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Stability measures in metastable states with Gaussian colored noise
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We present a study of the escape time from a metastable state of an overdamped Brownian particle in the

presence of colored noise generated by Ornstein-Uhlenbeck process. We analyze the role of the correlation
time on the enhancement of the mean first passage time through a potential barrier and on the behavior of the
mean growth rate coefficient as a function of the noise intensity. We observe the noise-enhanced stability effect
for all the initial unstable states used and for all values of the correlation time 7, investigated. We can
distinguish two dynamical regimes characterized by weak and strong correlated noises, depending on the value

of 7. with respect to the relaxation time of the system.
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I. INTRODUCTION

The problem of the lifetime of a metastable state has been
addressed in a variety of areas, including first-order phase
transitions, Josephson junctions, field theory, and chemical
kinetics [1,2]. Recent experimental and theoretical results
show that long-live metastable states are observed in differ-
ent areas of physics [3,4]. Experimental and theoretical in-
vestigations have shown that the average escape time from
metastable states in fluctuating potentials presents a non-
monotonic behavior as a function of the noise intensity with
the presence of a maximum [5-7]. This is the noise-enhanced
stability (NES) phenomenon: the stability of metastable
states can be enhanced and the average life time of the meta-
stable state increases nonmonotonically with the noise inten-
sity. This resonancelike behavior contradicts the monotonic
behavior of the Kramers theory [8]. The occurrence of the
enhancement of stability of metastable states by the noise has
been observed in different physical and biological systems
[2,5-7,9-15]. Very recently NES effect was observed in an
ecological system [16], an oscillator chemical system (the
Belousov-Zhabotinsky reaction) [17], and magnetic systems
[18]. Interestingly, in Ref. [17] the stabilization of a meta-
stable state due to noise is experimentally detected and a
decreasing behavior of the maximum Lyapunov exponent as
a function of the noise intensity is observed.

A generalization of the Lyapunov exponent for stochastic
systems has been recently defined in Ref. [19] to comple-
ment the analysis of the transient dynamics of metastable
states. This measure of stability is the “mean growth rate
coefficient” (MGRC) A, and it is evaluated by a similar pro-
cedure used for the calculation of the Lyapunov exponent in
stochastic systems [20]. By linearizing the Langevin equa-
tion of motion [see next Eq. (4)], we consider the evolution
of the separation &x(r) between two neighboring trajectories
of the Brownian particle starting at x, and reaching x
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d*U(x)
dx?

oi(r)=- Ox(1) = N(x,1) 6x(1), (1)
and we define \,(x,7) as an instantaneous growth rate. We
note that, in Eq. (1), d*U(x)/dx? is calculated onto the noisy
trajectory x[ £(7)] [19]. The growth rate coefficient A; (for the
i,, noise realization) is then defined as the long-time average
of the instantaneous \; coefficient over 7(x,xy) [19-21]

| ) @
N=—— Ni(x,s)ds. 2
(X0, XF) 0

In the limit 7(xy,xz) —, Eq. (2) coincides formally with the
definition of the maximum Lyapunov exponent, and there-
fore, the A; coefficient has the meaning of a finite-time
Lyapunov exponent. This quantity is useful to characterize a
transient dynamics in nonequilibrium dynamical systems
[17,19]. The mean growth rate coefficient A is then defined
as the ensemble average of the growth rate coefficient A,

A=A, 3)

over the noise realizations. The mean growth rate coefficient
has a nonmonotonic behavior as a function of the noise in-
tensity for Brownian particles starting from unstable initial
positions [19]. This nonmonotonicity with a minimum indi-
cates that A can be used as a new suitable measure or signa-
ture of the NES effect.

The inclusion of realistic noise sources, with a finite cor-
relation time, impacts both the stationary and the dynamic
features of nonlinear systems. For metastable thermal equi-
librium systems it has been demonstrated that colored ther-
mal noise can substantially modify the crossing barrier pro-
cess [8]. A rich and enormous literature on escape processes
driven by colored noise was produced in the 1980s [22-24].
More recently many papers investigated the role of the cor-
related noise on different physical systems [25-30], which
indicates a renewed interest in the realistic noise source ef-
fects.

In this work we present a study of the average decay time
of an overdamped Brownian particle subject to a cubic po-
tential with a metastable state. We focus on the role of dif-
ferent unstable initial conditions and of colored noise in the
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average escape time. The effect of the correlation time 7, on
the transient dynamics of the escape process is related to the
characteristic time scale of the system, that is the relaxation
time inside the metastable state 7,. For 7.<7,, the dynamical
regime of the Brownian particle is close to the white-noise
dynamics. For 7.>7,, we obtain: (i) a big shift of the in-
crease in the average escape times toward higher noise in-
tensities; (ii) an enhancement of the value of the average
escape time maximum with a broadening of the NES region
in the plane (7, D), which becomes very large for high values
of 7,; (iii) the shift (towards lower values) of the peculiar
initial position x., found in our previous studies [7,19],
which separates the set of the initial unstable states produc-
ing divergency, for D tending to zero, from those which give
only a nonmonotonic behavior of the average escape time;
(iv) the entire qualitative behaviors (i)—(iii) can be applied to
the standard deviation of the escape time; (v) the shift of the
minimum values in the curves of the mean growth rate co-
efficient A; (vi) trend to the disappearance of the minimum
in the curves of A, with a decreasing monotonic behavior for
increasing 7,; (vii) trend to the disappearance of the diver-
gent dynamical regime in 7, with increasing 7.. The paper is
organized as follows. In the next section we introduce the
model. In the third section we show the results and in the
final section we draw the conclusions.

II. MODEL
The starting point of our study is the Langevin equation

~ dU(x) .

e 7(1), (4)

¥=
where #7(z) is the Ornstein-Uhlenbeck process

dn=—kndt + k\DAW(7) (5)

and dW(r)=£&(r)dt is the increment of the Wiener process.
&(r) is the white Gaussian noise with the usual statistical
properties: (&(2))=0 and (&(t)&(t+7))=8(7). The system of
Egs. (4) and (5) represents a two-dimensional Markovian
process, which is equivalent to a non-Markovian Langevin
equation driven with additive Gaussian correlated noise, with
7(t) obeying the following statistical properties (7(r))=0 and
() n(t+7)=(kD/2)e”*", for t—o and 7(0)=0. Here
1/k=r, is the correlation time of the process. The integration
of Eq. (5) yields in the limit 7,— 0 the white-noise term

[t —(t-t")I7,. _
lim (1) =2\D f lim ez—dW(t’)=v"D§(t), (6)

70 070 2T

and the stationary correlation function of the Ornstein-
Uhlenbeck process gives in the limit 7.— 0 the correlation
function of the white noise: lim, _o(7(t)9(r+7)=Dd(7).
The potential U(x) used in Eq. (4) is U(x)=ax’—bx>, with
a=0.3 and b=0.2. The potential profile has a local stable
state at x=0 and an unstable state at x=1 (see Fig. 1). The
relaxation time for the metastable state at x=0 is
7,=[d*U(x)/dx*],.o=2a, which is the characteristic time
scale of our system. For our potential profile we have
7,=0.6.
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FIG. 1. (Color online) The cubic potential U(x)=ax>—bx> with
the various initial positions investigated (dots), namely,
x,=1.2,1.3,1.4,1.5,1.6. The parameters of the potential are
a=0.3, b=0.2. For the white-noise case, x.=1.5 is the critical ini-
tial position which separates the set of the initial unstable states
producing divergency for D tending to zero from those which give
only a nonmonotonic behavior of the average escape time [6,19].

III. RESULTS

The calculations of the average escape time as a function
of the colored noise intensity have been performed by aver-
aging over N=20 000 realizations the numerical solution of
the stochastic differential Eq. (4). The absorbing boundary
for the escape process is put on xy=20, and the maximum
simulation time is 7,,,,=10 000 a.u.. For all the initial un-
stable states (see Fig. 1) and all the correlation times consid-
ered we find an enhancement of the mean first passage time
(MFPT) 7 with respect to the deterministic time.

In Fig. 2 the calculations performed with low colored
noise (7,=0.01) for the mean first passage time 7 and the
mean growth rate coefficient A are shown. We see as signa-
tures of the NES effect a maximum in the curve of 7 and a
minimum in that of A. In the inset of Fig. 2(a) the standard
deviation of the first passage time as a function of noise
intensity is reported. We note that the behaviors of 7and A in
this low colored noise regime (7,=0.01) coincides with those
obtained in the white-noise case [19]. Moreover by compar-
ing the theoretical predictions of 7 [see Eq. (3) of Ref. [19]]
with direct numerical simulations of the Langevin equation,
a very good agreement is obtained (see Fig. 3 of Ref. [19]).
In Fig. 3 the semilogarithmic plots of the fraction of particles
N;/N reaching the threshold position x,=0.5 into the poten-
tial well, within the 7,,,, as a function of noise intensity D,
with the same initial conditions of Fig. 1, are shown. This
threshold position x, corresponds to the concavity change in
the potential and is considered for this reason as a reference
indicator for the effective entrance of the particle into the
well. It is possible to observe that for very low noise inten-
sity none particle enters into the well within the 7},,, consid-
ered, and the estimation of the stability measures take their
deterministic values. We note that the behavior of the mean
growth rate coefficient as a function of the noise intensity is
strongly affected by the characteristic potential shape of a
metastable state. The curves shown in Fig. 3 clarify the be-
havior of A in the limit of D—0. In fact the position
x,=0.5 is the flex point of the potential, where the instanta-
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FIG. 2. (Color online) Panel a: log-log plot of the mean first
passage time 7 as a function of noise intensity D in the case of
correlated noise with 7,=0.01 for the four initial positions investi-
gated (see Fig. 1). Inset: the related standard deviation as a function
of the noise intensity D. The dotted straight line at D=D, separates
the simulation data representing the Brownian particles escaped
within the maximum simulation time 7, for D> D, from those
representing the particles partially trapped within the well for a time
greater or equal to T, for D<D,. Panel b: mean growth rate
coefficient A as a function of the noise intensity D, with the same
initial positions of Fig. 1.

neous growth rate \,(x,7) is equal to zero. We see that for
low noise intensities the fraction N;/N goes to zero, produc-
ing an increasing behavior of the MGRC [see Fig. 2(b)].
The behaviors of the MFPTs as a function of the noise
intensity D with other values of 7. are shown in Fig. 4. We
clearly observe two dynamical regimes depending on the
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FIG. 3. (Color online) Semilogarithmic plot of the fraction of
particles N;/N reaching the threshold position x,=0.5 into the po-
tential well, within the 7,,,, as a function of noise intensity D. This
threshold position x, corresponds to the flex point of the potential,
where the instantaneous growth rate \;(x,z) is equal to zero. The
correlation time of the noise is 7,=0.01 with the same initial con-
ditions of Fig. 1.

value of 7. with respect to the relaxation time of the system
(7,=0.6): (a) weak colored noise (0<7.<7,) and (b) strong
colored noise (7.>7,). By observing Fig. 4(a) (7.=0.1) we
can see that the qualitative behavior of MFPT shown in Fig.
2(a) is recovered. In the weak color noise regime we can still
observe the divergent behavior of MFPTs for x,,,, <x(<x,
and a nonmonotonic behavior for xy=x,., with x.=1.5. By
increasing the value of the correlation time (7,=7,) we ob-
serve a large displacement of the maximum of MFPT toward
higher values of noise intensity and a shift of the peculiar
initial position x, toward lower values. For 7.=7.=0.6,
x.=14, and for 7,=1, x.=1.3 [see Figs. 4(b) and 4(c)],
where x_. is the peculiar initial position of the Brownian par-
ticle in the presence of colored noise. We note that x.=1.5 is
a fixed value for the white-noise case [19], while the position
x. is a variable quantity for colored noise and it is depending
on the value of the correlation time of the noise. Moreover,
we observe a broadening of the NES region, which becomes
very large for high values of the correlation time 7,.. The
NES region is the area where enhanced stability of a meta-
stable state is observed. In other words it is the area under
each curve of 7vs D [see Figs. 2(a) and 4], where the values
of 7are greater than the deterministic dynamical time related
to the particular initial position investigated (see also Fig. 1
in Mantegna and Spagnolo, 1998, Ref. [5]).

The asymmetry of the potential profile with respect to the
x coordinate makes more effective the correlation of the
noise for Brownian particles moving from left to right. This
means that, at very low noise intensities of the colored noise,
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FIG. 4. (Color online) Log-log plot of the MFPT 7 as a function of noise intensity D for the same initial positions of Fig. 1 and for
different values of the correlation times 7., namely, 7.=0.1,0.6, 1, corresponding, respectively, to the weak, intermediate, and strong colored
noise dynamical regimes. The dotted straight line at D=D, separates the noise values for which all the Brownian particles escape
(D>D,) from those for which the particles are partially trapped into the well within the T}, (D <Dy).
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FIG. 5. (Color online) Log-log plot of the standard deviation o
as a function of the noise intensity D for 7.=0.6 and the same initial
positions of Fig. 1. The dotted straight line indicates the value of the
noise intensity D, which separates the simulation data representing
the trapped Brownian particles from those escaped within T,;.
Inset: log-log plot of the ratio o/ 7 as a function of noise intensity
D.

the particles inside the potential well will escape more easily
with respect to the white-noise case. Therefore, the trapping
effect, which is responsible for the divergent behavior for
any initial unstable state within the range x,,,, <x,<x. will
happen in a restricted range of initial positions that is
Xmax <X, <x, with x <x.. Specifically this peculiar position
x. is shifted toward decreasing values of the x coordinate for
increasing correlation time 7. of the noise source. In Fig. 2(a)
and all panels of Fig. 4 the dotted straight line at D=D;
separates the simulation data representing the Brownian par-
ticles escaped within the maximum simulation time 7, for
D>D,, from those representing the particles partially
trapped within the well for a time greater or equal to T, for
D<D,. This means that the simulation data obtained for
D <D, underestimate the real data in the divergent dynami-
cal regime. In fact if we prolong the maximum simulation
time 7,,,, We obtain more approximate values for 7 and o
and the divergent behavior will be visible at lower noise
intensities. As a consequence D, will be shifted toward lower
values.

For high values of the noise intensity all the plots show a
monotonic decrease behavior as a function of noise intensity
collapsing in a unique curve. Moreover the slope of this limit
curve becomes flatter by increasing the correlation time. This
means that the NES effect involves more and more orders of
magnitude of the noise intensity. The effect of the colored
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noise is therefore to delay the escape process or in other
words to enhance more and more the stability of the meta-
stable state for increasing values of the noise intensity.

In Fig. 5 the standard deviation o of the first passage time
distribution for 7.=0.6 is shown. We see a huge increase in
the o for low values of noise intensity, demonstrating a
strong enlargement of the distribution when the particle feels
a noise intensity comparable with the height of potential bar-
rier. Similarly to the MFPTs, color induces a shift in the
divergent behavior of o. The relative measure of the width
with respect to the mean value is shown in the inset of Fig. 5,
where the ratio o/ 7 is plotted. This ratio reveals a nonmono-
tonic behavior with a minimum, demonstrating the existence
of a noise intensity for which the width of the first passage
time distribution is the minimum related to its mean. In other
words this value corresponds to a maximum of precision in
the measure of 7. This optimal noise intensity is shifted to-
ward high noise values by increasing ..

The behavior of the mean growth rate coefficient A as a
function of the noise intensity D for different values of the
noise correlation time is shown in Fig. 6. In the weak color
noise regime we observe a nonmonotonic behavior with a
minimum for all the initial positions investigated with a shift
in the position of the minimum toward higher noise intensi-
ties. In the strong color regime the minimum, which repre-
sents a trapping phenomenon for a finite time, is visible for
the divergent behavior of MFPTS for x ., <xo<x., and it is
shifted toward higher noise intensities by increasing the cor-
relation time. For initial positions xy=x_, the minimum tends
to disappear, but at the same time the A parameter decreases
monotonically with increasing noise intensity, showing a
trapping phenomenon at higher noise intensities. This trend
to the disappearance of the minimum in the curves of A,
corresponds to the trend to disappearance of the divergent
behavior of 7, that is to a restricted range of initial positions
for which we observe this divergent behavior. We note that
the behavior of A as a function of the noise intensity D
obtained in our analysis is in qualitative agreement with that
obtained by the experimental investigation of the stabiliza-
tion of a metastable state in an oscillatory chemical system
(the Belousov-Zhabotinsky reaction) [17]. Specifically the
decreasing behavior of the maximum Lyapunov exponent of
Fig. 2 of Ref. [17] is in qualitative good agreement with the
behavior of the curves in Figs. 6(b) and 6(c). This could be
ascribed to the correlation time always present in noise
sources used in any experimental setup.

In Fig. 7 we report, for all the initial positions investigated
and for 7.=0.6, the semilogarithmic plot of the fraction of
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FIG. 6. (Color online) Semilogarithmic plot of mean growth rate coefficient A as a function of noise intensity D for the same initial
positions x, and the same values of the correlation times 7. of Fig. 4, namely, 7.=0.1,0.6,1, corresponding respectively to the weak,

intermediate, and strong colored noise dynamical regimes.
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FIG. 7. (Color online) Semilogarithmic plot of the fraction of
particles N;/N reaching the threshold position x;,=0.5 into the po-
tential well, within the 7., as a function of noise intensity D. This
threshold position x, corresponds to the flex point of the potential,
where the instantaneous growth rate \;(x,?) is equal to zero. The
correlation time of the noise is 7,.=0.6, with the same initial condi-
tions of Fig. 1.

particles N;/N entering into the potential well up to the po-
sition x,=0.5, within the T,,,,, as a function of noise intensity
D. At very low noise intensities and for increasing values of
the correlation time 7., the particles have difficulty to enter
into the potential well, within the T,,,, considered, shifting
the entrance statistics toward higher values of the noise in-
tensity.

IV. CONCLUSIONS

In this work we analyzed the effect of the colored noise,
generated by an Ornstein-Uhlenbeck process, on the en-
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hancement of the mean first passage time in a cubic potential
with a metastable state and on the minimum of the mean
growth rate coefficient as a function of the noise intensity.
We analyze different initial unstable states. We obtain NES
effect for all the initial positions investigated and an en-
hancement of the NES region for increasing values of corre-
lation times. The results obtained for a particle moving in a
cubic potential are quite general, because we always obtain
NES effect when a particle is initially located just to the right
of a local potential maximum and next to a metastable state
in the escape region.

In experiments, real noise sources are correlated with a
finite correlation time. As a consequence, the NES effect can
be observed at higher noise intensities with respect to the
idealized white-noise case. The enhancement and the shift of
the NES region, toward higher values of the noise intensity,
allows us to reveal experimentally the NES effect only by
using a suitable correlation time 7, in the noise source.

ACKNOWLEDGMENT

This work was supported by Ministero dell’Istruzione,
dell’Universita e della Ricerca (MIUR).

[1] O. A. Tretiakov, T. Gramespacher, and K. A. Matveev, Phys.
Rev. B 67, 073303 (2003); H. Larralde and F. Leyvraz, Phys.
Rev. Lett. 94, 160201 (2005).

[2] A. L. Pankratov and B. Spagnolo, Phys. Rev. Lett. 93, 177001
(2004).

[3] V. Nosenko, S. K. Zhdanov, A. V. Ivlev, C. A. Knapek, and G.
E. Morfill, Phys. Rev. Lett. 103, 015001 (2009); J. J. L. Mor-
ton, A. Tiwari, G. Dantelle, K. Porfyrakis, A. Ardavan, and G.
A. Briggs, ibid. 101, 013002 (2008).

[4] 1. Biazzo, F. Caltagirone, G. Parisi, and F. Zamponi, Phys. Rev.
Lett. 102, 195701 (2009); R. Giachetti and E. Sorace, ibid.
101, 190401 (2008); L. M. Krauss and J. Dent, ibid. 100,
171301 (2008).

[5]R. N. Mantegna and B. Spagnolo, Phys. Rev. Lett. 76, 563
(1996); Int. J. Bifurcation Chaos Appl. Sci. Eng. 8, 783
(1998).

[6] N. V. Agudov and B. Spagnolo, Phys. Rev. E 64, 035102(R)
(2001); N. V. Agudov, A. A. Dubkov, and B. Spagnolo,
Physica A 325, 144 (2003); B. Spagnolo, A. A. Dubkov, and
N. V. Agudov, Acta Phys. Pol. B 35, 1419 (2004).

[7] A. A. Dubkov, N. V. Agudov, and B. Spagnolo, Phys. Rev. E
69, 061103 (2004); A. Fiasconaro, D. Valenti, and B. Spag-
nolo, Physica A 325, 136 (2003).

[8] P. Hinggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,
251 (1990).

[9] J. E. Hirsch, B. A. Huberman, and D. J. Scalapino, Phys. Rev.
A 25,519 (1982); N. V. Agudov and A. N. Malakhov, Phys.
Rev. E 60, 6333 (1999).

[10] E. Apostolico, L. Gammaitoni, F. Marchesoni, and S. Santucci,
Phys. Rev. E 55, 36 (1997); D. Dan, M. C. Mahato, and A. M.
Jayannavar, ibid. 60, 6421 (1999).

[11] R. Wackerbauer, Phys. Rev. E 59, 2872 (1999); A. Mielke,
Phys. Rev. Lett. 84, 818 (2000); B. Spagnolo, D. Valenti, and
A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004).

[12] E. V. Pankratova, A. V. Polovinkin, and E. Mosekilde, Eur.
Phys. J. B 45, 391 (2005); E. V. Pankratova, A. V. Polovinkin,
and B. Spagnolo, Phys. Lett. A 344, 43 (2005).

[13] G. Sun, N. Dong, G. Mao, J. Chen, W. Xu, Z. Ji, L. Kang, P.
Wu, Y. Yu, and D. Xing, Phys. Rev. E 75, 021107 (2007).

[14] A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, and E.
Gudowska-Nowak, Phys. Rev E 74, 041904(10) (2006).

[15] P. 1. Hurtado, J. Marro, and P. L. Garrido, Phys. Rev. E 74,
050101(R) (2006).

[16] L. Ridolfi, P. D’Odorico, and F. Laio, J. Theor. Biol. 248, 301
(2007); P. D’Odorico, F. Laio, and L. Ridolfi, Proc. Natl. Acad.
Sci. U.S.A. 102, 10819 (2005).

[17] M. Yoshimoto, H. Shirahama, and S. Kurosawa, J. Chem.
Phys. 129, 014508 (2008).

[18] M. Trapanese, J. Appl. Phys. 105, 07D313 (2009).

[19] A. Fiasconaro, B. Spagnolo, and S. Boccaletti, Phys. Rev. E
72, 061110 (2005).

[20] L. Schimansky-Geier and H. Herzel, J. Stat. Phys. 70, 141
(1993); G. Paladin, M. Serva, and A. Vulpiani, Phys. Rev. Lett.
74, 66 (1995); V. Loreto, G. Paladin, and A. Vulpiani, Phys.
Rev. E 53, 2087 (1996).

[21] G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani, Phys.

041110-5



ALESSANDRO FIASCONARO AND BERNARDO SPAGNOLO

Rep. 356, 367 (2002).

[22] F. J. de la Rubia, E. Peacock-Lopez, G. P. Tsironis, K. Linden-
berg, L. Ramirez-Piscina, and J. M. Sancho, Phys. Rev. A 38,
3827 (1988); K. Lindenberg, L. Ramirez-Piscina, J. M. San-
cho, and F. Javier de la Rubia, ibid. 40, 4157 (1989).

[23] L. Ramirez-Piscina and J. M. Sancho, Phys. Rev. A 43, 663
(1991).

[24]J. M. Sancho and M. San Miguel, Phys. Rev. A 39, 2722
(1989).

[25] K. Yoshimura, I. Valiusaityte, and P. Davis, Phys. Rev. E 75,
026208 (2007); B. C. Bag, K. G. Petrosyan, and C.-K. Hu,
ibid. 76, 056210 (2007).

PHYSICAL REVIEW E 80, 041110 (2009)

[26] A. V. Chizhov and L. J. Graham, Phys. Rev. E 77, 011910
(2008).

[27] A. Kamenev, B. Meerson, and B. Shklovskii, Phys. Rev. Lett.
101, 268103 (2008).

[28] D. Valenti, A. Fiasconaro, and B. Spagnolo, Fluct. Noise Lett.
5, L337 (2005).

[29] A. Fiasconaro, D. Valenti, and B. Spagnolo, Fluct. Noise Lett.
5, L305 (2005); P. K. Ghosh, M. K. Sen, and B. C. Bag, Phys.
Rev. E 78, 051103 (2008).

[30] M. K. Sen and B. C. Bag, Eur. Phys. J. B 68, 253 (2009); F.
Long, C. Du, and D. C. Mei, Phys. Scr. 79, 045007 (2009).

041110-6



