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The deterministic Nagel-Schreckenberg model with stochastic open boundary conditions is investigated in a
mostly analytical way. By means of the Markov Chain, we model the working process of the stochastic open
boundaries. First, the analytical expression of the free-flow density profiles is derived. Then, we discuss
theoretically how the right boundary determines the traffic capacity, global density, and density profiles. For
these features, the analytical and numerical results agree well. This paper implies that the deterministic Nagel-
Schreckenberg model with stochastic open boundaries is almost totally analyzable.
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I. INTRODUCTION

For years, cellular automata �CA� are used to simulate
both freeway and urban transportation systems �1–6�. The
Nagel-Schreckenberg model �NS model� �7� is a typical one-
dimension CA model for the freeway traffic flow. In this
model, the road is modeled as a one-dimensional lattice with
L sites that are labeled in sequence by 1�L from the left.
Each site can either be empty or occupied by a car with
velocity 0 . . .vmax�vmax is assumed to be the maximum veloc-
ity that one car can reach�. All sites are updated according to
four rules follows.

�a� Acceleration: v=min�v+1,vmax�.
�b� Slow down: v=min�v ,g��where g is the number of

empty sites in front of the car�.
�c� Randomization: v=max�v−1,0� with probability p.
�d� Movement: move v sites forward, x=x+v.
Besides the rules above, the model’s behaviors also de-

pend on the boundary conditions. There are mainly two kinds
of boundary conditions: the periodic boundary conditions
and the open boundary conditions. In a periodic system, cars
move on a ring and the car density keeps constant. Differ-
ently, open boundary conditions describe a road with en-
trance and exit. Cars enter the road from the left boundary,
and leave via the right boundary. The most representative
open boundary conditions are the stochastic open boundaries
introduced in Ref. �8�, which are defined as follows:

The stochastic left boundary �SLB� is implemented by an
additional site �site 0� on the left of site 1, and works accord-
ing to the “standard injection rule:” with probability �, a car
with velocity v=vmax is created at site 0, this car immedi-
ately moves according to the NS rules. If site 1 is occupied
by another car, the injected car is deleted then. This left
boundary condition is simple in the implementation, but
complex in its behaviors �8–10�. Thus it is not as popular as
the “expanded stochastic left boundary” �ESLB� raised later
in Ref. �11�.

The stochastic right boundary �SRB� is realized by an
additional site L+1 next to the site L. When updated, this site
is occupied with probability �. That means if a car’s velocity
is large enough to move out of the road, then with probability
�, it will run out; with probability 1−�, it stops at the last
site. Besides, there is also a “traffic light right boundary
�TLRB�” �16–18�, which opens and closes periodically like a
traffic light in front of it.

Obviously, the model with open boundaries is closer to
the real road with inflow and outflow. Thus, the influences
and mechanisms of open boundaries attract much scientific
attention. The most popular tool of such researches is nu-
merical simulation. On the other hand, it is desirable and
useful to have a better qualitative understanding of the nu-
merical results using analytic approaches, which are more
difficult but can tell us much more than simulations. The
analytical results of periodical-boundary models have been
searched for years, many exact or approximate results are
gained �12–15�. Unfortunately, a quantitative understanding
of the open boundary models remains elusive. For the left
boundary, Ref. �17� proves that ESLB to be completely ana-
lyzable. Recent research �19� shows that the exact functional
relation between � and the inflow under standard SLB can
also be figured out. But there is another unanswered ques-
tion: Ref. �8� reported that in the free-flow phase of the de-
terministic NS model, SLB creates a periodical-structural
density profiles. This is a quite interesting phenomenon with-
out a convincing explanation found. There are even fewer
theoretical results on the right boundary: Refs. �17,18� give
out some results of the TASEP �totally asymmetric simple
exclusion process� related models with TLRB. But the SRB
still lacks analytical studies.

To get a deeper insight of the open boundary conditions,
our works concentrate on the deterministic NS model with
stochastic open boundaries. As an expansion of the works in
Ref. �19�, we proved that both the car-injection and the car-
removal procedures can be described by Markov chain mod-
els. First, we find out an analytical way to calculate the free-
flow density profiles. Second, we discuss how the stochastic
right boundary determines the traffic capacity, global density,
and density profiles in the jamming regime.

This paper is organized as follows: in Sec. II, we analyti-
cally explain why the free-flow density profiles are charac-
terized by a periodic structure. In Sec. III, we model the
car-removal procedure and put out the exact results of traffic
capacity. In Secs. IV and V, we show that the global density
and the jamming density profiles can be also predicted theo-
retically. Section VI is the conclusion and discussion.

II. DENSITY PROFILES IN THE FREE-FLOW PHASE

This section aims to show an analytical explanation for
the periodical-structure of the density profiles in DNS�vmax
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�5��means “deterministic NS model with vmax�5”�. In
DNS�vmax�5�, the situation is much more complex, without
effective approaches found yet. As we concentrate on a phe-
nomenon in the free-flow phase, the right boundary influence
is reasonably ignored.

A. Modeling Cars’ Movements

Given an arbitrary step t, every car on road has a unique
state. We can describe the state by a triad �l ,vt ,vt+1�, where l
is the location of the car at step t, vt is its speed at the
beginning of step t, and vt+1 is its speed at the beginning of
step t+1.

For a single car, suppose its state at step t is C1, on next
step it changes to C2. Then the state transition C1→C2 tells
the car’s behavior in successive two steps. We call C1 the
source-state of C2, and C2 is the target-state of C1.

If a car is inserted at step t−1, then at step t this car gets
a new state Cnew. It can be easily concluded that Cnew has no
source state. We call this kind of car states as “root states.” It
is clear that all the states that can be possibly observed in the
system must be derived from a root states. Moreover, accord-
ing to NS rules, for a car-state C= �l ,vt ,vt+1�, if l=vt⇔C is
a root states.

Let C denote the set of all the legal car states that may
appear in the system, and we denote the probability of site l
is occupied by o�l�, then

o�l� = �
c�C,c�0�=l

P�C� , �1�

where C�0� is the first element of C, and P�C� is defined
as: suppose that the system runs for n �n is a sufficiently
large number� steps, and the state C appears for m times,
then P�C�=m /n.

Suppose that a car-state C can evolve to C� with probabil-
ity p, then P�C��= P�C�p. If among all root states, there are
n and only n states C1�Cn, which can evolve to state C�
with probabilities p1� pn, respectively, then P�C��
=�i=1

n P�Ci�pi. Furthermore, if all the state transitions are de-
termined �each car-state has only one target state�, then
P�C��=�i=1

n P�Ci�.

B. Density profiles in DNS(vmax=4)

Ref. �19� reports an important feature caused by standard
injection rule—the so-called “injection-produced slow
down” �IPSD for short�. It indicates that a car may be forced
to slow down even without the influence of right boundary.
Ref. �19� also proved that IPSDs do not exist in DNS with
vmax�4.

The nonexistence of IPSDs in DNS�vmax=4� guarantees
that in the free-flow regime, all the cars can drive freely. It
follows that for any car-state �l ,vt ,vt+1�, vt+1=min�vt
+1,vmax� holds. Thus, the car-state could be simplified as
�l ,vt�, meanwhile the rule of state transition becomes

�l,vt� → �l + vt+1,vt+1� where vt+1 = min�vmax,vt + 1� .

According to the definition of root states, we can list out
all root states in DNS�vmax=4�

�1,1�, �2,2�, �3,3�, �4,4� .

Moreover, by the state transition rule, all the state transi-
tions are determined. We can list all the state transition se-
quences in DNS�vmax=4�

�1,1� → �3,2� → �6,3� → �10,4� → �14,4� → . . . ,

�2,2� → �5,3� → �9,4� → �13,4� → . . . ,

�3,3� → �7,4� → �11,4� → . . . ,

�4,4� → �8,4� → �12,4� → . . .

Clearly seen that from site 4 on, cars move vmax sites
forward each step, hence we have

�l,vt� → �l + 4,4�, if l � 4.

In order to calculate the probabilities of the root states, let
us define the “road state” first. Suppose the state of the first

car in the road is Ĉ= �l ,vt ,vt+1�. If l�4, then the road state is

Ĉ. Otherwise, the road state is a constant value C̄ �Because if

l�4, then its target state is �4,4� with probability � and is C̄
with 1−�, Thus, all states satisfies l�4 could be regarded as
the same�. Thus, for DNS�vmax=4�, the time evaluation of
the system can be described by a Markov chain with state
space S= �S1 . . .S6�, where S1= �4,4�, S2= �3,3�, S3= �2,2�,
S4= �1,1�, S5= �3,2�, and S6= C̄. The state transition graph is
show by �Fig. 1�.

It is easy to prove it is a homogeneous Markov chain with
aperiodicity and irreducibility. Thus, its limiting distribution
exists. Let Pi denote the limiting probability of state Si, and
P� = �P1¯P6�, then pi can be obtained by solving the linear
equation system

P� = P� T ,

�
j=1

n

Pj = 1,

where T is the one-step transition probability matrix, which
indicate the probabilities of all the one-step state transitions.
Finally we get

P�4,4� =
��1 − �2�
1 + � + �4 , P�3,3� =

�2�1 − �2�
1 + � + �4 ,

P�2,2� =
�3

1 + � + �4 , P�1,1� =
�4

1 + � + �4 .

FIG. 1. The state transition graph of DNS�vmax=4�.
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We will verify this result by the case of �=0.5. After
substituting �=0.5 into the expressions above, we get the
results follows:

P�1,1� = 0.04, P�2,2� = 0.08, P�3,3� = 0.12,

P�4,4� = 0.24.

Recall �1�, the density profiles could be figured out

o�1� = 0.04,

o�2� = 0.08,

o�3� = P�3,3� + P�3,2� = P�3,3� + P�1,1� = 0.16,

o�4� = P�4,4� = 0.24,

o�5� = P�2,2� = 0.08,

o�6� = P�1,1� = 0.04,

o�7� = P�3,3� = 0.12.

And if l�7, then o�l�=o�l−4�.
The results highly agree with those by simulations ��

=0.5� �Fig. 2�.
The cases for other value of � could be easily verified by

readers, and the density profiles in DNS�vmax=2�,
DNS�vmax=3� can be figured out in the same way.

C. Density profiles in DNS(vmax=5)

Though IPSDs exist, their influence is very limited in
DNS�vmax=5�. The following conclusion will greatly sim-
plify our research on its free-flow density profiles.

Theorem 1. In DNS�vmax=5�, only cars at site 4,5 might
be effected by IPSD.

Proof. See Appendix A
Consequently, given a car-state C= �l ,vt ,vt+1�, if l�4 and

l�5, then vt+1=min�vt+1,vmax�; If l=4 or l=5, then vt+1 is
either 4 or 5. Thus, there exists in total seven root states in
DNS�vmax=5�

�1,1,2�, �2,2,3�, �3,3,4�, �4,4,4� ,

�4,4,5�, �5,5,4�, �5,5,5� .

Among which �4,4,4� and �5,5,4� are consequences of IP-
SDs. By investigating the system behaviors, we can find that
all the state transitions in DNS�5� are also determined. The
state transition sequences in DNS�vmax=5� are given fol-
lows:

�1,1,2� → �3,2,3� → �6,3,4� → �10,4,5� → �15,5,5� → . . . ,

�2,2,3� → �5,3,4� → �9,4,5� → �14,5,5� → . . . ,

�3,3,4� → �7,4,5� → �12,5,5� → . . . ,

�4,4,4� → �8,4,5� → �13,5,5� → . . . ,

�4,4,5� → �9,5,5� → �14,5,5� → . . . ,

�5,5,4� → �9,4,5� → �14,5,5� → . . . ,

�5,5,5� → �10,5,5� → �15,5,5� → . . .

From site 7 on, cars move vmax sites forward each step,
hence

�l,vt,vt+1� → �l + 5,5,5� if l � 7.

Similarly, we define the system state first. Suppose the

state of the first car in the road is Ĉ= �l ,vt ,vt+1�, if l�5 and

vt+1=5, then we consider the road state is a constant value C̄
�because if l�5 and vt+1=5, then its target state is �5,5,5�
with probability � and is C̄ with 1−�, which can be easily
verified by readers. Thus, all states satisfying “l�5 and
vt+1=5” could be regarded as the same�. Otherwise, the road

state is Ĉ. Thus, in DNS�5�, there are in total 11 system
states, denoted by S1�S11

S1 = �5,5,5�, S2 = �5,5,4�, S3 = �4,4,5� ,

S4 = �4,4,4�, S5 = �3,3,4�, S6 = �2,2,3� ,

S7 = �1,1,2�, S8 = �5,3,4�, S9 = �6,3,4� ,

S10 = �3,2,3�, S11 = C̄ .

Then the time evaluation of the system can be described
by a Markov chain with state space S= �S1 . . .S11�. The state
transition graph is given follows �Fig. 3�.

Now, we can figure out probabilities of all root states,
using the limiting probabilities of the Markov chain above

P�5,5,5� =
���6 − �5 + �4 − �3 − �2 + 1�

�5 + �4 − �3 + � + 1
,

P�5,5,4� =
�6�1 − ��

�5 + �4 − �3 + � + 1
,

P�4,4,5� =
�2��6 − �5 + �4 − �3 − �2 + 1�

�5 + �4 − �3 + � + 1
,

P�4,4,4� =
− �5��3 − �2 + � − 1�
�5 + �4 − �3 + � + 1

,

FIG. 2. Analytical and numerical results of the density profiles
in DNS�vmax=4�.
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P�3,3,4� =
− �3��2 − 1�

�5 + �4 − �3 + � + 1
,

P�2,2,3� =
�4

�5 + �4 − �3 + � + 1
,

P�1,1,2� =
�5

�5 + �4 − �3 + � + 1
.

We will verify this result by the case of �=0.65. After
substituting �=0.65 into the expressions above, we have the
results as follows:

P�1,1,2� = 0.0695,

P�2,2,3� = 0.107,

P�3,3,4� = 0.094,

P�5,5,4� = 0.0158,

P�4,4,4� = 0.0346,

P�4,4,5� = 0.111,

P�5,5,5� = 0.172.

Recall Eq. �1� and the state transition sequences, only
o�1��o�11� need calculating

o�1� = P�1,1,2� = 0.0695,

o�2� = P�2,2,3� = 0.107,

o�3� = P�3,3,4� + P�1,1,2� = 0.094,

o�4� = P�4,4,4� + P�4,4,5� = 0.147,

o�5� = P�5,5,5� + P�5,5,4� + P�2,2,3� = 0.295,

o�6� = P�6,3,4� = P�1,1,2� = 0.0695,

o�7� = P�7,4,5� = P�3,3,4� = 0.094,

o�8� = P�8,4,5� = P�4,4,4� = 0.0346,

o�9� = P�9,4,5� + P�9,5,5�

= P�2,2,3� + P�4,4,5� + P�5,5,4� = 0.234,

o�10� = P�10,4,5� + P�10,5,5�

= P�1,1,2� + P�5,5,5� = 0.241.

Since no root state can evolve to a car-state �l ,vt ,vt+1�
with l=11, hence o�11�=0.

And if l�11, then o�l�=o�l−5�.
Compared to the simulation data �Fig. 4�, the analytical

results are with high precision.

D. Free-Flow Density profiles under ESLB

The expanded stochastic left boundary outlined in Ref.
�11� is defined as: the left boundary is expanded from one
single site to a minisystem of width vmax+1 �Fig. 5�. It works
according to the expanded injection rule: when updated, if
there is a car in the minisystem, it has to be emptied first.
Then a vehicle with an initial velocity of vmax is inserted with
probability �. Its initial position is the site at the right end
point of the boundary if no car is present in the main system
within the first vmax sites, otherwise its initial position is the
site with vmax distance from the first car in the main system.

With the help of such a rule, high inflow can be achieved
�11�, so the whole spectrum of possible system states is ac-
cessible. As a result, ESLB has become more popular than
SLB �20,21�.

According to the injection rule of the ESLB, we can eas-
ily realize that all cars run with velocity vmax if the right
boundary exerts no influence. Thus, the car state could be
denoted by its position l only, the state transition rule then
becomes

�l� → �l + 5� .

Let us next number the sites in the minisystem �from left
to right� with −vmax. . .0. Noted that if a car is placed on site

FIG. 3. The state transition graph of DNS�vmax=5�. FIG. 4. Analytical and numerical results of the density profiles
in DNS�vmax=5�.

FIG. 5. The expanded stochastic left boundary.
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−vmax, then it cannot enter the main road, thus we find that
the number of root states is equal to vmax, and they are
−vmax+1�0.

Suppose the state of the first car in the system is Ĉ= �l�,
we define the system state in the following way.

The system state is Ĉ if l�0. Otherwise, the system state
is a constant value C̄. Thus, there are totally vmax+2 system
states denoted by S1�Svmax+2, where

Si = 	�i − vmax − 1� if 1 � i � vmax + 1,

C̄ if i = vmax + 2.



.
As shown in Ref. �17�, the time evaluation of the system

can be described exactly by a Markov chain with state space
S= �S1 . . .Svmax+2�. The state transition graph is given follows
�Fig. 6�.

Let Pi denote the limiting probability of system state Si,
we can find that

Pi =
�vmax+2−i�1 − ��

1 − �vmax + �vmax+1 − �vmax+2 .

Thus, for any site l in the main road

o�l� = �o�l − vmax� = Pl+1 =
�vmax+1−l�1 − ��

1 − �vmax + �vmax+1 − �vmax+2 if l � vmax,

o�l − vmax� if l � vmax.
� �2�

We can verify Eq. �2� by the case with �=0.65 and
vmax=5 �Fig. 7�.

III. TRAFFIC CAPACITY

According to the works in Ref. �8�, in the free-flow re-
gion, the outflow of the road equals to the inflow. In the
jamming region, the system outflow equals to the maximum
outflow that right boundary allows to pass through. From a
more realistic view, such maximum outflow corresponds to
the traffic capacity. The capacity may be the most attractive
feature of the right boundary �17,18�. In this section, we
concentrate on how the right boundary determines the traffic

capacity, therefore, we just investigate the traffic flow in jam-
ming phase.

Figure 8 is a snapshot of the system before it is com-
pletely jammed. The left part of the road is full of cars run-
ning freely which are not influenced by the right boundary
yet. But the right part of the traffic flow shows a periodical
structure with alternating jamming blocks and driving sec-
tions. Here, we temporarily ignore the queuing cars at the
right boundary, the leftmost jamming block is called a “lead-
ing block,” and other blocks are named as “following
blocks.”

In the deterministic NS model, there exist enough analyti-
cal results for the dynamics of jam blocks. For a single jam-
ming block, its right boundary moving from right to the left
with a speed v jr=1, and its left boundary propagates back-
ward with a speed v jl=

vmaxJin

vmax−Jin
, where Jin is the inflow of the

jam block. Because the inflow of the leading block is the
inflow created by car-injection procedure, thus the size of the
leading block will keep decreasing except the case of using
expanded injection rule with �=1 �11�.

However, differently, for the following jam blocks, there
exists Jin=Jout �outflow of the jam block�, thus the size of the

FIG. 6. The state transition graph of DNS with expanded left
boundary.

FIG. 7. Analytical and numerical results of the density profiles
in DNS�vmax=5� with expanded left boundary.

FIG. 8. The typical structure of the traffic flow in the jamming
phase.
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following blocks will be constant until the leading block
completely vanishes. Consequently, the size of a driving sec-
tion between two jam blocks also keeps steady. Moreover,
the inflow of the right boundary equals to Jout=

vmax

vmax+1 because
it is actually the outflow from the rightmost jam block. We
have to emphasize again that Fig. 8 only illustrates the situ-
ation before it is completely jammed. With the evolutionary
of the system, the free-flow area keeps shrinking until the
whole road is full of the jam-driving structure, when the
global density becomes steady.

Next, we will introduce a Markov Chain-based method
for the traffic capacity.

First, we construct the state space S of the Chain. The
system state is defined as a two-tuple: �d ,v�, where d is the
distance between the last car and right boundary, and v is the
velocity. Let us recall the important conclusion: the inflow of
right boundary equals

vmax

vmax+1 . This assertion implies that in
each step, there must be a car arriving at or running through
the right boundary. Thus, ∀S= �d ,v��S, S must satisfy d
�min�v+1,vmax�.

The above conclusion tells that for a DNS, its state space
is finite with size �k=2

vmax+2k−1. Furthermore, all the states can
be listed in the following way:

�0,0� �0,1� ¯ �0,vmax − 1� �0,vmax�
�1,0� �1,1� ¯ �1,vmax − 1� �1,vmax�

�2,1� ¯ �2,vmax − 1� �2,vmax�
]

�vmax,vmax − 1� �vmax,vmax� .

Second, we can prove that the state transitions between
states obey several rules follows.

Given an arbitrary time step t, we denote the system state
at t and t+1 by S and S�, respectively. Suppose that S
= �d ,v�, then:

Rule 1: with probability 1, S�= �0,min�v+1,vmax��
= �0,d� if d=min�v+1,vmax�.

Rule 2: with probability 1−�, S�= �0,d� if d�min�v
+1,vmax�.

Rule 3: with probability �, S�= �d+1,v� if d�min�v
+1,vmax�.

Proof of these rules is shown in Appendix B.
Now we have got enough preparation to model the SRB.

We will illustrate it by a simple case of DNS�vmax=2�. Its
state space contains eight states

�0,0�, �0,1�, �0,2�, �1,0�, �1,1�, �1,2�, �2,1�, �2,2� .

We marked them in sequence by S1�S8, and the one-step
transition matrix is obtained by the rules above

�
1 − � 0 0 � 0 0 0 0

1 − � 0 0 0 � 0 0 0

1 − � 0 0 0 0 � 0 0

0 1 0 0 0 0 0 0

0 1 − � 0 0 0 0 � 0

0 1 − � 0 0 0 0 0 �

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

� .

Now, although P1� P8 �the limiting probabilities of S1
�S8, respectively� can be gained, we actually need only a
few values among them. Note that for an arbitrary step t, if
the system state �d ,v� satisfies d=min�v+1,vmax�, then defi-
nitely no car can run out of the road at that step. Thus, the
maximum outflow, such that the traffic capacity is

Qout = �1 − � Pi�� , �3�

where Pi is the limiting probability of Si= �d ,v� satisfying
d=min�v+1,vmax�. In this case, i=4,7 ,8. After substituting
P4, P7, and P8 into �3�, the result is

Qout =
�3 + �

�3 + � + 1
.

The comparison between numerical and analytical results is
shown in Fig. 9.

For higher velocity, large state space brings large state
transition matrixes. However, because the state space is fi-
nite, and transition rules are all determined, we can calculate
the limiting probabilities automatically by computer pro-
grams.

Following is the traffic capacity of DNS�vmax=5�, which
is calculated by a MATLAB program.

Qout = 
 �2 − � + �9 − �6 − �15

�15 + �10 + �6 + �3 + � + 1

+
�14 + �5 + 1

�14 − �13 + �12 − �11 + �10 + �5 − �4 + �3 + 1
�� .

Figure 10 tells that high precision is achieved.

IV. GLOBAL DENSITY

The steady global density in the free-flow phase is very
easy to calculate, from the traffic flow theory, we know that
density equals volume divided by velocity. Ref. �8� finds that
all cars will run with velocity vmax after a sufficiently long
time. Thus, we can calculate the global density

Dg =
Qin

vmax
, where Qin is the volume of inflow.

FIG. 9. Analytical and numerical results of the capacity under
SRB in DNS�vmax=2�.
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The steady density in the jamming phase is much more
difficult to get. First, we turn to the dynamics near the right
boundary. If the right boundary keeps close, arriving cars
will queue at the right boundary, which causes a new jam
block. Based on the conclusion in the previous section, the
size of the evolving jam block will increase by 1 per step
during the closed period because its inflow equals

vmax

vmax+1 .
Thus, the size of the newly generated jam block is equal to
the duration of the closed period. When the right boundary
changes to the open state from the closed state, cars start to
move out of the road through the boundary. Then, the right-
most jam block start to move backward, meanwhile the driv-
ing section that next to the rightmost jam block start to form.
Moreover, the size of this driving section is equal to the
duration of the open period �Fig. 11�.

Let us next develop a scenario to help further analysis.
Suppose that the system has run for T steps �T is a suffi-
ciently large number� in jamming phase. According to the
analysis in the previous section, the system has reached the
steady global density, and a number of jam blocks and driv-
ing sections with random size have been generated during
this period.

Let Nj�n� be the total number of jam blocks with size n,
and Nf�n� be the total number of driving sections with size n.

Let r�n� denote the number of vehicles that can leave the
road in an open period with n steps.

Let � j�n� denote the number of cars contained in a jam
block with size n. Obviously, � j�n�=n. Let � f�n� denote the
number of cars contained in a driving area with size n. Recall
the definition of r�n�, there exists � f�n�=n−r�n�.

Thus, the number of the leaved cars in the T steps is

Nout = �
n=1

+	

Nf�n�r�n� .

Consequently, the capacity can also be figured out by

Qout =
Nout

T
= �

n=1

+	
Nf�n�

T
r�n� .

The global density when the road is completely jammed
could be calculated by

Dg =
�n=1

+	 Nj�n�� j�n� + �n=1
+	 Nf�n�� f�n�

�n=1
+	 Nj�n�n + �n=1

+	 Nf�n�n

= 1 −
�n=1

+	 Nf�n�r�n�
T

= 1 − Qout.

In summary, the steady global density satisfies

Dg = � Qin

vmax
if Qin � Qout,

1 − Qout if Qin � Qout.
� �4�

Formula �4� could be verified by an example �Fig. 12�. In
the simulations we use SLB and set injection rate � to a fixed
value 0.5, vmax=5.

Moreover, we can analyze the time evaluation of the glo-
bal density. If Qin�Qout, the time evolution from step 0
�when the whole road is empty� can be divided into two
stages:

Stage 1: this stage starts when the first car enters the road,
and finishes when the first car reaches the right boundary.
During this stage, the global density increases by Qin. We
denote the length of road by L, then this state lasts for L

vmax

steps.
Stage 2: this stage starts when the first car reaches the

right boundary. During this stage, the global density fluctu-
ates around the equilibrium value

Qin

vmax
.

Correspondingly, if Qin�Qout, the time evolution can be
divided into three stages:

FIG. 10. Analytical and numerical results of the capacity under
SRB in DNS�vmax=5�.

(b)(a)

FIG. 11. Formation of the �a� jam block and the �b� driving
section.

FIG. 12. Analytical and numerical results of global density with
different removal rate in DNS�vmax=5�.
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Stage 1: at this stage, only free-flow exists in the road.
This stage starts when the first car enters the road, and fin-
ishes when the first car reaches the right boundary. During
this stage, the global density increases by Qin, and this stage
lasts for L

vmax
steps.

Stage 2: at this stage, free-flow, jam blocks and driving
sections co-exist in the road. This stage starts when the first
car reaches the right boundary, and finishes when a leading
jamming block reaches the left boundary. During this stage,
the global density increases by Qin−Qout. Figure 8 is a snap-
shot of this stage.

Stage 3: at this stage, the whole road is full of the jam-
driving structure, no free-flow exists in the road. In this state,
the global density stops increasing but stochastically fluctu-
ates around an equilibrium value. The equilibrium value of
the global density at this stage is 1−Qout.

The above conclusion can be illustrated by two examples:
�1� �=0.5, �=0.8, and L=1000 �Fig. 13�. Under the

given condition, Qin=0.49, Qout=0.632, and Qin�Qout. Thus,
we can analyze the two stages, respectively.

Stage 1: the global density increases by 4.9
10−4 per
step, and this stage lasts for 200 steps. Finally, the global
density is 0.098.

Stage 2: the global density fluctuates around 0.098.
From Fig. 13, we can read that strong fluctuations exist,

but in fact, it is a finite-size effect: small jam blocks emerge
and disappear quickly near the right boundary, thus causing
fluctuations. If we enlarge the size of the road, fluctuations
will be weaker.

�2� �=0.5, �=0.4, and L=1000 �Fig. 14�. Under the
given condition, Qin=0.49, Qout=0.318, and Qin�Qout. Thus,
there are three stages:

Stage 1: the global density increases by 4.9
10−4 per
step, and this stage lasts for 200 steps. Finally the global
density is 0.098.

Stage 2: the global density increases by 1.72
10−4 per
step, and finally the global density reaches Dg=1−Qout

=0.682. So, this stage lasts for 0.682−0.098
1.72
10−4 �3395 steps.

Stage 3: the global density fluctuates around 1−Qout
=0.682.

V. DENSITY PROFILES IN THE JAMMING PHASE

Based on the results of the previous sections, we can step
further to find the density profiles in the jamming phase
analytically.

For any single site 1� l�L, let o�l� denote the probability
of site l is occupied. If l is influenced by the left boundary,
then o�l� can be calculated by methods in the Sec. II. On the
other hand, if it is influenced purely by the right boundary,
we can first make an analysis.

Without loss of generality, let us consider an arbitrary site
l which is exclusively under the influence of right boundary.
Consequently, we know that jam blocks and driving sections
keep running through site l, from right to the left, by velocity
1. Thus, it takes n steps for a jam block with length n to pass
through site l completely. Obviously, during the n steps, site
l is occupied for n steps. On the other hand, as for a driving
section with length n, site l is occupied for n−r�n� steps
during n steps. Hence, we find

o�l� =
�n=1

+	 Nj�n�n + �n=1
+	 Nf�n��n − r�n��

�n=1
+	 Nj�n�n + �n=1

+	 Nf�n�n

= 1 −
�n=1

+	 Nf�n�r�n�
T

= 1 − Qout. �5�

Note that in the jamming regime, every site has the same
occupation rate, thus we can show the relationship between
the removal rate and the occupation rate in one figure �Fig.
15�. We have to emphasize that in the simulations, we use
expanded left boundary, and the injection rate is 1. This set-
ting is to ensure the stability of all the jam blocks, which

FIG. 13. The time evolution of global density in DNS�vmax

=5�, �=0.4, �=0.8, and L=1000.
FIG. 14. The time evolution of global density in DNS�vmax

=5�, �=0.8, �=0.5, and L=1000.

FIG. 15. Analytical and numerical results of jamming density
profiles with different removal rate in DNS�vmax=5�.

NING JIA AND SHOUFENG MA PHYSICAL REVIEW E 80, 041105 �2009�

041105-8



makes all the sites under the influence of the right boundary
and have the same occupation rate. With lower injection rate,
Eq. �5� is not exact for the sites that are not influenced only
by the right boundary �8�.

VI. CONCLUSION AND DISCUSSION

This paper has presented a theoretical study on the deter-
ministic NS model with stochastic open boundary condi-
tions. Following results are achieved.

We first find an analytical way to calculate the density
profiles of the free-flow phase, both for the standard and
expanded left boundary. Afterwards, the exact solution of
traffic capacity under SRB is given. We also prove that the
global density and the jamming density profiles are both ana-
lyzable. All these findings tell that most features of the de-
terministic NS model with stochastic open boundaries can be
described exactly by analytical results.

However, more research is still required within the sub-
jects of this paper:

�1� How to manage the standard injection rule in DNS
with vmax�5? With the IPSDs and the complicate behaviors,
the Markov chain method is difficult to applied to
DNS�vmax�5�. But fortunately, it is not very necessary to
consider those cases, because as shown in Refs. �8,9�,
DNS�vmax=5� includes all features that are characteristic for
higher vmax. Thus, the existing analytical results are enough
to understand the mechanism of the standard injection rule.
We can also find that the “gradual acceleration” is an impor-
tant characteristic for reality, but it also makes the quantita-
tive analysis difficult. The complex behaviors of SLB are
proved to be a consequence of gradual acceleration. On the
other hand, the behaviors of ELB are much simpler because
they exclude such behaviors.

�2� How to deal with the nondeterministic NS model? No
matter the method raised in Refs. �11,17–19�, or those in this
paper, they are based on the deterministic behaviors of the
model. It seems that for the NS model with randomization, it
is very hard to find exact analytical results �14,18,19�.
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APPENDIX A: PROOF OF THEOREM 1

Lemma A1. If vt�c��vmax and gt
+�c��vt�c�, then

gt+1
+ �n−�c���gt

+�c� �where vt�c� is the velocity of c at the
beginning of step t, gt

+�c� is the headway of c, n−�c� is the
first car on the left side of c�

Proof. We denote the location of c at step t by lt�c�. Since
gt

+�c��vt�c�, then lt+1�c�= lt�c�+gt
+�c�. Let c�=n−�c�,

lt+1�c��� lt�c�−1 implies that gt+1
+ �c��= lt+1�c�− lt+1�c��−1

� �lt�c�+gt
+�c��− �lt�c�−1�−1�gt

+�c�.
Lemma A2. If vt�c��vmax and gt

+�c��vt�c�, then
gt+1

+ �n−�c���vt�c�.

Proof. Under the given condition, car c is able to increase
its velocity, thus lt+1�c�= lt�c�+vt�c�+1. Let c�=n−�c�,
lt+1�c��� lt�c�−1 implies that gt+1

+ �c��= lt+1�c�− lt+1�c��−1
�vt�c�.

Theorem 1. In DNS�5�, only cars at site 4,5 might be
effected by IPSD.

Proof 1. Figure 16 shows the IPSDs at site 4 and site 5; it
confirms that IPSDs may happen at site 4 and site 5.

Proof 2. IPSDs never happen at site l�6
Suppose that there exists a car that is forced to be slowed

down at site l�6. Applying the procedure A.1. as follows,
finally we can find car c �this car will definitely be found,
because the first injected car always keeps free driving�.
Lemma A1 and A2 imply that c must satisfy vt�c��3, and
lt�c��6.

Let c=n+�c�� t= t−1.

While �c is slowed down at time t�
�c=n+�c�
t= t−1�

return c

�Procedure A.1.�
The proposition 2 will hold if we prove that the car c with

vt�c��3 and lt�c��6 does not exist.
If car c is injected into the road at time ti �ti� t�, then

there are only three possible ways for c to arrive at lt�c� at
time t:

�1� “Direct Hit:”t− ti=1, vt�c�= lt�c�.
�2� “Acceleration:”t− ti�1, and ∀t̄ ti� t̄−1� t̄� t, vt̄

=min�vt̄−1+1,vmax�. That means c keeps free driving during
the period ti� t.

�3� “Mixed:”t− ti�1, c has experienced IPSD.
If car c arrives at a site l�6 by Direct Hit or Acceleration,

with no doubt that vt�c��3, which contradict to the assertion
vt�c��3; And “Mixed” is also impossible, because it has
been proved in Ref. �19� that IPASs cannot make cars’ ve-
locity lower than 4.

Thus, in DNS�5�, the car satisfying the conditions above
do not exist. Thus, IPSDs won’t happen at site l�6.

Proof 3. IPSDs never happen at site l�3. This proposi-
tion has been proved in Ref. �19�.

Therefore, in DNS�5�, IPSDs can only happen at site 4,5.
This theorem holds.

(b)(a)

FIG. 16. Illustration of IPSDs at sites 4 and 5.
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APPENDIX B: PROOF OF THE STATE
TRANSITION RULES

Given an arbitrary time step t, we denote the system state
at t and t+1 by S and S�, respectively. Suppose that S
= �d ,v�, then:

Rule 1: with probability 1, S�= �0,min�v+1,vmax��
= �0,d� if d=min�v+1,vmax�.

This rule is obviously in accordance with the NS model
rules.

Rule 2: with probability 1−�, S�= �0,d� if d�min�v
+1,vmax�.

If S satisfies l�min�v+1,vmax�, and the boundary closes
at this step, then the last car in the road must stop and wait at
the last site. Thus, it is easy to know S�= �0,d�. Known that
the probability of right boundary’s blockage is 1−�, we find
this rule holds.

Rule 3: with probability �, S�= �d+1,v� if d�min�v
+1,vmax�.

Under given condition, with probability �, the right
boundary opens, then the last car runs out. We denote the last
car in the road at step t by c1, and the last car at step t+1 by
c2.

We denote the length of the road by L, then S and S�
become

S = �L − lt�c1�,vt�c1��, S� = �L − lt+1�c2�,vt+1�c2�� .

Recall this conclusion again: the inflow of right boundary
equals

vmax

vmax+1 . Then at step t+1, c2 must arrive at the site
which is just in front of site lt�c1�, such that L− lt+1�c2�=L
− lt�c1�+1. Consequently, vt+1�c2�= lt�c1�− lt�c2�−1= lt�c1�
− �lt−1�c1�−1�−1= lt�c1�− lt−1�c1�=vt�c1�.

The proof is hence completed.
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