 1, and 0.5 give �A /B
=
0.624�0.002, 0.657�0.002, 0.664�0.005, and
0.675�0.006, respectively. The NEMC simulations for drive
amplitudes of 1, 0.5, and 0.2 give 0.68�0.02, 0.78�0.05,
and 0.76�0.05. The phase lag showed less variability with
drive amplitude.

For the present case of a trapped Brownian solute, the
nonequilibrium stochastic molecular-dynamics method is
more efficient than the present implementation of the non-
equilibrium Monte Carlo method. For example, at 
=0.8,
the SMD simulations used a total of 4�106 time steps to
give �A /B
=0.675�0.006 and �

=−1.27�0.01. The
NEMC case at 
=0.8 and for ��=3 used 625 trajectories,
each of length 3000 times steps, a total of 1.9�106 time
steps, giving �A /B
=0.73�0.05 and �

=−1.19�0.08.
�The data in Fig. 2 are for ��=7.� Hence, the error is reduced
by about a factor of 10 for twice as many time steps, which
means that SMD is about 50 times more efficient than
NEMC in this case.

This inefficiency in the NEMC method is more apparent
than real since no great effort was made to optimize the
present version of the algorithm. It is clear that there is a
great deal of redundancy in using 10 time nodes per cycle to
get the amplitude and phase lag and that this number could
be reduced; possibly, even a single node would be adequate,
in which case the NEMC would be about four times more
efficient than SMD if the error were unchanged. Also, in the
second form of umbrella sampling about a specified ampli-

tude Ã and 
̃, the variance used was the same as that ex-
pected for the fluctuations in the real system. There is no
reason why the width of the umbrella sampling could not be
reduced if the only quantity of interest is the averages them-
selves. In more challenging nonequilibrium cases, such as
polymeric or glassy systems, the NEMC method offers much
greater potential for optimization and for broad coverage of
phase space than the SMD method. In any case, the main aim
of the present paper was not so much to optimize the NEMC
algorithm as it was to test the quantitative accuracy of the
nonequilibrium probability distribution for a time-varying
mechanical case.

IV. CONCLUSION

As mentioned in the introduction, the development of a
general theory for nonequilibrium statistical mechanics is
predicated upon an agreed upon form for the nonequilibrium
probability distribution. This paper has tested the author’s
formulation of the problem for the case of a time-varying
potential. A nonequilibrium Monte Carlo algorithm �9� was
used to obtain phase-space averages with the nonequilibrium
probability distribution. There was good agreement between
the present results and results obtained with nonequilibrium
stochastic molecular-dynamics �13� and with equilibrium
chain Nosé-Hoover molecular-dynamics algorithms. Since
the NEMC and the SMD approaches are qualitatively differ-
ent, their agreement in this case augers well for the self-
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FIG. 4. Relative amplitude of the driven solute. Symbols and
curves as in the preceding figure.
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consistency of the general nonequilibrium theory.
The author’s nonequilibrium probability distribution has

now been successfully tested for two cases: a steady-state
thermodynamic case �steady heat flow� �9� and the present
transient mechanical case �driven Brownian particle�. These

tests confirm that not only does a closed analytic form for the
nonequilibrium probability distribution exist but also that the
particular form obtained by the author is fundamentally
sound and that it is applicable to the full spectrum of non-
equilibrium systems.
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