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Understanding the nature of dense particle packings is a subject of intense research in the physical, math-
ematical, and biological sciences. The preponderance of previous work has focused on spherical particles and
very little is known about dense polyhedral packings. We formulate the problem of generating dense packings
of nonoverlapping, nontiling polyhedra within an adaptive fundamental cell subject to periodic boundary
conditions as an optimization problem, which we call the adaptive shrinking cell �ASC� scheme. This optimi-
zation problem is solved here �using a variety of multiparticle initial configurations� to find the dense packings
of each of the Platonic solids in three-dimensional Euclidean space R3, except for the cube, which is the only
Platonic solid that tiles space. We find the densest known packings of tetrahedra, icosahedra, dodecahedra, and
octahedra with densities 0.823…, 0.836…, 0.904…, and 0.947…, respectively. It is noteworthy that the densest
tetrahedral packing possesses no long-range order. Unlike the densest tetrahedral packing, which must not be
a Bravais lattice packing, the densest packings of the other nontiling Platonic solids that we obtain are their
previously known optimal �Bravais� lattice packings. We also derive a simple upper bound on the maximal
density of packings of congruent nonspherical particles and apply it to Platonic solids, Archimedean solids,
superballs, and ellipsoids. Provided that what we term the “asphericity” �ratio of the circumradius to inradius�
is sufficiently small, the upper bounds are relatively tight and thus close to the corresponding densities of the
optimal lattice packings of the centrally symmetric Platonic and Archimedean solids. Our simulation results,
rigorous upper bounds, and other theoretical arguments lead us to the conjecture that the densest packings of
Platonic and Archimedean solids with central symmetry are given by their corresponding densest lattice
packings. This can be regarded to be the analog of Kepler’s sphere conjecture for these solids. The truncated
tetrahedron is the only non-centrally symmetric Archimedean solid, the densest known packing of which is a
non-lattice packing with density at least as high as 23 /24=0.958 333. . .. We discuss the validity of our
conjecture to packings of superballs, prisms, and antiprisms as well as to high-dimensional analogs of the
Platonic solids. In addition, we conjecture that the optimal packing of any convex, congruent polyhedron
without central symmetry generally is not a lattice packing. Finally, we discuss the possible applications and
generalizations of the ASC scheme in predicting the crystal structures of polyhedral nanoparticles and the study
of random packings of hard polyhedra.
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I. INTRODUCTION

Particle packing problems are ancient dating back to the
dawn of civilization. Bernal has remarked that “heaps” �par-
ticle packings� were the first things that were ever measured
in the form of basketfuls of grain for the purpose of trading
or of collection of taxes �1�. Dense packings of hard particles
have served as useful models to understand the structure of
liquid, glassy, and crystal states of matter �2–4�, granular
media �5�, and heterogeneous materials �3,6�. Understanding
the symmetries and other mathematical properties of the
densest packings in arbitrary dimensions is a problem of
long-standing interest in discrete geometry and number
theory �7�.

A large collection of nonoverlapping solid objects �par-
ticles� in d-dimensional Euclidean space Rd is called a pack-
ing. The packing density � is defined as the fraction of space
Rd covered by the particles. A problem that has been a source
of fascination to mathematicians and scientists for centuries

is the determination of the densest arrangement�s� of par-
ticles that do not tile space and the associated maximal den-
sity �max �7�. Finding the maximal-density packing arrange-
ments is directly relevant to understanding the structure and
properties of crystalline equilibrium phases of particle sys-
tems as well as their �zero-temperature� ground-state struc-
tures in low dimensions in which the interactions are char-
acterized by steep repulsions and short-ranged attractions.

The preponderance of previous investigations has focused
on dense packings of spheres in various dimensions �3,7–9�.
For congruent particles in three dimensions, the sphere is the
only nontiling particle for which the densest packing ar-
rangements can be proved �10�. It is only very recently that
attention has turned to finding the maximal-density packing
arrangements of nonspherical particles in R3 including ellip-
soids �11,12�, tetrahedra �13–15�, and superballs �16,17�.
Very little is known about the densest packings of polyhedral
particles �18�.
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The Platonic solids �mentioned in Plato’s Timaeus� are
convex polyhedra with faces composed of congruent convex
regular polygons. There are exactly five such solids: the tet-
rahedron �P1�, icosahedron �P2�, dodecahedron �P3�, octahe-
dron �P4�, and cube �P5� �see Fig. 1� �19�. One major con-
cern in this paper is the determination of the densest
packings of each of the Platonic solids in three-dimensional
Euclidean space R3, except for the cube, which is the only
Platonic solid that tiles space.

It is useful to highlight some basic geometrical properties
of the Platonic solids that we will employ in subsequent
sections of the paper. The dihedral angle � is the interior
angle between any two face planes and is given by

sin
�

2
=

cos��/q�
sin��/p�

, �1�

where p is the number of sides of each face and
q is the number of faces meeting at each vertex.
Thus, � is 2 sin−1�1 /�3�, 2 sin−1�� /�3�, 2 sin−1�� /��2+1�,
2 sin−1��2 /3�, and � /2, for the tetrahedron, icosahedron,
dodecahedron, octahedron, and cube, respectively, where �
= �1+�5� /2 is the golden ratio. Since the dihedral angle for
the cube is the only one that is a submultiple of 2�, the cube
is the only Platonic solid that tiles space. We note in passing
that in addition to the regular tessellation of space by cubes
in the simple cubic lattice arrangement, there are an infinite
number of other irregular tessellations of space by cubes
�20�. Figure 2 shows a portion of a realization of a two-
dimensional analog of such an irregular tessellation.

Every polyhedron has a dual polyhedron with faces and
vertices interchanged. The dual of each Platonic solid is an-
other Platonic solid, and therefore they can be arranged into
dual pairs: the tetrahedron is self-dual �i.e., its dual is another
tetrahedron�, the icosahedron and dodecahedron form a dual
pair, and the octahedron and cube form a dual pair.

An Archimedean solid is a highly symmetric, semiregular
convex polyhedron composed of two or more types of regu-
lar polygons meeting in identical vertices. There are 13
Archimedean solids: truncated tetrahedron �A1�, truncated
icosahedron �A2�, snub cube �A3�, snub dodecahedron �A4�,
rhombicosidodecahedron �A5�, truncated icosidodecahedron
�A6�, truncated cuboctahedron �A7�, icosidodecahedron
�A8�, rhombicuboctahedron �A9�, truncated dodecahedron
�A10�, cuboctahedron �A11�, truncated cube �A12�, and trun-
cated octahedron �A13� �see Fig. 3�. Note that the truncated
octahedron is the only Archimedean solid that tiles space.

Another important observation is that the tetrahedron �P1�
and the truncated tetrahedron �A1� are the only Platonic and
Archimedean solids, respectively, that are not centrally sym-
metric. A particle is centrally symmetric if it has a center C
that bisects every chord through C connecting any two
boundary points of the particle; i.e., the center is a point of
inversion symmetry. We will see that the central symmetry of
the majority of the Platonic and Archimedean solids �P2–P5,
A2–A13� distinguish their dense packing arrangements from
those of the non-centrally symmetric ones �P1 and A1� in a
fundamental way.

Some basic definitions concerning packings are given
here. A saturated packing is one in which there is no space
available to add another particle to the packing. A lattice �
in Rd is a subgroup consisting of the integer linear combina-
tions of vectors that constitute a basis for Rd �21�. A lattice
packing PL is one in which the centroids of the nonoverlap-
ping particles are located at the points of �, each oriented in
the same direction. The set of lattice packings is a subset of
all possible packings in Rd. In a lattice packing, the space Rd

can be geometrically divided into identical regions F called
fundamental cells, each of which contains just the centroid of
one particle. Thus, the density of a lattice packing is given by

� =
vp

Vol�F�
, �2�

where vp is the volume of a d-dimensional particle and
Vol�F� is the volume of a fundamental cell.

FIG. 1. �Color online� The five Platonic solids: tetrahedron �P1�,
icosahedron �P2�, dodecahedron �P3�, octahedron �P4�, and cube
�P5�.

FIG. 2. �Color online� A portion of a realization of an irregular
tiling of the plane by squares.

FIG. 3. �Color online� The 13 Archimedean solids: truncated
tetrahedron �A1�, truncated icosahedron �A2�, snub cube �A3�, snub
dodecahedron �A4�, rhombicosidodecahedron �A5�, truncated icosi-
dodecahedron �A6�, truncated cuboctahedron �A7�, icosidodecahe-
dron �A8�, rhombicuboctahedron �A9�, truncated dodecahedron
�A10�, cuboctahedron �A11�, truncated cube �A12�, and truncated
octahedron �A13�.
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A more general notion than a lattice packing is a periodic
packing. A periodic packing of congruent particles is ob-
tained by placing a fixed nonoverlapping configuration of N
particles �where N�1� with arbitrary orientations in each
fundamental cell of a lattice �. Thus, the packing is still
periodic under translations by �, but the N particles can
occur anywhere in the chosen fundamental cell subject to the
nonoverlap condition. The packing density of a periodic
packing is given by

� =
Nvp

Vol�F�
= �vp, �3�

where �=N /Vol�F� is the number density, i.e., the number of
particles per unit volume.

The determination of the maximal-density arrangements
of nontiling polyhedral particles is a notoriously difficult
problem, especially since such extremal structures will gen-
erally be non-Bravais-lattice packings. Computer simulations
that seek the maximal-density packings can be an indispens-
able tool, especially if they can incorporate collective mo-
tions of the particles in order to obtain, in principle, the
highest possible densities. However, the challenge presented
by polyhedral particles in R3 is the non-smooth �i.e., nonana-
lytic� nature of the particle shape. In the case of smoothly
shaped particles, such as spheres, ellipsoids, and superballs,
one can construct analytic “overlap potential functions” for
the particles �22� and hence one can employ efficient
collision-driven molecular dynamics �MD� growth packing
algorithms that inherently involve collective particle motions
�12,16,17,23,24�. The fact that analytic overlap potential
functions cannot be constructed for polyhedral particles pre-
vents us from using event-driven MD growth methods to
study such systems.

In this paper, we devise an optimization scheme, called
the adaptive shrinking cell �ASC�, that can be applied to
generate dense packings of polyhedra in R3. We employ it
specifically to obtain the densest known packings of tetrahe-
dra, icosahedra, dodecahedra, and octahedra with densities
0.823…, 0.836…, 0.904…, and 0.947…, respectively. The
result for tetrahedra improves upon the density reported in
our recent investigation �25,26�. Unlike the densest tetrahe-
dral packing, which must not be a Bravais lattice packing
�13�, the densest packings of the other non-tiling Platonic
solids that we obtain are their corresponding densest lattice
packings �27,28�.

We also derive a simple upper bound on the maximal
density of packings of congruent nonspherical particles and
apply it to Platonic solids, Archimedean solids, superballs,
and ellipsoids. We introduce the “asphericity” parameter 	
�ratio of the circumradius to inradius� to show that when 	 is
sufficiently small, the upper bounds are relatively tight and
thus close to the corresponding densities of the optimal lat-
tice packings of octahedra, dodecahedra, and icosahedra as
well as of the majority of the Archimedean solids with cen-
tral symmetry.

Our simulation results as well as theoretical arguments
lead us to conjecture that the densest packings of Platonic
and Archimedean solids with central symmetry are given by
their corresponding densest lattice packings. This can be re-

garded to be the analog of Kepler’s sphere conjecture for
these solids. The truncated tetrahedron is the only noncen-
trally symmetric Archimedean solid, the densest known
packing of which is a non-lattice packing with density as
high as 23 /24=0.958 333. . .. Our work also suggests that the
optimal packings of superballs are their corresponding dens-
est lattice packings.

In a recent letter �25�, we briefly reported the densest
known packings of the nontiling Platonic solids obtained us-
ing the ASC algorithm and proposed the aforementioned
conjecture concerning the optimal packings of the Platonic
and Archimedean solids. In this paper, we expand on theo-
retical and computational details and report additional re-
sults. In particular, we provide comprehensive details about
the ASC scheme and the simulation results �Sec. II�, includ-
ing a discussion about the various initial configurations we
used for the ASC algorithm �Sec. III�. Moreover, we have
improved on the highest tetrahedral packing density reported
in Ref. �25� �i.e., from 0.782… to 0.823…�, by exploring a
broad range of dynamical parameters for the algorithm and
initial configurations. Certain pair statistics of the densest
known packing of tetrahedra �e.g., the contact number, the
centroidal correlation function, and the face-normal correla-
tion function� are given �Sec. III�. It is noteworthy that the
densest tetrahedral packing is a non-Bravais structure with a
complex periodic cell and possesses no long-range order.

The initial configurations for the icosahedral, dodecahe-
dral, and octahedral packings are described and the numeri-
cal challenges in producing dense packings of such polyhe-
dral particles are discussed �Sec. III�. In addition, a detailed
derivation of the upper bound and tables containing the geo-
metrical characteristics of the Platonic and Archimedean sol-
ids as well as their upper bound values are given �Sec. IV�.
The upper bound is also applied to superballs and ellipsoids
�which was not done in Ref. �25��. Moreover, we provide the
major elements of a possible proof of our conjecture �Sec.
V�. We also discuss how our conjecture could be generalized
to other centrally symmetric polyhedral particles, such as
prisms and antiprisms as well as high-dimensional analogs of
the Platonic solids. Our work also naturally leads to another
conjecture reported here, namely, the optimal packing of any
convex, congruent polyhedron without central symmetry is
generally not a �Bravais� lattice packing �Sec. V�.

Furthermore, we discuss the possible applications and
generalizations of the ASC scheme to predict the crystal
structures of polyhedral nanoparticles and to the study of
random packings of hard polyhedra. Finally, we collect in
appendixes basic packing characteristics of various optimal
lattice and non-lattice packings of polyhedra �including lat-
tice vectors� that have been scattered throughout the litera-
ture and provide lattice vectors and other characteristics of
the densest known packings of tetrahedra �obtained here� and
truncated tetrahedra.

II. ASC OPTIMIZATION SCHEME

We formulate the problem of generating dense packings
of nonoverlapping, nontiling polyhedra within a fundamental
cell in R3 subject to periodic boundary conditions as an op-
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timization problem. In particular, the objective function is
taken to be the negative of the packing density �. Starting
from an initial unsaturated packing configuration of particles
of fixed size in the fundamental cell, the positions and ori-
entations of the polyhedra are design variables for the opti-
mization. Importantly, we also allow the boundary of the
fundamental cell to deform macroscopically as well as com-
press or expand �while keeping the particles fixed in size�
such that there is a net compression �increase in the density
of the packing� in the final state �29�. Thus, the deformation
and compression/expansion of the cell boundary, which we
call the adaptive fundamental cell, are also design variables.
We are not aware of any packing algorithm that employs
both a sequential search of the configurational space of the
particles and the space of lattices via an adaptive fundamen-
tal cell that shrinks on average to obtain dense packings. We
will call this optimization scheme the ASC.

We will see that the ASC optimization scheme allows for
some desired collective motions of the particles to find the
optimal lattice for the periodic cell. This is to be contrasted
with previous treatments that use a fixed shape for the fun-
damental cell, which may or may not be the optimal shape.
Figure 4 illustrates a simple sequence of configuration
changes for a four-particle system �which is explained in
more detail in Sec. II A�. By efficiently exploring the design-
variable space �DVS�, which consists of the particle configu-
rational space as well as the space of lattices via an adaptive
fundamental cell, the ASC scheme enables one to find a point
in the DVS in the neighborhood of the starting point that has
a higher packing density than the initial density. The process
is continued until the deepest minimum of the objective
function �a maximum of packing density� is obtained, which
could be either a local or global optimum, depending on the
particle shapes.

The ASC optimization problem could be solved using
various techniques depending on the shapes of the particles.
For example, for spheres, one can linearize the objective
function and the constraints, and we have found that linear
programming techniques can efficiently produce optimal so-
lutions for such ASC problems �30�. However, for hard poly-
hedra the nonoverlapping conditions given by the separation

axis theorem �discussed in detail below� involve at least
quartic inequalities, which makes it inefficient to solve even
using nonlinear programming methods.

Here, for polyhedral particles, we solve the ASC optimi-
zation problem using a stochastic procedure, i.e., Monte
Carlo �MC� method with a Metropolis acceptance rule for
trial moves to search the DVS efficiently. However, it is
important to distinguish our procedure that incorporates de-
formation and compression/expansion of the fundamental
cell �i.e., the space of lattices� as design variables from pre-
vious MC hard-particle packing algorithms �31�. In standard
MC simulations, arbitrarily selected individual particle is
given random displacement or rotation. This sequential
movement method is not able to account for any collective
motions of the particles, which is crucial to increasing the
packing density, as pointed out in Sec. I. In our procedure,
the deformation/compression/expansion of the boundary at
least in part allows for collective particle motions in a direc-
tion leading to higher packing density. Moreover, it is the
overall compression of the fundamental cell that causes the
packing density to increase, not the growth of the particles as
in most MD and MC hard-particle packing algorithms
�23,24,31�.

At first glance, one might surmise that an algorithm that
employs particle growth with an adaptive non-shrinking fun-
damental cell is equivalent to our choice of fixing the particle
size while allowing the cell to shrink on average. The former
is computationally less efficient than the latter for polyhedral
particles. Specifically, growth of polyhedral particles requires
manipulating the coordinates of the vertices of each particle
and thus involves at least dNnv numerical operations, where
d is the spatial dimension, N is the total number of particles
in the system, and nv is the number of vertices per particle. It
is much more computationally expensive to use growing/
shrinking particles as trial moves for the optimization
scheme, especially when the number of particles is large,
compared to our adaptive fundamental cell approach, which
only requires manipulating d�d+1� /2 strain components.

In the ASC scheme, the macroscopic deformation and
compression/expansion of the fundamental cell of the lattice
is completely specified by a strain tensor. Since we only

(b)(a) (c)

FIG. 4. �Color online� Sequential changes in the packing configuration due to the design variables in the ASC algorithm. �a� An initial
configuration of four particles. �b� A trial move of a randomly selected particle that is rejected because it overlaps another particle. �c� A trial
move that is accepted, which results in a deformation and compression �small in magnitude� changing the fundamental cell shape and size
as well as the relative distances between the particles. The large fundamental cell is divided into smaller subcells in order to implement the
“cell method” discussed in Sec. II D.
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consider small deformations, linear strain analysis can be
applied here. Starting from an initial configuration, a trial
configuration can be generated by moving �translating and
rotating� a randomly chosen particle or by a random macro-
scopic deformation and compression/expansion of the funda-
mental cell. If any two particles overlap, the trial configura-
tion is rejected; otherwise, if the fundamental cell shrinks in
size �which makes the density � higher�, the trial configura-
tion is accepted. On the other hand, if the cell expands in
size, the trial configuration is accepted with a specified prob-
ability pacc, which decreases as � increases and approaches
zero when the jamming limit �32� �i.e., locally maximal
dense packing� is reached. In particular, we find pacc, with an
initial value pacc�0.35, decreasing as a power law with ex-
ponent equal to −1 works well for most systems that we
studied. The particle motion is equally likely to be a transla-
tion or a rotation. The ratio of the number of particle motions
to the number of boundary trial moves should be greater than
unity �especially toward the end of the simulation�, since
compressing a dense packing could result in many overlaps
between the particles. Depending on the initial density, the
magnitudes of the particle motions and strain components
�e.g., the dynamical parameters� need to be chosen carefully
to avoid the system getting stuck in some shallow local mini-
mum. The parameters should also be adjusted accordingly as
the packing density increases especially toward the jamming
point. The number of total Monte Carlo moves per particle is
of the order of 5
106.

In the ensuing subsections, we describe in detail how we
implement particle motions as well as the deformation and
compression/expansion of the fundamental cell, and precise
check for interparticle overlaps using the separation axis
theorem �33�. We also discuss the cell method and near-
neighbor lists that are employed to speed up the simulations.

A. Particle motions

The fact that a polyhedron is the convex hull of its verti-
ces makes the set of vertices a useful geometrical represen-
tation of such a particle. It is convenient to choose the origin
of the local coordinate system for the vertices to be the cen-
troid of the polyhedron. Other important geometrical proper-
ties of the polyhedron, such as its faces and edges, can be
represented as certain subsets of the vertices.

Let the Euclidean position of the centroid of the jth par-
ticle be x j

E �j=1, . . . ,N�. A translational motion of the par-
ticle centroid can be obtained by generating a randomly ori-
ented displacement �x j

E with small magnitude �10−2–10−6 of
the characteristic length of the particle�, i.e.,

x j
E = x j

E + �x j
E. �4�

A rotational motion can be generated by rotating the particle
�all of its vertices� along a randomly chosen axis �passing
through its centroid� by a random small angle �. Let the
vector vi originating at the centroid denote the vertex i. We
have

vi = R · vi
� + vi

� , �5�

where vi
� and vi

� are the components of vi perpendicular and
parallel to the rotation axis, respectively, and R is the rota-
tion matrix, i.e.,

R = �cos � − sin � 0

sin � cos � 0

0 0 1
	 . �6�

If this motion does not result in the overlap with another
particle, the trial move is accepted; otherwise, it is rejected.

B. Adaptive fundamental cell

For a lattice-based periodic packing, the fundamental cell
is specified by the lattice vectors ai �i=1,2 ,3�. Recall that
the Euclidean coordinates of the particle centroids are x j

E

�j=1, . . . ,N�. The relative coordinates of the centroids
with respect to the lattice vectors are given by

x j
E = � · x j

L, �7�

where �= �a1 ,a2 ,a3�.
The adaptive fundamental cell allows for a small strain of

the fundamental cell, including both volume and shape
changes, which is represented by a symmetric strain tensor
ε, i.e.,

�� = ε · � , �8�

where

ε = ��11 �12 �13

�21 �22 �23

�31 �32 �33
	 , �9�

and the new fundamental cell �lattice vectors� is given by

� = � + �� . �10�

Substituting the above equation into Eq. �4�, we have

x j
E = � · x j

L = x j
E + �� · x j

L. �11�

Thus, the strain of the fundamental cell corresponds to
nontrivial collective motions of the particle centroids �see
Fig. 4�. In general, the translational motions of the particles
contain the contributions from a random independent part
�given by Eq. �4�� and the collective motion imposed by the
adaptive fundamental cell. It is this collective motion that
enables the algorithm to explore the configuration space
more efficiently and to produce highly dense packings.

C. Checking overlaps and the separation axis theorem

Hard polyhedral particles, unlike spheres, ellipsoids, and
superballs, do not possess simple overlap potential functions.
Thus, the check of overlapping for such particles requires
other techniques. Two convex objects are separated in space
if and only if there exists an axis on which the line segments
defined by projections of the two objects do not overlap �see
Fig. 5�. This statement is usually referred to as the separation
axis theorem �SAT� �33�.
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For convex polyhedra, the above theorem has a simpler
version. Since a polyhedron is completely defined by its ver-
tices, the line segment on the axis is defined by the most
separated two projections of the vertices. Moreover, the axis
is either perpendicular to one of the faces or perpendicular to
a pair of edges, one from each polyhedron. This reduces the
number of axes that need to be checked from infinity to
�E�E−1� /2+2F�, where E and F are the number of edges
and faces of the polyhedron, respectively. Here we employ
the SAT to check for interparticle overlaps numerically up to
the highest machine precision �10−16�.

For polyhedra whose circumscribed and inscribed spheres
are well defined, two particles are guaranteed to overlap if
the centroidal separation is smaller than the inscribed diam-
eter and guaranteed not to overlap if the centroidal separation
is larger than the circumscribed diameter. This precheck dra-
matically speeds up the simulations starting from configura-
tions with low densities.

D. Cell method and near-neighbor list

The well-developed cell method �23,24� for particle-
system simulation is used here to speed up the process. How-
ever, the simulation box �fundamental cell� will not remain a
cube during the simulation and several conventional tech-
niques developed for cubic box need modifications. In par-
ticular, to obtain the minimum image distances, all surround-
ing boxes need to be checked explicitly �see Fig. 6�. With the
help of the relative-coordinate representation of the particle
centroids, the separation vector of a pair of particles is given
by

dS = � · �xi
L − x j

L + L� , �12�

where L is a vector with the values of components to be 1, 0,
or −1. Note L can also be considered as the index of the box
that the image particle is in.

The cells are taken to be the same shapes as the simula-
tion box. Partitions of the particle centroids into the cells are
also convenient for relative coordinate representations; i.e.,
the index of the cell �represented by a vector� C for particle
i is given by

C = �NCxi
L� , �13�

where �X� gives the smallest integer part of X and NC is the
number of cells. Note that the boundary deformations and

rotations of particles do not affect the cells in which the
particles are situated; only translations may cause transitions
between the different cells.

For dense packings, we make use of a near-neighbor list
�NNL� to further improve the efficiency of the algorithm
�23,24�. In particular, when the packing density is high, each
particle is “trapped” in a “cage” formed by its near neigh-
bors. These near-neighbor configurations are practically sta-
tionary; i.e., the particles undergo very small “jiggling” mo-
tions. Thus, to check for overlapping between the particles,
one only needs to consider a particle’s near neighbors. If a
large magnitude translation is made, the NNL needs to be set
up again.

III. APPLICATION OF THE ASC SCHEME
TO THE PLATONIC SOLIDS AND RESULTS

Here we apply the ASC scheme to obtain the densest
known packings of the non-tiling Platonic solids. Due to its
lack of central symmetry, the tetrahedron presents the great-
est challenge for the numerical solution procedure of the
ASC scheme because of its tendency to get stuck in local
�density� minima, which is a consequence of the associated
“rugged” energy or, more precisely, “density” landscape
�e.g., the packing density as function of the centroidal posi-
tions and orientations of all of the particles in the fundamen-
tal cell�. Hence, the choice of initial configurations becomes
crucial in getting dense tetrahedral packings. By contrast, the
central symmetry of the octahedron, dodecahedron, and
icosahedron results in density landscapes for the numerical
procedure that are appreciably less rugged than that for tet-
rahedral packings.

A. Tetrahedra

The determination of the densest packings of regular tet-
rahedra is part of the 18th problem of Hilbert’s famous set of
problems. It is of interest to note that the densest �Bravais�
lattice packing of tetrahedra �which requires all of the tetra-
hedra to have the same orientations� has the relatively low
density �max

L =18 /49=0.367. . . and each tetrahedron touches

FIG. 5. �Color online� Two nonoverlapping particles and one of
their separation axes.

FIG. 6. �Color online� The particles �black� in the central fun-
damental cell �with red boundary� and their images �gray�. The
distances between the particles in the central cell and all the corre-
sponding images need to be checked.
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14 others �34�. Recently, Conway and Torquato showed that
the densest packings of regular tetrahedra must not be Bra-
vais lattice packings and found packings with density as
large as �
0.72 �13�. One such packing is based upon the
filling of “imaginary” icosahedra with the densest arrange-
ment of 20 tetrahedra and then employing the densest lattice
packing of icosahedra. A slightly higher density was
achieved by a perturbation of the so-called “Welsh” packings
with density �=17 /24
0.708 �13�. Using “tetrahedral”
dice, Chaikin et al. �14� experimentally generated jammed
disordered packings of such dice with �
0.75. Even though
the dice are not perfect tetrahedra �because the vertices and
edges are slightly rounded�, these experimental results sug-
gested that the densest packings of tetrahedra could exceed
the highest densities reported by Conway and Torquato. In-
deed, Chen �15� has recently discovered a periodic packing
of tetrahedra with �=0.7786. . . �35�. We will call this the
“wagon-wheels” packing because the basic subunits consist
of two orthogonally intersecting “wagon” wheels. A “wagon
wheel” consists of five contacting tetrahedra packed around a
common edge �see Fig. 1a of Ref. �13��.

1. Initial conditions

Because we will use most of the aforementioned tetrahe-
dral packing arrangements as initial conditions in our nu-
merical solution procedure for the ASC optimization prob-
lem, we describe them now in a bit more detail. Table I
summarizes some of their packing characteristics including
the packing density �, the number of particles N in the fun-
damental cell, the average number of contacting particles per

particle Z̄, and whether the packing is locally jammed. A
packing is locally jammed if each particle is locally trapped
by its neighbors; i.e., it cannot be translated or rotated while
fixing the positions and orientations of all the other particles
�32,36�.

In the optimal lattice packing, each tetrahedron touches
14 others via edges and vertices. In the uniform packing, the
tetrahedra are “locked” in a planer layer and each particle has
eight in-plane partial face-to-face contacts and two edge-to-
edge contacts �contributed by the two layers above and be-
low�, and therefore each particle contacts ten others. In the
icosahedral packing, the tetrahedra have a greater degree of
freedom to move and indeed it is not locally jammed. The 20
tetrahedra inside the imaginary icosahedron are required to

meet at its centroid, and so each tetrahedron has 19 vertex-
to-vertex contacts. Placing the imaginary icosahedra on the
sites of its optimal lattice results in a tetrahedral packing
with 12 partial face-to-face contacts. Thus, there are 8 tetra-
hedra that have 19 contacts per particle and 12 tetrahedra

with 19 contacts per particle, and therefore Z̄= �8
19+12

20� /20=19.6.

The Welsh packing is based on the “primitive Welsh” tes-
sellation of R3 into truncated large tetrahedra and small regu-
lar tetrahedra �13�. Interestingly, the primitive Welsh con-
figuration is closely related to the uniform packing; i.e., it
can be constructed by replicating a periodic packing with
two truncated large tetrahedra and two small regular tetrahe-
dra in the fundamental cell. Each truncated large tetrahedron
can be divided into 12 “Welsh lows” and four “Welsh medi-
als” following the notation in Ref. �13�. The Welsh medials
and Welsh lows are tetrahedra with lower symmetry than
regular tetrahedra, which are referred to as the “Welsh
highs.” To construct the Welsh packing, we insert Welsh
highs �regular tetrahedra� into the Welsh low and medial re-
gions. We will refer to the regular tetrahedra that are placed
in the Welsh low, medial, and high regions as lows, medials,
and highs, respectively. In the Welsh packing, each high
makes four face-to-face contacts with four medials. Each
medial contacts 24 lows and three other medials at the cen-
troid of the large truncated tetrahedron; moreover, each me-
dial makes a face-to-face contact with one high. Thus, each
medial has 28 contacts. Each low contacts 23 other lows and
four medials at the centroid of the large truncated tetrahe-
dron. Thus, in total each low has 27 contacts. Each truncated
large tetrahedron has 12 lows and four medials. Thus, the
number of basis particles in the fundamental cell N=34 and

Z̄= �12
27+4
28+1
4� /17=440 /17=25.882 352. . ..
In the fundamental cell of the wagon-wheels packing,

there are N=18 particles, forming two clusters, each of
which includes two “wheels” entangled orthogonally to each
other. Each cluster has a central connection particle, an “up-
per” wheel and a “lower” wheel. The central particle contacts
the other eight tetrahedra through two of its edges. Each of
the other eight tetrahedra has four edge contacts with par-
ticles in its own cluster and three partial face-to-face contacts
with particles from other clusters. Thus, the average contact

number Z̄= �1
8+8
7� /9=64 /9=7.111 111. . .. The coor-
dinates of all of the 18 tetrahedra in the fundamental cell can
be found on the authors’ website �37�.

2. Dense packings

We employ our algorithm to obtain dense packings of
tetrahedra using initial configurations that are based upon the
known packings given in Table I as well as certain dilute
packings with carefully chosen fundamental cells and the
number of particles. Note that these dilute packings were not
used as initial configurations to obtain the results reported in
Ref. �25�. A range of initial densities is used to yield the
largest possible densities in the final states as summarized in
Table II.

For initial conditions using the known packings in Table I,
the fundamental cell is isotropically expanded with the rela-

TABLE I. Some packing characteristics of certain known tetra-
hedral packings. Here � is the packing density, N is the number of

particles in the fundamental cell, and Z̄ is the average contact num-
ber per particle.

Name �
Locally
jammed N Z̄

Optimal lattice �34� 18 /49
0.367346 Yes 1 14

Uniform �13� 2 /3
0.666666 Yes 2 10

Welsh �13� 17 /24
0.708333 No 34 25.9

Icosahedral �13� 0.716559 No 20 19.6

Wagon wheels �15� 0.778615 Yes 18 7.1
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tive coordinates of the tetrahedra fixed so that the initial
packing is locally unjammed with a lower density �int. The
highest density of 0.782 obtained from this subset of initial
conditions started from the wagon-wheels packing, which
was the value reported in Ref. �25�.

For the aforementioned dilute packings, a variety of fun-
damental cell shapes spanning from that for the simple cubic
lattice to that of the hexagonal close packing as well as a
wide range of particle numbers spanning from 70 to 350 are
explored to generate the dense packings. Specifically, the
densest known tetrahedral packing is obtained from a dilute
initial packing with a rhombical fundamental cell similar to
that of the hexagonal close packing and 314 particles �see
Table II�. The particles are originally placed in the funda-
mental cell randomly and then the system is sufficiently
equilibrated with the fundamental cell fixed. The final pack-
ing configuration has a density of about 0.823 and is shown
in Fig. 7 from two different viewpoints. The optimized lattice
vectors for the densest packing and other characteristics are
given in Appendix B. We see that the packing lacks long-
range order and is composed of “clusters” of distorted wagon
wheels and individual tetrahedra. Thus, we call this dense
arrangement the “disordered wagon-wheels” packing. We
will comment further about the significance of achieving this
remarkably high density with a disordered packing in the
discussion and conclusions �Sec. V�.

3. Statistics of the densest tetrahedral packing

�i� Contact numbers: the contact numbers of the densest
tetrahedral packing as well as those obtained using the other
five initial configurations �Table I� are given in Table II. To
determine contacting neighbors, it is crucial to find the inter-
particle gaps first. In particular, each of the equilateral trian-
gular faces of the tetrahedra is discretized into M equal-sized
smaller triangles and the distances between the vertices of
the small triangles of the neighboring tetrahedra are com-
puted, the minimum of which is used as the gap value be-
tween the two corresponding tetrahedra. For our packings,
when M 200, the values of interparticle gaps obtained by
this approximation scheme become stable and converge to
the true gap values. Like any packing generated via com-
puter simulations, the particles never form perfect contacts
and hence contacting neighbors must be determined by set-
ting a tolerance T for the interparticle gaps. Here we choose
T to be equal to the mean value of the gaps �of order 10−2 to
10−3 of the edge length� such that any gap less than T is
associated with a contact. This procedure yields the contact
numbers given in Table II. In particular, we find that in the
disordered wagon-wheels packing, there are approximately
6.3 face-to-face or partial face-to-face contacts and 1.1 edge-
to-edge contacts.

�ii� Face-normal correlation function: an important statis-
tical descriptor for packings of nonspherical particles is the
particle orientation correlation function, which measures the
extent to which a particle’s orientation affects the orientation
of another particle at a different position. For highly symmet-
ric particle shapes, it is reasonable to focus on those pair
configurations in which the particles are in the same orienta-
tion, since particle alignment is associated with dense con-
figurations and phase transitions that may occur. However,
because tetrahedra lack central symmetry, we found that
face-to-face contacts are favored by the dense packings, in-
stead of face-to-vertex contacts, which are necessarily asso-
ciated with aligning tetrahedral configurations, such as in the
case of the optimal lattice packing.

Thus, because our interest is in dense tetrahedral pack-
ings, we determine the “face-normal” correlation function
CFN�r�, which we define as the average of the largest nega-
tive value of the inner product of two face normals of a pair
of tetrahedra separated by a distance r. This quantity is plot-

TABLE II. Dense tetrahedral packings generated from our algorithm using initial configurations based
upon the packings given in Table I and the dilute packing as described in the text. Here �int is the initial
packing density, � is the final packing density, N is the number of tetrahedra in the fundamental cell �38�, and

Z̄ is the average contact number per particle.

Initial packing �int � Locally jammed N Z̄

Optimal lattice 0.25–0.3 0.695407 Yes 27 6.6

Uniform 0.45–0.55 0.665384 Yes 54 9.8

Welsh 0.45–0.6 0.752092 Yes 34 7.4

Icosahedral 0.45–0.6 0.744532 Yes 20 7.1

Wagon wheels 0.55–0.65 0.782021 Yes 72 7.6

Disordered wagon wheels 0.005–0.01 0.822637 Yes 314 7.4

(b)(a)

FIG. 7. �Color online� The densest known packing of tetrahedra
with 314 particles in the fundamental cell. We call this the disor-
dered wagon-wheels packing. �a� Viewed from the side. �b� Viewed
from the top. It is apparent that the packing lacks long-range order
and consists of clusters of distorted wagon wheels.
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ted in Fig. 8. The strong positive peak values, ranging from
r=2rin=d0 /�6 �where rin is the radius of the insphere of the
tetrahedron and d0 is the edge length of the particle� to r
slightly greater than 4rin, indicate a large number of face-to-
face contacts between neighboring particles, implying strong
short-range orientational correlations. The fact that CFN�r�
plateaus to its maximum or near maximum value, for the
distance interval r / �2rin�� �1,2.2�, indicates that there are
partial face-to-face contacts in which particles slide relative
to one another such that the distance between the centroids
can increase while the face-normal inner product remains the
same. The “valleys” of CFN�r� with relatively small magni-
tudes are manifestations of weak particle alignments �align-
ment in the same direction�, which are local configurations
that are necessary “costs” to achieve the largest face-to-face
contact numbers on average.

�iii� Centroidal radial distribution function: another statis-
tical descriptor of the structure is the centroidal radial distri-
bution function g2�r�. In particular, g2�r�r2dr is proportional
to the conditional probability that a particle centroid is found
in a spherical shell with thickness dr at a radial distance r
from another particle centroid at the origin. It is well estab-
lished that when there is no long-range order in the system,
g2 decays to unity very fast. Figure 9 shows the centroidal
radial distribution of the densest known tetrahedral packing.

We see that g2�r� decays to unity after a few oscillations
indicating that the packing lacks long-range order.

B. Octahedra

To obtain dense packings of octahedra, we use a wide
range of initial configurations. This includes unsaturated
packings in which the particles are randomly oriented and
positioned with densities spanning the range from 0.2 to 0.35
as well as unsaturated simple cubic �sc� and face-centered-
cubic �fcc� lattice packings with densities from 0.1 to 0.125,
and the optimal lattice packings with densities from 0.3 to
0.55 are used. We found that using small compression rates
for the random initial configurations and moderate compres-
sion rates for the various lattice configurations along with a
sufficient number of particle displacements and rotations re-
sulted in final configurations with densities larger than 0.93
that are very close in structure and density to the optimal
lattice packing. More specifically, starting from the unsatur-
ated sc lattice �with density 0.1� and optimal lattice �with
density 0.55� packings, final packings with densities very
slightly larger than the value 0.947 003. . . can be obtained,
which are extremely close in structure and density to the
optimal lattice packing ��max

L =0.947 368. . .� �27�. A previous
study involving an event-driven molecular dynamics growth
algorithm for the case of octahedral-like superballs led to the
same the densest lattice packing, which lends further cre-
dence to the fact that this lattice is indeed optimal among all
packings �17�. Each octahedron in the optimal lattice pack-
ing, depicted in Fig. 10, contacts 14 others and its lattice
vectors are given in Appendix A.

C. Icosahedra

As in the case of octahedra, we use a variety of initial
conditions to get dense packings of icosahedra. This includes
unsaturated packings in which the icosahedra are randomly
oriented and positioned with densities spanning the range
from 0.2 to 0.3 as well as various unsaturated lattice pack-
ings, such as the bcc, fcc, and the densest lattice packing,
with densities spanning the range from 0.3 to 0.65. We found
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FIG. 8. �Color online� The face-normal correlation function
CFN�r� of the densest known packing of tetrahedra obtained here,
where rin is the radius of the insphere of a tetrahedron.
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FIG. 9. �Color online� The centroidal radial distribution function
g2�r� of the densest known packing of tetrahedra, where rin is the
radius of the insphere of a tetrahedron.

FIG. 10. �Color online� A portion of the optimal lattice packing
of octahedra.
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that by starting from a low-density configuration, with a
small enough compression rate and sufficient number of par-
ticle moves, one can always obtain a final configuration that
is very close to the optimal lattice packing with a density
�
0.83. An initial configuration of an unsaturated optimal
lattice packing configuration with a density 0.65 gives a final
packing with density 0.836 315. . ., which is extremely close
in structure and density to the optimal lattice packing
��max

L =0.836 357. . .� �28�. Each icosahedron of the optimal
lattice packing, depicted in Fig. 11, contacts 12 others and its
lattice vectors are given in Appendix A.

D. Dodecahedra

Unsaturated random packings with densities ranging from
0.15 to 0.3 as well as unsaturated simple cubic and the opti-
mal lattice packings with densities spanning the range from
0.3 to 0.6 are employed as initial configurations to generate
dense packings of dodecahedra. We found that it is algorith-
mically more difficult to avoid local density maxima for
dodecahedra than octahedron and icosahedron packings dis-
cussed above. For example, starting from random configura-
tions, even with sufficiently small compression rate and a
large number of particle moves, we can only achieve appar-
ently jammed final packings with densities in the range from
0.83 to 0.85. When we use an unsaturated optimal lattice
packing with density 0.72 as an initial condition, we can
generate a final packing with �=0.904 002. . ., which is rela-
tively close in structure and density to the optimal lattice
packing ��max

L =0.904 508. . .� �28�. Each dodecahedron of
the optimal lattice packing, depicted in Fig. 12, contacts 12
others and its lattice vectors are given in Appendix A.

We note that the tendency for dodecahedral packings to
get stuck in local-density maxima in our algorithm is due to
the fact that in some sense the dodecahedron is a shape that
is intermediate between the octahedron and icosahedron.
Specifically, for octahedral packings, the octahedral symme-
try of the particles facilitates the formation of nematic phases
at relatively high densities, which can then be easily com-
pressed into a dense crystalline phase with adaptive funda-
mental cells. An icosahedron is highly isotropic and pos-
sesses a large number of faces. Thus, at low densities, the

icosahedral packing behaves like a hard-sphere fluid and it is
only near the jamming point that the asphericity of the icosa-
hedron begins to play an important role. Again, by allowing
the fundamental cell to adapt in the case of icosahedra, the
optimal lattice that best accommodates the packing can be
easily identified. However, for our algorithm, the dodecahe-
dral packing behaves differently from either the octahedral or
icosahedral packings. In particular, while dodecahedra are
more isotropic than octahedra, which strongly suppress the
formation of nematic phases, they have fewer but larger
faces than icosahedra, which favor the formation of face-to-
face contacts that ends up jamming the dodecahedral packing
at lower densities than either the octahedral or icosahedral
packings.

IV. UPPER BOUND ON THE MAXIMAL DENSITY
OF PACKINGS OF NONSPHERICAL PARTICLES

Here we derive a simple upper bound on the maximal
density �max of a packing of congruent nonspherical particles
of volume vp in any Euclidean space dimension d. We will
see that this bound will aid in our analysis of the optimality
of not only the Platonic and Archimedean solids but
also superballs. Let �max

S be the maximal density of a
d-dimensional packing of congruent spheres and let vs rep-
resent the volume of the largest sphere than can be inscribed
in the nonspherical particle.

Lemma. The maximal density of a packing of congruent
nonspherical particles is bounded from above according to
the following bound �39�:

�max � min�vp

vs
�max

S ,1� , �14�

where min�x ,y� denotes the minimum of x and y.
The proof is straightforward. The maximal packing den-

sity �max can be expressed in terms of the maximal number
density �max via the relation

�max = �maxvp. �15�

If we inscribe within each nonspherical particle of the pack-
ing the largest possible sphere, it is clear that

FIG. 11. �Color online� A portion of the optimal lattice packing
of icosahedra.

FIG. 12. �Color online� A portion of the optimal lattice packing
of dodecahedra.
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�maxvs � �max
S , �16�

and therefore combination of the last two equations yields
the upper bound of the lemma.

Remark. The upper bound �14� will yield a reasonably
tight bound for packings of nonspherical particles provided
that the asphericity 	 of the particle is not large. Here we
define the asphericity as the following ratio:

	 =
rout

rin
, �17�

where rout and rin are the circumradius and inradius of the
circumsphere and insphere of the nonspherical particle. The
circumsphere is the smallest sphere containing the particle.
The insphere is the largest sphere than can be inscribed in the
particle. For a sphere, clearly the asphericity 	=1. Since up-
per bound �14� cannot be sharp �i.e., exact� for a nonspheri-
cal particle, any packing construction for a nonspherical par-
ticle whose density is close to upper bound �14� is nearly
optimal, if not optimal.

In the three-dimensional case, upper bound �14� becomes

�max � �max
U = min�vp

vs

�

�18
,1� . �18�

We now apply this upper bound to packings of the Platonic
and Archimedean solids and compare the bounds to the den-
sities of the corresponding densest lattice packings. More-
over, we apply the upper bounds to superball and ellipsoid
packings.

A. Platonic solids

Table III compares the density of the densest lattice pack-
ings of the Platonic solids to the corresponding upper bounds
on the maximal density for such packings. The large asphe-
ricity and lack of central symmetry of the tetrahedron are
consistent with the large gap between the upper bound den-
sity and densest lattice packing density, and the fact that

there are nonlattice packings with density appreciably greater
than �max

L . On the other hand, the central symmetry of the
octahedron, dodecahedron, and icosahedron and their associ-
ated relatively small asphericities explain the corresponding
small differences between �max

L and �max
U and is consistent

with our simulation findings that indicate that their optimal
arrangements are their respective densest lattice packings.

B. Archimedean solids

We also compute upper bound �18� for each of the 13
Archimedean solids and compare them to the densities of the
corresponding densest lattice packings �28,34�. �In Appendix
A we provide the lattice vectors for the optimal lattice pack-
ings of the Archimedean solids�. Table IV summarizes the
upper bounds on the maximal density for such packings.
Not surprisingly, the truncated tetrahedron �the only
Archimedean solid that is not centrally symmetric� has a
large asphericity, implying that there are denser nonlattice
packings, as we explicitly identify in Sec. V. The central
symmetry of the majority of the Archimedean solids and
their associated relatively small asphericities explain the cor-
responding small differences between �max

L and �max
U , which

suggests that their optimal arrangements are their respective
densest lattice packings.

C. Superballs

Upper bound �18� in the case of superballs �17� can be
expressed analytically for all values of the deformation pa-
rameter p. A three-dimensional superball is a centrally sym-
metric body in R3 occupying the region

x12p + x22p + x32p � 1, �19�

where xi �i=1,2 ,3� are Cartesian coordinates and p�0 is
the deformation parameter, which indicates to what extent
the particle shape has deformed from that of a sphere �p
=1�. A superball can possess two types of shape anisotropy:

TABLE III. Comparison of the densities of the densest lattice packings for the Platonic solids �27,28,34�
to the corresponding upper-bound densities as obtained from Eq. �18�. Here vp is volume of the polyhedron
with unit edge length, rin and rout are the radii of the insphere and circumsphere of the polyhedron with unit
edge length, respectively, 	=rout /rin is the asphericity, �max

L is the density of the optimal lattice packing and
�max

U is upper bound �18�. The numerical values are reported up to the sixth decimal place. The naming code
used here is the same one used in Fig. 1.

Name vp rin rout 	 �max
L �max

U

Tetrahedron �P1� �2
12

�6
12

�6
4

3 0.367346 1

Icosahedron �P2� 5�3+�5�
12

3�3+�15
12

�10+2�5
4

1.258410 0.836357 0.893417

Dodecahedron �P3� 15+7�5
4

�250+110�5
20

�3+�15
4

1.258410 0.904508 0.981162

Octahedron �P4� �2
3

�6
6

�2
2

1.732050 0.947368 1

Cube �P5� 1 1
2

�3
2

1.732050 1 1
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cubiclike shapes for 1� p��, with p=� corresponding to
the perfect cube, and octahedral-like shapes for 0� p�1,
with p=1 /2 corresponding to the perfect regular octahedron.
In Ref. �17�, event-driven molecular dynamics growth algo-
rithms as well as theoretical arguments led to the conjecture
that the densest packings of superballs for all convex shapes
�1 /2� p��� are certain lattice packings depending on the
value of the deformation parameter p.

For convex superballs in the octahedral regime �0.5� p
�1�, upper bound �18� is explicitly given by

�max
U =

�6

108p2 
 31/2pB� 1

2p
,
2p + 1

2p
�B� 1

2p
,
p + 1

p
� ,

�20�

similarly, for superballs in the cubic regime �p1�, upper
bound �18� is given by

�max
U =

�2

4p2B� 1

2p
,
2p + 1

2p
�B� 1

2p
,
p + 1

p
� , �21�

where B�x ,y�=��x���y� /��x+y� and ��x� is the Euler
gamma function. Here and in the subsequent paragraphs con-
cerning ellipsoids, we only state the nontrivial part of upper
bound �18�. For p near the sphere point �p=1�, the densest
lattice packings �17� have densities that lie relatively close to
the corresponding upper-bound values. For example, for p
=0.99, 0.98, and 0.97, �max

U =0.745 327. . ., 0.750 274. . ., and
0.755 325. . ., respectively, which is to be compared to �max

L

=0.740 835. . ., 0.741 318. . ., and 0.741 940. . ., respectively.
For p=1.01, 1.02, and 1.03, �max

U =0.747 834. . .,
0.755 084. . ., and 0.762 233. . ., respectively, which is
to be compared to �max

L =0.741 720. . ., 0.742 966. . ., and
0.744 218. . ., respectively.

TABLE IV. Comparison of the densities of the densest lattice packings for the Archimedean solids to the
corresponding upper-bound densities as obtained from Eq. �18�. Except for the cubeoctahedron �34�, the
densities of the densest lattice packings were obtained by Betke and Henk �28�. Here vp is volume of the
polyhedron with unit edge length, rin and rout are the radii of the insphere and circumsphere of the polyhedron
with unit edge length, respectively, 	=rout /rin is the asphericity, �max

L is the density of the optimal lattice
packing, �max

U is upper bound �18� and t= �1+ �19−3�33�1/3+ �19+3�33�1/3� /3
1.839 29. . . is the Tribonacci
constant. The numerical values are reported up to the sixth decimal place. The naming code used here is the
same one used in Fig. 3.

Name vp rin rout 	 �max
L �max

U

Truncated tetrahedron �A1� 23�2
12

�6
4

�22
4

1.914854 0.680921 1

Truncated icosahedron �A2� 125+43�5
4

�21+9�5
2�2

�58+18�5
4

1.092945 0.784987 0.838563

Snub cube �A3� 3�t−1+4�t+1
3�2−t

� t−1
4�2−t�

� 3−t
4�2−t�

1.175999 0.787699 0.934921

Snub dodecahedron �A4� 37.616654 1.980915 2.155837 1.088303 0.788640 0.855474

Rhombicicosidodecahedron �A5� 95+50�5 3.523154 �31+12�5
2

1.079258 0.804708 0.835964

Truncated icosidodecahedron �A6� 60+29�5
3

2.016403 �11+4�5
2

1.107392 0.827213 0.897316

Truncated cuboctahedron �A7� 12+10�2
3

1+�2
2

�5+2�2
2

1.158941 0.849373 0.875805

Icosidodecahedron �A8� 45+17�5
6

�5+2�5
5

1+�5
2

1.175570 0.864720 0.938002

Rhombicuboctahedron �A9� 22+14�2 1+2�2
2

�13+6�2
2

1.210737 0.875805 1

Truncated dodecahedron �A10� 5�99+47�5�
12

�25+11�5
2�2

�74+30�5
4

1.192598 0.897787 0.973871

Cuboctahedron �A11� 5�2
3

�2
2

1 1.414213 0.918367 1

Truncated cube �A12� 21+14�2
3

1+�2
2

�7+4�2
2

1.473625 0.973747 1

Truncated octahedron �A13� 8�2
�6
2

�10
2

1.290994 1 1
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The fact that the constructed densest lattice packings of
superballs have density �max

L relatively close to the upper
bound value �max

U strengthens the arguments made in Ref.
�17� that suggested that the optimal packings are in fact
given by these arrangements. If the optimal packings around
p=1 are indeed the lattice packings, it would be surprising
that for other values of p a continuous deformation of the
superballs would result in a transition from lattice packings
to denser nonlattice packings.

D. Ellipsoids

In the case of ellipsoids in which the ratio of the three
semiaxes is given by 1:� :� �� ,��1�, upper bound �18�
becomes

�max
U = ��

�

�18
. �22�

For prolate spheroids �=1 and the bound becomes

�max
U = �

�

�18
. �23�

For oblate spheroids with �=�1, the bound is given by

�max
U = �2 �

�18
. �24�

The upper bounds for ellipsoids generally do not work as
well as those for the centrally symmetric Platonic and
Archimedean solids, and superballs. This is due to the fact
that the three principle directions �axes� are not equivalent
for an ellipsoid; i.e., it generally possesses different semi-
axes. Note that the three equivalent principle �orthogonal�
axes �directions� of a centrally symmetric particle are those
directions that are two-fold rotational symmetry axes such
that the distances from the particle centroids to the particle
surfaces are equal. In addition, the asphericity of an ellipsoid
increases linearly as the largest aspect ratio � increases with-
out limit. By contrast, the three principle directions are
equivalent for the centrally symmetric Platonic and
Archimedean solids as well as for superballs for which the
asphericity is always bounded and close to unity �see Tables
III and IV�. Thus, we see that an asphericity value close to
unity is a necessary condition to have a centrally symmetric
particle in which the three principle directions are equivalent.

V. DISCUSSION AND CONCLUSIONS

We have formulated the problem of generating dense
packings of nonoverlapping polyhedra within an adaptive
fundamental cell subject to periodic boundary conditions as
an optimization problem, which we call the adaptive shrink-
ing cell �ASC� scheme. The procedure allows both a sequen-
tial search of the configurational space of the particles and
the space of lattices via an adaptive fundamental cell that
shrinks on average to obtain dense packings. We have ap-
plied the ASC procedure to generate the densest known
packings of the Platonic solids.

For tetrahedra, we find a packing with density �
0.823,
which is a periodic �non-Bravais lattice� packing with a com-
plex basis. Unlike the other Platonic solids, finding dense
packings of tetrahedra with our algorithm requires having
good initial configurations. The densest packing was found
using 314 particles in a rhombical fundamental cell that is
similar to that of the hexagonal close packing of spheres. As
we stressed in our earlier work �25� and continue to confirm
in this paper, it is possible that denser packings of tetrahedra
will involve increasingly larger numbers of particles in the
fundamental cell. In fact, the higher density found here is
realized by a larger periodic packing �314 particles per cell�
than the one reported in Ref. �25� �72 particles per cell� with
density 0.782. It is apparent the obtained densest known tet-
rahedral packing is disordered in the sense that it possesses
no long-range order, at least on the scale of the simulation
box. This packing can be considered to be a disordered “mix-
ture” of distorted wagon wheels and individual tetrahedra
and it is distinct from the one reported in Ref. �25� in both
the arrangement of the wagon wheels and the extent of the
distortion of the wagon wheels. Although we cannot rule out
the possibility of the existence of denser packings involving
a more ordered arrangement of the wagon wheels and indi-
vidual tetrahedra, it is reasonable to expect that wagon
wheels will be key building blocks in denser packings and
should at least be slightly distorted to fill the interparticle
gaps in wagon-wheel clusters more efficiently, which neces-
sarily introduces a certain degree of disorder to the packing.
If denser packings of tetrahedra must involve larger number
of particles without long-range order, then it raises the amaz-
ing prospect that the densest packings of tetrahedra might be
truly disordered due to the geometrical frustration associated
with the lack of central symmetry of a tetrahedron and that
tetrahedra cannot tile space. This would be an example of a
maximally dense packing of congruent convex three-
dimensional particles without long-range order. However, we
cannot offer definitive conclusions about this possibility at
this stage. It is clear that in future work in the search for
denser packings, increasingly larger number of tetrahedra
must be considered, which can only be studied using greater
computational resources.

Our simulation results and rigorous upper bounds strongly
suggest that the optimal lattice packings of the centrally sym-
metric non-tiling Platonic solids �octahedra, dodecahedra,
and icosahedra� are indeed the densest packings of these par-
ticles, especially since these arise from a variety of initial
“dilute” multiparticle configurations within the fundamental
cell �40�. It is noteworthy that a different simulation proce-
dure �an event-driven molecular dynamics growth algorithm
with an adaptive fundamental cell� has recently been used to
demonstrate that the densest packings of octahedral-like su-
perballs �which contain the perfect octahedron� are likely to
be the optimal lattice packings �17�. Moreover, the fact that
the optimal lattice packing densities of certain centrally sym-
metric nonspherical particles, such as the Archimedean sol-
ids with central symmetry and convex superballs, are rela-
tively close to their upper bounds as well as other theoretical
arguments given below suggest that the densest packings of
these particles may also be given by their optimal lattice
packings.
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It is crucial to stress that the nonspherical particles in this
family do not deviate appreciably from a sphere; i.e., their
corresponding asphericity 	 is always bounded and relatively
close to unity, and, moreover, their three principle axes �di-
rections� are equivalent. This is in contrast to the ellipsoid,
which, although centrally symmetric, generally possesses
three principle axes �directions� that are inequivalent and its
asphericity can increase without limit as the largest aspect
ratio grows. These characteristics suggest that the densest
ellipsoid arrangements are nonlattice packings, which indeed
has been verified �12�.

Our simulation results and the ensuing theoretical argu-
ments lead to the following conjecture:

Conjecture 1. The densest packings of the centrally sym-
metric Platonic solids are given by their corresponding opti-
mal lattice packings.

We now sketch what could be the major elements of a
proof of this conjecture. In the case of each of the Platonic
solids, face-to-face contacts are favored over vertex-to-face
contacts to achieve higher packing densities, since the former
allows the particle centroids to get closer to one another.
Such contacting neighbor configurations around each particle
reduce the volume of the corresponding convex hull joining
the centroids of the contacting particles and the fraction of
space covered by the particles within this convex hull should
be increased; see Fig. 13 for a two-dimensional illustration.

To achieve the densest packing, the fraction of space cov-
ered by the particles within the convex hull should ideally be
maximized and so should the number of face-to-face con-
tacts per particle. Of course, this is only a local criterion that
may not be consistent with the densest global packing. How-
ever, it will be seen that the equivalence of the three prin-
ciple directions of a centrally symmetric Platonic solid is
crucial for this local optimization criterion to be consistent
with the globally densest packing.

It is noteworthy that orienting each of the particles in the
packings of centrally symmetric Platonic solids enables a
larger number of face-to-face contacts and thus allows the
maximal fraction of space covered by the particles within the

convex hull. For example, a particle with F faces possesses
F /2 families of axes that go through the centroid of the
particle and intersect the centrally symmetric face pairs such
that the particles �in the same orientation� with their cen-
troids arranged on these axes form face-to-face contacts.

The requirement that the particles have the same orienta-
tion is globally consistent with a lattice packing. Indeed, in
the optimal lattice packings of the centrally symmetric Pla-
tonic solids, each particle has the maximum number of face-
to-face contacts that could be obtained without violating the
impenetrability condition. It is highly unlikely that such par-
ticles possessing three equivalent principle directions and
aligned in the same direction could form a more complicated
nonlattice periodic packings with densities that are larger
than the optimal lattice packings. Such nonlattice packings
would arise to take advantage of the rotational degrees of
freedom. By requiring particle alignments, only translational
degrees of freedom remain and hence optimization over
these degrees of freedom would lead to the globally optimal
packings, which should be lattice packings. Constraining ro-
tational degrees of freedom in this way in a nonlattice pack-
ing would at best lead to a local optimum in density. This
conclusion is clearly supported by our simulations, which
use multiple-particle configurations in the fundamental cell
and only produce the optimal lattice packings.

In the aforementioned arguments, a key step that is diffi-
cult to prove is the observation that alignment of each of the
particles maximizes the number of face-to-face contacts and
thus the fraction of space covered by the particles within the
convex hull joining the centroids of the contacting neighbors
around a central polyhedron. A rigorous verification of this
step would lead to the consistency of the aforementioned
local and global optimization criteria.

It is noteworthy that in two dimensions, our local criterion
to achieve the optimal packings of centrally symmetric regu-
lar polygons �the two-dimensional counterparts of the cen-
trally symmetric Platonic solids� amounts to the identifica-
tion of optimal neighbor configurations with the maximal
edge-to-edge contacts per particle such that the convex hull

(b)(a) (c) (d)

FIG. 13. �Color online� Illustration of our conjecture concerning the optimal packings of centrally symmetric particles using two-
dimensional octagonal packings. It is shown how different particle orientations and arrangements affect the number of face-to-face contacts
and the area of the convex hulls joining the centers of the neighboring particles around a central one. �a� The octagons do not have the same
orientation and the number of face-to-face contacts is small. �b� The octagons are aligned with four contacts per particle to form a lattice
packing, but the area of the convex hull associated with the central particle is not minimized. �c� The octagons are aligned with six contacts
per particle to form a lattice packing, but although the area of the convex hull associated with the central particle is smaller than in �b�, it
is not minimized. �d� The octagons are aligned with six contacts per particle to form a lattice packing and the area of the convex hull
associated with the central particle is minimized and the packing density is maximized. This minimization corresponds to finding the
minimal circumscribing hexagon and therefore corresponds to the optimal lattice packing �41�.
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joining the centroids of the contacting neighbors is minimal.
This statement is rigorously true in two dimensions because
it is tantamount to a theorem due to Fejes Tóth �41�, which
states that the densest packing of a centrally symmetric par-
ticle in two dimensions can be obtained by circumscribing
the particle with the minimal centrally symmetric hexagon,
which of course tiles R2. Finding the minimal circumscribing
centrally symmetric hexagon is equivalent to finding the
minimal area convex hull joining the centroids of the six
contacting particles �the maximal number can be obtained in
two dimensions for centrally symmetric particles�. The fact
that local optimality is consistent with the global optimality
in two dimensions �e.g., a centrally symmetric hexagon can
always tessellate the space� does not hold in three dimen-
sions. Although we have presented a three-dimensional gen-
eralization of the Fejes Tóth theorem, by replacing the mini-
mal hexagon with the minimal convex-hull volume, as
pointed out before, it is extremely difficult to provide a rig-
orous proof for it.

Although Conjecture 1 applies to the centrally symmetric
Platonic solids, all of our arguments apply as well to each of
the centrally symmetric Archimedean solids. It cannot be
true for the truncated tetrahedron, which is the only noncen-
trally symmetric Archimedean solid. Specifically, it immedi-
ately follows from the results of Ref. �13� that a nonlattice
packing of truncated tetrahedra can be constructed based on
the primitive Welsh tessellation �i.e., by removing the small
regular tetrahedra� that possesses the density �=23 /24
=0.958 333. . ., which is appreciably larger than the optimal-
lattice-packing density of �max

L =0.680 921. . ., and contains
two particle centroids per fundamental cell. In fact, given
that the truncated tetrahedra cannot tile space, the density of
the primitive Welsh packing of truncated tetrahedra is so
large that it may be the optimal packing of such particles.
The lattice vectors of this periodic packing are given in Ap-
pendix C.

Since the arguments used to justify Conjecture 1 apply
equally well to the 12 centrally symmetric Archimedean sol-
ids, we are led to the following more general conjecture:

Conjecture 2. The densest packings of the centrally sym-
metric Platonic and Archimedean solids are given by their
corresponding optimal lattice packings.

The aforementioned arguments can also be extended to
the case of superballs, but here the local principle curvatures
at the contacting points should be sufficiently small so as to
maximize the fraction of space covered by the particles
within the convex hull joining the centroids of the neighbors.
The central symmetry and equivalence of the three principle
directions of superballs means that dense packings of such
objects are favored when the particles are aligned, which
again leads to consistency between local and global optimal-
ity. The fact that the optimal-lattice-packing densities of su-
perballs is relatively close to the upper-bound values, at least
around the sphere point, as well as results from previous
molecular dynamics simulations �17� also strongly suggest
that the densest packings of these particles are given by their
corresponding optimal lattice packings.

It is noteworthy that under the assumption that Conjecture
2 is valid, one has upper bounds that are the complete analog
of Eq. �14�, i.e.,

�max � min�vp

vc
�max

C ,1� , �25�

where vc is the volume of an appropriately chosen centrally
symmetric Platonic or Archimedean solid and �max

C is the
corresponding optimal density for such a solid, which ac-
cording to Conjecture 2 is the optimal lattice packing. This
bound will generally be sharper than bound �14� because the
reference optimal packing is less symmetric than the sphere.
For example, the conjectured bound �25� will be sharp for
slightly deformed Platonic and Archimedean solids or non-
spherical particles derived by smoothing the vertices, edges,
and faces of polyhedra.

Our work also naturally leads to another conjecture:
Conjecture 3. The optimal packing of any convex, con-

gruent polyhedron without central symmetry generally is not
a �Bravais� lattice packing.

In other words, the set of such polyhedra whose optimal
packing is not a lattice is overwhelmingly larger than the set
whose optimal packing is a lattice. We have seen that be-
cause the regular tetrahedron and truncated tetrahedron lack
central symmetry, dense packings of such objects favor face-
to-face contacts. Such orientations immediately eliminate the
possibility that lattice packings �in which particles must have
the same orientations� are optimal. Similarly, it is very plau-
sible that dense packings of most convex, congruent polyhe-
dra without central symmetry are facilitated by face-to-face
contacts and hence the optimal packings cannot be lattices.
For example, consider a square with one missing corner, i.e.,
an isosceles triangle with a right angle �see Fig. 14�. At first
glance, one might surmise that if the missing piece is suffi-
ciently small, the original lattice packing should still be op-

(b)(a)

FIG. 14. �Color online� Portions of two packing configurations
of pentagons obtained by cutting off a corner �isosceles triangle
with a right angle� of a square. �a� The optimal lattice packing and
�b� a two-particle basis periodic packing that tiles the plane. Let
side length of the square be 1 and the lengths of the equal sides of
the isosceles triangle be �� �0,1�. The lattice vectors of the opti-
mal lattice packing are e1

L= i− �
2 j and e2

L= �1− �
2 �i+ �1−��j and the

lattice vectors of the periodic packing are e1
P= i+�j and e2

P= �1
−��i+ �2−��j with one particle at origin and the other at b1= �1
−��i+ �1−��j, where i , j are the unit vectors along the two orthogo-
nal coordinate directions coinciding with two orthogonal sides of
the square. The density �covering fraction� of the optimal lattice
packing is �max

L = �1−�2 /2� / �1−�2 /4� and the density of the peri-
odic packing is �max

P =1. It can be seen that for all 0���1, �max
L is

always smaller than �max
P .
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timal or nearly optimal �see Fig. 14�a��, since lattice pack-
ings are optimal for squares. However, no matter how small
the missing piece may be, a periodic packing in which the
fundamental cell contains two pentagons can be constructed
that tile the plane �see Fig. 14�b��. This is done by taking
advantage of the asymmetry of the particle. Thus, we see
from this counterintuitive example that if the particle does
not possess central symmetry, it is possible to exploit its
rotational degrees of freedom to yield a periodic packing
with a complex basis that are generally denser than the op-
timal lattice packing. On the other hand, there are special
cases where the lattice will be optimal, such as for the rhom-
bic dodecahedron that has one corner clipped �42�. However,
these special cases are overwhelmed in number by those
whose optimal packings are not lattices. If Conjecture 3 is
valid, it also applies to nonspherical particles derived by
smoothing the vertices, edges, and faces of polyhedra pro-
vided that the particle curvature at face-to-face contacts is
sufficiently small.

It should not go unnoticed that the densest packings of all
of the Platonic and Archimedean solids reported here as well
as the densest known packings of superballs �17� and ellip-
soids �12� have densities that exceed the optimal sphere
packing density �max

S =� /�18=0.7408. . .. These results are
consistent with a conjecture of Ulam who proposed, without
any justification, that the optimal density for packing congru-
ent spheres is smaller than that for any other convex body
�43�. The sphere is perfectly isotropic with an asphericity 	
of unity, and therefore, as noted earlier, its rotational degrees
of freedom are irrelevant in affecting its packing character-
istics. On the other hand, each of the aforementioned convex
nonspherical particles breaks the continuous rotational sym-
metry of the sphere and thus its broken symmetry can be
exploited to yield the densest possible packings. However,
broken rotational symmetry in and of itself may not be suf-
ficient to satisfy Ulam’s conjecture if the convex particle has
little or no symmetry.

It will also be interesting to determine whether our con-
jecture can be extended to other polyhedral packings. The
infinite families of prisms and antiprisms �44� provide such a
class of packings. A prism is a polyhedron having bases that
are parallel, congruent polygons and sides that are parallelo-
grams. An antiprism is a polyhedron having bases that are
parallel, congruent polygons and sides that are alternating
bands of triangles. Prisms with an even number of sides and
antiprisms are centrally symmetric. Although prisms and an-
tiprisms are naturally grouped with the Archimedean solids
�i.e., they are polyhedra in which the same regular polygons
appear at each vertex�, they are generally much less symmet-
ric than either the Platonic or Archimedean solids. Moreover,
even the centrally symmetric prisms and antiprisms generally
do not possess three equivalent directions. Thus, it is less
obvious whether Bravais lattices would still provide the op-
timal packings for these solids, except for prisms that tile
space �e.g., hexagonal prism or rhombical prisms�. In future
work, it would be desirable to test whether our conjecture
extends to prisms and antiprisms that possess central sym-
metry and three equivalent directions using the ASC scheme.

It is worth noting that in four dimensions, the analogs of
the tetrahedron, cube, octahedron, dodecahedron, and icosa-

hedron are the four-dimensional regular simplex, hypercube,
cross polytope, 120-cell and 600-cell, respectively. All of
these four-dimensional polytopes possess central symmetry,
except for the simplex �45�. While the hypercube and cross
polytope tile R4, the optimal packings of simplices are still
likely to be nonlattices. Since our conjecture for the three-
dimensional Platonic solids should still apply in four dimen-
sions, the densest packings of the 120-cell and 600-cell could
be their corresponding optimal lattice packings. The cross
polytopes for d�5 no longer tile space and their optimal
packings may still be their densest lattice packings provided
that d is sufficiently small. However, in sufficiently high di-
mensions, the densest lattice packings of the centrally sym-
metric polytopes are probably no longer optimal, since lattice
packings in high dimensions are known to possess huge
“holes” into which additional particles can be inserted yield-
ing higher packing densities with possibly nonlattice ar-
rangements. Indeed, it has recently been argued that disor-
dered sphere packings in very high dimensions could be
denser than any ordered packing �46�.

Recent progress in particle synthesis methods has enabled
the production of a wide spectrum of nanoparticle shapes
such as tetrahedra �47�, cubes �48�, icosahedra �49�, and
prisms �50�. In such applications, it would be of great inter-
est to predict the corresponding crystal structures, which
might possess unusual symmetries and properties. The idea
of incorporating collective particle motions due to the adap-
tive fundamental cell should still make it efficient to search
the desired crystal structures formed by those polyhedral
nano-building blocks. Finally, it is worth noting that the ASC
algorithm is also suitable to generate random packings of
polyhedral particles. Crucial dynamical parameters of the
system such as the strain rate can be properly controlled to
produce packings with varying degrees of disorder including
the maximally random jammed ones �51�. We will explore
disordered packings in future work.
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APPENDIX A: OPTIMAL LATTICE PACKINGS OF
THE PLATONIC AND ARCHIMEDEAN SOLIDS

Here we collect fundamental packing characteristics �i.e.,
the lattice vectors, densities, and contact numbers� of the
optimal lattice packings of the Platonic and Archimedean
solids, most of which are obtained from Refs. �27,28,34�.
The Platonic solids are explicitly defined as the regions �sets
of points� bounded by a set of linear equations of the coor-
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dinates. The Archimedean solids are either defined as inter-
sections of different Platonic solids or delineated based on
their symmetry. A point set S representing the polyhedron
multiplied by a number � means an isotropic expansion of
the polyhedron S with linear ratio �. S1�S2 represents the
intersection region of two polyhedra S1 and S2. The lattice
vectors are given by column vectors �i.e., the basis vectors
are the unit vectors along the coordinate axis�. The naming
code used below for the Platonic and Archimedean solids is
the same one used in Figs. 1 and 3.

A tetrahedron �P1� has four vertices, six edges, and four
triangular faces. It is defined as the region

P1 = �x � R3:x1 + x2 + x3 � 1,− x1 − x2 + x3 � 1,− x1 + x2

− x3 � 1,x1 − x2 − x3 � 1� . �A1�

The optimal lattice vectors are given by

a1 = �2,− 1/3,− 1/3�T, a2 = �− 1/3,2,− 1/3�T,

a3 = �− 1/3,− 1/3,2�T, �A2�

where the superscript “T” denotes transpose of a column
vector. Each tetrahedron of the packing contacts 14 others.
The packing density is �max

L =18 /49=0.367 346. . ..
An icosahedron �P2� has 12 vertices, 30 edges, and 20

triangular faces. It is defined as the region

P2 = �x � R3:x1 + x2 + x3 � 1, �x1 + x3/� � 1, �x2

+ x1/� � 1, �x3 + x2/� � 1� , �A3�

where �= �1+�5� /2 is the golden ratio. The lattice vectors
are given by

a1�x̄� =
2

�1 + ����− 33/8 − 39�5/8�x̄2 + �39/4 + 33�5/4�x̄ − 11/4 − 3�5/2
�− 1/4 − �5/4�x̄ + 1 + �5/2

�33/8 + 39�5/8�x̄2 + �− 19/2 − 8�5�x̄ + 13/4 + 3�5/2
� ,

a2�x̄� =
2

�1 + ����− 39/8 − 33�5/40�x̄2 + �35/4 + 41�5/20�x̄ − 5/2 − 23�5/20

�5/4 + �5/4�x̄ − 1 − �5/2
�− 39/8 − 33�5/40�x̄2 + �15/2 + 9�5/5�x̄ − 3�5/20

� ,

a3��x̄�� =
2

�1 + ����3/2 + �5/2�x̄ − 2 − �5

x̄

0
� , �A4�

where x̄� �1,2� is the unique root of the polynomial

1086x3 − �1063 + 113�5�x2 + �15�5 + 43�x + 102 + 44�5 = 0.

�A5�

It is found that x̄=1.591 603 01. . . and therefore the lattice
vectors, up to nine significant figures, are given by

a1 = �0.711 782 425,0.830 400 102,1.075 851 46�T,

a2 = �− 0.871 627 249,0.761 202 911,0.985 203 828�T,

a3 = �− 0.069 197 91,1.591 603 01,0�T. �A6�

Each icosahedron of the packing contacts 12 others. The
packing density is �max

L =0.836 357. . .
A dodecahedron �P3� has 20 vertices, 30 edges, and 12

pentagonal faces. It is defined as the region

P3 = �x � R3:�x1 + x2 � 1, �x2 + x3 � 1, �x3 + x1

� 1� . �A7�

The optimal lattice vectors are given by

a1 = �2/�1 + ��,2/�1 + ��,0�T,

a2 = �2/�1 + ��,0,2/�1 + ���T,

a3 = �0,2/�1 + ��,2/�1 + ���T. �A8�

Each dodecahedron of the packing contacts 12 others. The
packing density is �max

L = �2+�� /4=0.904 508. . ..
An octahedron �P4� has 6 vertices, 12 edges, and 8 trian-

gular faces. It is defined as the region

P4 = �x � R3:x1 + x2 + x3 � 1� . �A9�

The optimal lattice vectors are given by

DENSE PACKINGS OF POLYHEDRA: PLATONIC AND… PHYSICAL REVIEW E 80, 041104 �2009�

041104-17



a1 = �2/3,1,1/3�T, a2 = �− 1/3,− 2/3,1�T,

a3 = �− 1,1/3,− 2/3�T. �A10�

Each octahedron of the packing contacts 14 others. The
packing density is �max

L =18 /19=0.947 368. . ..
A cube �P5� has 8 vertices, 12 edges, and 6 square faces.

It is defined as the region

P5 = �x � R3:xi � 1� . �A11�

The optimal lattice vectors are given by

a1 = �2,0,0�T, a2 = �0,2,0�T, a3 = �0,0,2�T.

�A12�

Each cube of the packing contacts 26 others �which includes
vertex-to-vertex contacts�. The packing density is �max

L =1.
A truncated tetrahedron �A1� has 12 vertices, 18 edges,

and 8 faces: four hexagons and four triangles. It is defined as
the region

A1 = �x � R3:x � 5 · P1 � − 3 · P1� . �A13�

The optimal lattice vectors are given by

a1 = �4/3,4,8/3�T, a2 = �4,− 8/3,− 4/3�T,

a3 = �− 8/3,4/3,− 4�T. �A14�

Each truncated tetrahedron of the packing contacts 14 others.
The packing density is �max

L =207 /304=0.680 921. . ..
A truncated icosahedron �A2� has 60 vertices, 90 edges,

and 32 faces: 20 hexagons and 12 pentagons. It is defined as
the region

A2 = �x � R3:x � �1 + �� · P2 � �4/3 + �� · P3� .

�A15�

The optimal lattice vectors are given by

a1 = �1 + ��a1
P2, a2 = �1 + ��a2

P2, a3 = �1 + ��a3
P2,

�A16�

where ai
P2 �i=1,2 ,3� are the lattice vectors of the optimal

lattice packing of icosahedra. Each truncated icosahedron of
the packing contacts 12 others. The packing density is �max

L

=0.784 987. . .
A snub cube �A3� has 24 vertices, 60 edges, and 38 faces:

six squares and 32 triangles. Let the snub cube be orientated
in a way such that its six square faces lie in the hyperplanes

�x � R3:xi = 1�i = 1,2,3�� . �A17�

The optimal lattice vectors are given by

a1 = �2,0,0�T, a2 = �0,0,2�T, a3 = �1,2/y� − 2,− 1�T,

�A18�

where y� is the unique real solution of y3+y2+y=1. Each
snub cube of the packing contacts 12 others. The packing
density is �max

L =0.787 699. . .
A snub dodecahedron �A4� has 60 vertices, 150 edges,

and 92 faces: 12 pentagons and 80 triangles. Let the snub
dodecahedron be orientated in a way such that its 12 pen-
tagonal faces lie in the hyperplanes of the faces of the

dodecahedron �1+�� ·P3. The optimal lattice vectors are
given by

a1 = �2,2,0�T, a2 = �2,0,2�T, a3 = �0,2,2�T.

�A19�

Each snub dodecahedron of the packing contacts 12 others.
The packing density is �max

L =0.788 640. . .
A rhombicosidodecahedron �A5� �also known as small

rhombicosidodecahedron� has 60 vertices, 120 edges, and 62
faces: 12 pentagons, 30 squares, and 20 triangles. It is de-
fined as the region

A5 = �x � R3:x � �3� + 2� · �P5 � �1 + �2�P4� � �4�

+ 1� · P2 � �3 + 3�� · P3� . �A20�

The optimal lattice vectors are given by

a1 = ��� − 1�/�2� + 1�,7,�9� + 4�/�2� + 1��T,

a2 = ��9� + 4�/�2� + 1�,�� − 1�/�2� + 1�,7�T,

a3 = �7,�9� + 4�/�2� + 1�,�� − 1�/�2� + 1��T.

�A21�

Each rhombicosidodecahedron of the packing contacts 12
others. The packing density is �max

L = �8�+46� / �36�+15�
=0.804 708. . ..

A truncated icosidodecahedron �A6� �also known as great
rhombicosidodecahedron� has 120 vertices, 180 edges, and
62 faces: 12 decagons, 20 hexagons, and 30 squares. It is
defined as the region

A6 = �x � R3:x � �5� + 4� · �P5 � �1 + �2�P4� � �6�

+ 3� · P2 � �5 + 5�� · P3� . �A22�

The optimal lattice vectors are given by

a1 = �10,10,0�T, a2 = �10,0,10�T, a3 = �0,10,10�T.

�A23�

Each truncated icosidodecahedron of the packing contacts 12
others. The packing density is �max

L = �2� /5+9 /50�
=0.827 213. . ..

A truncated cubeoctahedron �A7� �also known as great
rhombicubeoctahedron� has 48 vertices, 72 edges, and 26
faces: 6 octagons, 8 hexagons, and 12 squares. It is defined
as the region

A7 = �x � R3:x1 + x2 � �2 + 3�2�, x2 + x3 � �2

+ 3�2�, x2 + x3 � �2 + 3�2�,x � �2�2

+ 1� · P5 � �3�2 + 3� · P4� . �A24�

The optimal lattice vectors are given by

a1 = �4�2 + 2,− 4�2 − 1 + 2�,4�2 + 1 − 2��T,

a2 = ��2/2 − 3/2 + �,− 3�2/2 + 1/2 + �,4�2 + 2�T,
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a3 = �7/2 + 7�2/2 − �,1 + 2�,5�2/2 + 3/2 − ��T,

�A25�

where �=�33��2+1� /6. Each truncated cubeoctahedron of
the packing contacts 12 others. The packing density is �max

L

=0.849 373 2. . ..
An icosidodecahedron �A8� has 30 vertices, 60 edges, and

32 faces: 12 pentagons and 20 triangles. It is defined as the
region

A8 = �x � R3:x � P2 � P3� . �A26�

The optimal lattice vectors are given by

a1 = �2/�1 + ��,2/�1 + ��,0�T,

a2 = �2/�1 + ��,0,2/�1 + ���T,

a3 = �0,2/�1 + ��,2/�1 + ���T. �A27�

Each icosidodecahedron of the packing contacts 12 others.
The packing density is �max

L = �14+17�� /48=0.864 720. . ..
A rhombicuboctahedron �A9� �also known as small rhom-

bicubeoctahedron� has 24 vertices, 48 edges, and 26 faces:
18 squares and 8 triangles. It is defined as the region

A9 = �x � R3:x1 + x2 � 2, x2 + x3 � 2, x1 + x3 � 2,x

� �2 · P5 � �4 − �2� · P4� . �A28�

The optimal lattice vectors are given by

a1 = �2,2,0�T, a2 = �2,0,2�T, a3 = �0,2,2�T.

�A29�

Each truncated cubeoctahedron of the packing contacts 12
others. The packing density is �max

L = �16�2−20� /3
=0.875 805. . ..

A truncated dodecahedron �A10� has 60 vertices, 90
edges, and 32 faces: 12 decagons and 20 triangles. It is de-
fined as the region

A10 = �x � �1 + �� · P3 � ��7 + 12��/�3 + 4��� · P2� .

�A30�

The optimal lattice vectors are given by

a1 = �2,2,0�T, a2 = �2,0,2�T, a3 = �0,2,2�T.

�A31�

Each truncated dodecahedron of the packing contacts 12 oth-
ers. The packing density is �max

L = �5�+16� / �24�−12�
=0.897 787. . ..

A cuboctahedron �A11� has 12 vertices, 24 edges, and 14

faces: six squares and eight triangles. It is defined as the
region

A11 = �x � P5 � 2 · P4� . �A32�

The optimal lattice vectors are given by

a1 = �2,− 1/3,− 1/3�T, a2 = �− 1/3,2,− 1/3�T,

a3 = �− 1/3,− 1/3,2�T. �A33�

Each cuboctahedron of the packing contacts 14 others. The
packing density is �max

L =45 /49=0.918 367. . ..
A truncated cube �A12� has 24 vertices, 36 edges, and 14

faces: six octagons and eight triangles. It is defined as the
region

A12 = �x � P5 � �1 + �2� · P4� . �A34�

The optimal lattice vectors are given by

a1 = �2,− 2�,0�T, a2 = �0,2,− 2��T, a3 = �− 2�,0,2�T,

�A35�

where �= �2−�2� /3. Each truncated cube of the packing
contacts 14 others. The packing density is �max

L =9 / �5
+3�2�=0.973 747. . ..

A truncated octahedron �A13� has 24 vertices, 36 edges,
and 14 faces: eight hexagons and six squares. It is defined as
the region

A13 = �x � P5 � �3/2� · P4� . �A36�

The optimal lattice vectors are given by

a1 = �2,0,0�T, a2 = �2,2,0�T, a3 = �1,1,− 1�T.

�A37�

Each truncated octahedron of the packing contacts 14 others.
The packing density is �max

L =1.

APPENDIX B: LATTICE VECTORS AND OTHER
CHARACTERISTICS OF THE DENSEST

KNOWN TETRAHEDRAL PACKING

Here we report the lattice vectors of fundamental cell for
the densest known tetrahedral packing with 314 particles up
to 12 significant figures, although our numerical precision is
not limited by that. The side length of the tetrahedron is d0
=1.8 and its volume is vp=�2d0

3 /12=0.687 307 791 313.
The lattice vectors are given by

a1 = �6.130 348 985 438,− 1.714 011 427 194,0.022 462 185 673�T,

a2 = �1.622 187 720 300,6.106 123 418 234,0.123 567 805 838�T,

a3 = �0.055 014 355 972,0.116 436 714 923,6.526 427 521 512�T. �B1�
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The volume of the fundamental cell is Vol�F�= a1
a2 ·a3
=262.344 828 467 328. Thus, the packing density is readily
computed as

� =
Nvp

Vol�F�
=

314 
 0.687 307 791 313

262.344 828 467 328

= 0.822 637 319 490. �B2�

The coordinates of each of the 314 tetrahedra are given else-
where �37�.

APPENDIX C: LATTICE VECTORS OF THE DENSEST
KNOWN PACKING OF TRUNCATED TETRAHEDRA

The primitive Welsh tessellation of space consists of trun-
cated large regular tetrahedra and small regular tetrahedra as

described in Ref. �13�. When the small tetrahedra are re-
moved, the remaining truncated tetrahedra give the densest
known periodic �nonlattice� packing of such objects. Follow-
ing Ref. �13�, the centroids of the truncated tetrahedra sit at
the nodes 0 and 1 of the two adjacent cells of a body-
centered-cubic lattice shown in Fig. 2�a� of Ref. �13�. Let
length of the edges of the truncated tetrahedron be dE
=�2 /2, then the lattice vectors are given by

a1 = �1,1,0�T, a2 = �1,0,1�T, a3 = �0,1,1�T. �C1�

The basis vectors for the centroids of 0-type and 1-type trun-
cated tetrahedra are, respectively, given by

b0 = �1/2,1/2,1/2�T, b1 = �0,0,0�T. �C2�
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