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The site percolation threshold for the random Voronoi network is determined numerically, with the result
pc=0.714 10�0.000 02, using Monte Carlo simulation on periodic systems of up to 40 000 sites. The result is
very close to the recent theoretical estimate pc�0.7151 of Neher et al. For the bond threshold on the Voronoi
network, we find pc=0.666 931�0.000 005 implying that, for its dual, the Delaunay triangulation pc

=0.333 069�0.000 005. These results rule out the conjecture by Hsu and Huang that the bond thresholds are
2/3 and 1/3, respectively, but support the conjecture of Wierman that, for fully triangulated lattices other than
the regular triangular lattice, the bond threshold is less than 2 sin � /18�0.3473.
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I. INTRODUCTION

The Voronoi diagram �1� for a given set of points on a
plane �Fig. 1� is simple to define. Given some set of points P
on a plane R2, the Voronoi diagram divides the plane R2 into
polygons, each containing exactly one member of P. Each
point’s polygon cordons off the portion of R2 that is closer to
that point than to any other member of P. More precisely, the
Voronoi polygon around pi� P contains all locations on R2

that are closer to pi than to any other element of P. The total
Voronoi diagram is the set of all the Voronoi polygons for P
on R2; the Voronoi network is the set of vertices and edges of
the Voronoi diagram.

The dual to the Voronoi diagram is interesting in its own
right. Known as the Delaunay triangulation �2� �see Fig. 2�, it
can be defined independent of the Voronoi diagram for the
same set of points P on R2: it is simply the set of all possible
triangles formed from triples chosen out of P whose circum-
scribed circles do not contain any other members of P �Fig.
3�. The Delaunay triangulation and the Voronoi diagram for
the same set of points can be seen in Fig. 4. Note that, while
the members of P are sites in the Delaunay triangulation,
they are not sites in the Voronoi network, whose sites are the
vertices of the polygons; also note that the edges of the
Voronoi diagram lie along the perpendicular bisectors of the
edges of the Delaunay triangulation—however, the edges of
the Voronoi diagram do not always intersect the edges of the
Delaunay triangulation, as seen in Fig. 4. The Delaunay tri-
angulation represents the connectivity of the Voronoi tessel-
lation of the surface.

There are many algorithms for constructing these net-
works. The fastest ones run in O�n log n� time for general
distributions of points �3–6�, where n is the number of gen-
erating sites, and this has been proven to be the optimal
worst-case performance �4�. For a Poisson distribution of

points on the plane, there are many O�n� expected-time al-
gorithms �7–10�.

In addition to being theoretically interesting �11–15�, both
the Voronoi diagram and the Delaunay triangulation are
widely used in modeling and analyzing physical systems.
They have seen use in lattice field theory and gauge theories
�16�, analyzing molecular dynamics of glassy liquids �17�,
detecting galaxy clusters �18�, modeling the atomic structure
and folding of proteins �19,20�, modeling plant ecosystems
and plant epidemiology �21�, solving wireless signal routing
problems �22,23�, assisting with peer-to-peer network con-
struction �24�, the finite-element method of solving differen-
tial equations �25�, game theory �26,27�, modeling fragmen-
tation �28�, and numerous other areas �29,30�.

Percolation theory is used to describe a wide variety of
natural phenomena �31,32�. In the nearly 70 years since the
first papers on percolation appeared �33,34�, it has become a
paradigmatic example of a continuous phase transition. For
a given network, finding the critical probability pc at which
the percolation transition occurs is a problem of particular
interest. pc has been found analytically for certain two-
dimensional networks �35–37�; however, most networks re-
main analytically intractable. Numerical methods have been
used to find pc for many such networks, e.g., �31,38–43�.

In this paper we consider the percolation thresholds of the
Voronoi and the Delaunay networks for a Poisson distribu-
tion of generating points, as represented in Figs. 1, 2, and 4.
There are four percolation thresholds related to these two
networks: the site and the bond percolation on each. Being a
fully triangulated network, the site percolation threshold of
the Delaunay network is exactly pc

site,Del= 1
2 �35,44–46�. This

result has recently been proven rigorously by Bollobás and
Riordan �47�. Somewhat surprisingly, a search of the litera-
ture revealed no prior calculation of the site percolation
threshold of the Voronoi network at all, despite the wide-
spread use of such networks. A prediction for its value has
recently been made by Neher et al. �48�; they use an empiri-
cal formula to predict pc

site,Vor=0.7151, but they too were
unable to find any previous calculation of this value, either
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analytically or numerically. �There are places in the literature
�e.g., �29�� where the Voronoi “site” threshold is listed as 1/2.
This is true if the sites are taken to be the generating points
from which the diagram is created, rather than the vertices of
the diagram. Thus, this is actually the Voronoi tiling thresh-
old, i.e. the percolation threshold of the Voronoi polygons,
which is in turn equivalent to the Delaunay site threshold,
well known to be 1/2.�

The bond thresholds of the Voronoi and Delaunay
networks are complementary,

pc
bond,Vor = 1 − pc

bond,Del, �1�

because these networks are dual to one another �49�. The first
numerical measurement of the bond threshold for either net-
work seems to be that of Jerauld et al. �50�, who in 1984
found pc

bond,Del=0.332. Shortly thereafter, Yuge and Hori �51�
performed a renormalization-group calculation which
yielded pc

bond,Del=0.3229. In 1999, Hsu and Huang �52�
found pc

bond,Del=0.3333�1� and pc
bond,Vor=0.6670�1� through

Monte Carlo methods. �The numbers in parentheses repre-

sent the errors in the last digits.� These values led them to
make the intriguing conjecture that the thresholds are exactly
1/3 and 2/3, respectively. There is, however, no known the-
oretical reason to believe that this conjecture is true. In order
to test this conjecture, and to find the site percolation thresh-
old of the Voronoi network, we have carried out extensive
numerical simulations, as detailed below. In Sec. II, we de-
scribe our methods, and in Sec. III we discuss our results and
compare them to the thresholds of several related lattices and
also discuss the covering graph and further generalizations of
the Voronoi system. Conclusions are given in Sec. IV.

II. GENERATING ALGORITHMS
AND ANALYSIS TECHNIQUES

A. Delaunay-Voronoi generation algorithm

In order to avoid edge effects in the networks when grow-
ing percolation clusters, and to make it possible to use more
sites as seeds for those clusters �see Sec. II B�, we wished to
create Voronoi and Delaunay networks with periodic bound-

FIG. 1. Voronoi diagram with a Poisson distribution of generat-
ing points.

FIG. 2. Delaunay triangulation for the same set of generating
points as in Fig. 1. The generating points become the vertices in this
network.

FIG. 3. The Delaunay triangulation for a set of five points, along
with the associated circumcircles.

FIG. 4. The Delaunay triangulation �dotted lines� superposed on
the Voronoi diagram �solid lines�, its dual graph, for a set of
Poisson-distributed generating points.
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ary conditions. While popular fast algorithms for generating
Voronoi and Delaunay networks exist, most notably the
Quickhull algorithm �53�, these do not generally support pe-
riodic boundary conditions. We therefore created our own
fairly straightforward algorithm for generating the desired
networks. After coming up with it independently, we later
found that it falls into the class of expected-linear-time algo-
rithms known as Incremental Search �8�. The basic outline of
the algorithm is as follows:

�1� Divide the region in which the generating points �ver-
tices of the Delaunay triangulation� are located into squares
of equal size �“bins”�.

�2� Find a single Delaunay edge by picking a point at
random and searching through its bin and neighboring bins
to find the point which is its nearest neighbor.

�3� Given a Delaunay edge and a “side” to look on �im-
mediately above or below the edge�, determine the third
point in the Delaunay triangle by looking at the radii of the
circumcircles of the triangles formed by that edge with each
point in its bin and all of the neighboring bins.

�4� Look at the other Delaunay triangles that have been
found in that bin and neighboring bins to make sure this new
triangle is not a duplicate of one that has already been found.
If it is not, find which of its neighbors have already been
discovered and mark them as its neighbors, and vice versa.

�5� From the list of neighbors of the current triangle, fig-
ure out which of its edges are not already shared with neigh-
bors �if any�, and—if there are any unshared edges—whether
the missing neighbor should be above or below the edge.

�6� Repeat steps �3�–�5� until there are no unprocessed
edges left, at which point the Delaunay triangulation is fin-
ished. Because the neighbors of each triangle are known, this
algorithm also yields an adjacency list of the sites on the
Voronoi diagram �because the Voronoi diagram is dual to the
Delaunay triangulation�.

This algorithm is significantly easier to implement with
periodic boundary conditions, because every triangle is guar-
anteed to have exactly three neighbors. Furthermore, the im-
position of periodic boundary conditions also gives the De-
launay and Voronoi networks a very useful property: there
are always exactly twice as many Delaunay triangles
�Voronoi sites� as there are generating points �vertices of the
Delaunay network or polygons in the Voronoi network� for a
given diagram. This is a consequence of the more general
fact that the number of faces �triangles� must be double the
number of vertices �sites� for any fully triangulated network
with doubly periodic boundary conditions in two dimen-
sions. This fact follows from Euler’s formula and is proven
in the Appendix. This simple relation makes it easier to spot
certain kinds of errors in the code, because improperly writ-
ten code is rather unlikely to consistently produce the proper
number of sites for the given number of generating points.
Using this algorithm, we generated thousands of Voronoi dia-
grams of 40 000 sites each. Figure 5 shows an example of a
smaller Delaunay triangulation created with this algorithm.

B. Percolation cluster growth and finding pc

The Leath-type epidemic growth method �54� that we
used involves growing a large number of percolation clusters

in order to find pc. For site percolation clusters, we start with
a seed site somewhere on the network. Each of its neighbors
is turned on with probability p or off with probability 1− p.
Neighbors of active sites are then visited and the procedure is
repeated for all their previously unvisited neighbors; the
cluster either dies out naturally or is stopped by the program
when it hits a cutoff size of 1000 sites. For bond percolation
clusters, an analogous algorithm is used in which sites are
simply never turned off, as it is the bonds between sites that
are pertinent.

Due to the fact that our Voronoi diagrams are finite and
are generated from a random Poisson distribution of points,
each diagram yields a slightly different effective value of pc;
therefore, we had to generate many diagrams. This could
have been very computationally expensive, but the choice of
periodic boundary conditions helped here as well. Because
there are no edges to the diagrams, we were able to place the
seed point for a cluster at any site on a diagram, rather than
being limited to a small subset of sites near the center. This
meant that we were able to use many widely separated seed
points to grow clusters on each diagram, which reduced the
impact of each seed point’s immediate neighborhood upon
the value of pc obtained for each diagram. This, in turn,
dramatically reduced the number of distinct diagrams we
needed to obtain a particular level of precision. Specifically,
we grew 8�105 clusters of up to 1000 sites on each of 800
diagrams, for a total of 6.4�108 clusters grown at each
value of p. We then repeated this process at each of various
p near pc to generate the plots in the next section. Finally,
this process was done twice—once for site percolation and
once for bond percolation, both on the Voronoi network.

Because the percolation clusters are cut off before they
can become large enough to wrap around the network, the
clusters effectively see the diagram as infinite in size. Thus,
their size distribution can be used to obtain an unbiased es-
timate of Ps, the probability that a percolation cluster will
grow to be at least size s �for s�1000� on an infinite net-

FIG. 5. �Color online� A Delaunay triangulation with periodic
boundary conditions �i.e., on a torus�, created from n=300 generat-
ing points. Because the surface has periodic boundary conditions,
there are exactly 2n=600 triangles here. Note the corresponding
shapes of the outline on opposite edges, because this diagram has
been “unrolled” from a torus.
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work. At the critical threshold pc, Ps�s2−� as s→�, where
�=187 /91 for the two-dimensional percolation cluster uni-
versality class �31�. �It is expected that the critical exponents
here are the same as for regular two-dimensional lattices.� In
the scaling region, where s is large and p− pc is small such
that s��p− pc� is constant �with �=36 /91�, Ps behaves as

Ps � As2−�f�B�p − pc�s�� , �2�

where A and B are nonuniversal metric constants specific to
the system being considered and f�x� is a universal scaling
function analytic about x=0. If we operate close to pc such
that B�p− pc�s�	1, then we can make a Taylor-series expan-
sion of f�x� to find

Ps � s2−��A + D�p − pc�s� + ¯� , �3�

where D is another constant. Thus, plotting Cs� Ps s�−2 vs
s� should yield a straight line at large s when p is near pc,
and that line will have a slope of zero when p= pc. Figure 6
shows several such plots for site percolation clusters on the
Voronoi network, and Fig. 7 shows several plots for bond
percolation clusters on the same �see also Fig. 8�. Cs does

indeed approach a linear function for large s in these plots,
albeit far more quickly for bond percolation than for site
percolation, with pc

site,Vor�0.7141 and pc
bond,Vor�0.66693.

Unfortunately, for smaller s there are deviations in Cs due
to finite-size effects, and these are quite apparent for site
percolation, even at the largest values of s that we were able
to investigate. Exactly at pc, one expects

Ps � s2−��A + Es−
 + ¯� �4�

as s→�, where E is a constant and 
�0.6–0.8 is the
correction-to-scaling exponent �55�. Similar deviations
should occur when p is close to pc. In the case of site per-
colation on the Voronoi network, these finite-size effects
make it difficult to determine when Cs has a truly horizontal
asymptote; thus, it is not possible to use the above method to
find pc

site,Vor to much greater precision than four digits when
s�1000.

The most straightforward way to solve this problem
would be to grow larger site percolation clusters, using a
larger system to insure that wrap around does not occur.
However, because of the computational time that would be
required to do that, we instead used a more sensitive method
to find pc that takes the finite-size corrections in Eq. �4� into
account.

Equation �4� implies that, at pc, Cs−Cs/2=E�1−2
�s−
 to
leading order. This means that it is possible to estimate 

directly from �55�


s
est = − log2� Cs − Cs/2

Cs/2 − Cs/4
	 . �5�

Thus, in the regime where s is small enough that the finite-
size effects of Eq. �4� matter, yet large enough that higher-
order corrections are unimportant, 
s

est should approach a
constant 
 when p= pc. When p�pc, there will be devia-
tions due to scaling. Plots of 
s

est vs ln s for several values of
p can be seen in Fig. 9; these yield the result for pc

site,Vor

found in the following section.

FIG. 6. �Color online� Epidemic site percolation cluster growth
on the Voronoi diagram, for p=0.714 07, 0.714 09, 0.714 11, and
0.714 13, from bottom to top on the right.

FIG. 7. �Color online� Epidemic bond percolation cluster growth
on the Voronoi diagram, for p=0.666 91, 0.666 93, 0.666 95,
0.666 97, and 0.666 99, from bottom to top on the right. Note that
these plots approach their linear asymptotes far more rapidly than
those for site percolation clusters, as in Fig. 6; also note the differ-
ence in the vertical scale between the two figures.

FIG. 8. �Color online� A zoomed-in portion of Fig. 7. The de-
viations from the horizontal in the asymptotes for each curve can be
seen more clearly here. �The y-axis values are given from a refer-
ence of Cs=1.058�. The least-squares linear fits for the curves are
also on this plot.

ADAM M. BECKER AND ROBERT M. ZIFF PHYSICAL REVIEW E 80, 041101 �2009�

041101-4



III. RESULTS AND COMPARISON
WITH RELATED LATTICES

A. pc for site and bond percolation on the Voronoi diagram

Examining Fig. 9, it can be seen that 
s
est approaches a

constant for large s for p�0.71409–0.71411, and we
conclude

pc
site,Vor = 0.71410 � 0.00002, �6�

where the error bars are meant to indicate one standard de-
viation of error. This plot also gives us a rough value of 0.65
for 
—close to the value of 
 found for the Penrose rhomb
quasilattice �55�.

We used the method of plotting Cs� Ps s�−2 vs s�, out-
lined in the previous section, to find the bond percolation
threshold of the Voronoi diagram. Taking the results shown
in Figs. 7 and 8, we see immediately that pc

bond,Vor

�0.666 93. Because finite-size effects were not significant
for bond percolation, we were able to find excellent least-
squares linear fits to the asymptotic portions of the curves in
Fig. 8. By plotting the slopes of these lines against the values
of p used �see Fig. 10�, we were able to solve for the value of

p that would yield a slope of zero; this should be pc. This
technique yielded a more accurate estimate,

pc
bond,Vor = 0.666 931 � 0.000 005, �7�

which by Eq. �1� implies pc
bond,Del=0.333 069�0.000 005.

We considered various contributions to the stated error. First
of all, it is unclear precisely where the linear regime begins
in Fig. 8, and this leads to some uncertainty in the slopes we
measured from the best-fit lines. Statistical effects of course
are a source of error. However, a somewhat larger source of
uncertainty turned out to be the error involved in reusing the
same diagram multiple times during cluster growth—even
with different seed points, there is a distinct likelihood that
the same part of the nonuniform diagram will be sampled. To
estimate this error, we considered our usual runs of 800 000
samples on ten different diagrams at p=0.666 931 and
looked at the variation in the curves of Cs vs s� �Fig. 11�. In
contrast, we also looked at ten runs of 800 000 samples each
on the same diagram to gauge the purely statistical error. We
found that the errors in the previous case are larger than in
the latter. Using the measured standard deviation of 1.5
�10−4 and dividing by 
800 for the 800 runs we actually
used in our simulations for each value of p, we estimate a
final error of �0.000 005 in the slopes of Cs, as indicated in
the error bars of Fig. 10. Finally, because the slope of the
fitted line in Fig. 10 �which equals the coefficient D in Eq.
�3�� is nearly 1, we estimate that the final error in pc is
�0.000 005. Note that the runs for the five values of p were
each done on 800 different diagrams, so there is no system-
atic error among the least-squares fit lines drawn in Fig. 8.
Because of this, we believe that our error bars are conserva-
tive. The results for the thresholds are summarized in Table I
and discussed further below.

B. Comparison with thresholds of related lattices

The Voronoi network has a uniform coordination number
z equal to 3. In Table II, we compare the site and bond
thresholds of the Voronoi diagram with several other lattices
with z=3, listed in descending order of threshold values. In
the Grünbaum-Shepard notation, �3a3 ,4a4 , . . .� describes a

FIG. 9. �Color online� 
est at p=0.714 07, 0.714 09, 0.714 11,
and 0.714 13 �top to bottom on right� for site percolation on the
Voronoi diagram.

0 . 6 6 6 9 0 0 . 6 6 6 9 2 0 . 6 6 6 9 4 0 . 6 6 6 9 6 0 . 6 6 6 9 8 0 . 6 6 7 0 0
p
c

0 . 0 0 0 0 2

0 . 0 0 0 0 0

0 . 0 0 0 0 2

0 . 0 0 0 0 4

0 . 0 0 0 0 6

s
lo
p
e FIG. 10. �Color online� Slopes

of the lines fitted in Fig. 8 versus
the values of p used for each line,
along with a best-fit line.
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lattice with a3 triangles, a4 quadrilaterals, etc., per vertex.
The Archimedean lattices �3,122�, �4,6,12�, and �4,82� are
illustrated in �56–58�. The martini lattice was introduced in
�59� and can be represented by �3 /4��3,92�+ �1 /4��93�.

We also list in Table II for each lattice the generalized
filling factor f , defined as �56�

f = ���
n�3

an cot
�

n 
−1

, �8�

which generalizes Scher and Zallen’s definition of f for lat-
tices not necessarily composed of regular polygons �60�.
f has been shown to provide a good correlation to site per-
colation thresholds for a variety of lattices. To calculate

f for the Voronoi network, we use b3=0.011 240 0,
b4=0.106 845 4, etc., from �61�, where bn=2an /n is the frac-
tion of n-sided polygons in the system, satisfying �nbn=1
and n̄=�nnbn=6 for z=3.

Table II also lists the fluctuations in the number of the
sides of the polygons for each lattice,

4 6 8 1 0 1 2 1 4

s
σ

1 . 0 5 2

1 . 0 5 4

1 . 0 5 6

1 . 0 5 8

1 . 0 6 0

1 . 0 6 2

C
s

2 4 6 8 1 0 1 2 1 4

s
σ

1 . 0 5 2

1 . 0 5 4

1 . 0 5 6

1 . 0 5 8

1 . 0 6 0

C
s

FIG. 11. �Color online� Com-
parison of multiple- and single-
diagram bond percolation cluster
growth on finite periodic Voronoi
networks. Each curve represents
8�105 clusters grown on ten dif-
ferent diagrams �upper� or on ten
identical diagrams �lower�, at p
=0.666 931. The mean values of
the slopes are −1.8�10−5 �upper�
and −1.1�10−4 �lower�, and the
standard deviations are 1.5�10−4

�upper� and 4.7�10−5 �lower�.

TABLE I. Results for percolation thresholds of Voronoi and
Delaunay networks. Numbers in parentheses represent errors in last
digits.

Network z pc
site pc

bond

Voronoi 3 0.71410�2� 0.666931�5�
Delaunay 6 �avg.� 0.5 �exact� 0.333069�2�

TABLE II. Thresholds of lattices with uniform coordination
number z=3, also showing the filling factor f and the polygon vari-
ance � / n̄2.

Lattice � / n̄2 f pc
site pc

bond

�3,122� 0.5 0.39067 0.807901a,b 0.740422c

Martini 0.25 0.47493 0.764826a,d 0.707107a,e

�4,6,12� 0.222222 0.48601 0.747806b 0.693734d

�4,82� 0.111111 0.53901 0.729724b 0.676802d

Voronoi 0.049468 0.57351 0.71410f 0.666931f

Honeycomb 0.0 0.60460 0.697040b,g 0.652704a,h

aExact.
bReference �56�.
cReference �64�.
dReference �59�.

eReference �65�.
fThis work.
gReference �40�.
hReference �66�.
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�

n̄2 �
n2 − n̄2

n̄2 , �9�

which is equal to the fluctuations in the coordination number
of the dual lattice. It follows from Euler’s formula that the
average number of sides of the polygons, n̄=�nnbn, in any
three-coordinated network is exactly six. For the Voronoi
diagram, ��1.780 811 699 0 is known exactly as an inte-
gral �61–63�.

In Fig. 12 we plot the thresholds given in Table II as a
function of f . The thresholds fit well to a linear relation, as
can be seen in the figure. In general, for bond percolation, f
is not effective in correlating thresholds, which depend
strongly on the coordination number z. However, for net-
works with fixed z=3, we find that the correlation of the
bond thresholds with f is quite good.

We can fit the linear behavior of pc�f� using just data from
exact results, with no numerical input. For site percolation,
we use the exactly known thresholds for the �3,122� and
martini lattices, while for bond percolation we use the mar-
tini and honeycomb lattice results, and find

pc
site = − 0.5116f + 1.0078,

pc
bond = − 0.4195f + 0.9063. �10�

These equations imply that, for the Voronoi diagram �where
f =0.573 51�, pc

site,Vor=0.7143 and pc
bond,Vor=0.6657, which

are evidently excellent estimates. Thus, the thresholds for the
Voronoi diagram are consistent with other lattices with re-
spect to the filling factor. A similar plot of thresholds versus
the fluctuations also shows a consistent behavior between the
Voronoi results and those for these other lattices.

Finally, the result for the bond threshold for the Voronoi
network implies the site threshold for the Voronoi covering
graph, shown in Fig. 13. The covering graph �or line graph�
for a given network is defined as the graph that connects the
centers of the bonds together and converts the bond percola-
tion problem on that network to a site problem. Thus,

pc
site,VorCov= pc

bond,Vor�0.666 931. The covering graph is a
kind of randomized kagomé diagram, consisting of triangles
connected together. Using similar arguments given in �67�
for generalized kagomé lattices, one can find an estimate for
the bond threshold of the covering lattice, with the prediction
pc

bond,VorCov�0.536 18, as well as an estimate for the site-
bond threshold for the Voronoi diagram. Details will be
given elsewhere �68�.

IV. CONCLUSIONS

We have determined the site percolation threshold for the
Voronoi network to a high precision, with the result pc

site,Vor

=0.714 10�2�. We reiterate that this is not the well-known
threshold �1/2� of the polygonal tiles of the Voronoi tessella-
tion, which is equivalent to site percolation on the Delaunay
triangulation, but rather the threshold for the three-
coordinated diagram of all the Voronoi polygons. Our Monte
Carlo result is very close to the prediction of 0.7151 of Ne-
her et al. �48� and confirms their empirical procedure based
on the Euler characteristic.

We also determined the bond threshold of the Voronoi
network. Our result pc

bond,Del=0.333 069�5� is consistent with
the result of Jerauld et al., 0.332 �50�, and close to Hsu and
Huang’s value of 0.3333�1� �52�, but runs counter to the
latter authors’ conjecture that this threshold is exactly 1/3. It
is interesting to note that 1/3 is the value predicted by the
general �approximate� bond-threshold correlation pc�d /
��d−1�z� given by Vyssotsky et al. �69� for z=6 and dimen-
sion d=2.

We made comparisons of our results with thresholds of
other lattices with the same coordination number �z=3� and
found that the Voronoi thresholds are what one would expect
based on correlations with the filling factor f for both the site
and bond problems. Wierman has conjectured �70� that
2 sin � /18�0.3473, the bond threshold of the regular trian-
gular lattice, is the maximum possible bond threshold for any
fully triangulated network and that no other fully triangu-
lated network has a bond threshold greater than or equal to
that value. We indeed find that the bond threshold of the fully
triangulated Delaunay network is consistent with this
conjecture.

FIG. 12. �Color online� Thresholds vs generalized filling factor
of Eq. �8� for site �top� and bond �bottom� percolation for the sys-
tems of Table II. The lines show least-squares fits to all of the data
points.

FIG. 13. Covering graph of a Voronoi network.
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For future work, it would also be interesting to look at
thresholds for other random systems, such as Johnson-Mehl
tessellations �71� or the graph formed by the random distri-
bution of lines in a plane �72�. Finding thresholds in Voronoi
systems of higher dimensions is another interesting open
problem.
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APPENDIX: PROOF THAT F=2V for any fully
triangulated network with doubly periodic

boundary conditions in two dimensions

We take advantage of the Euler relation for polyhedra to
prove the desired fact about fully triangulated networks. A
network on a square surface with doubly periodic boundary

conditions is topologically equivalent to placing the network
on the surface of a torus; this network, in turn, can be seen as
a polyhedron on the surface of the torus. Thus, the Euler
relation for polyhedra applies,

V − E + F = 
torus = 0, �A1�

where V is the number of vertices on the polyhedron, E is the
number of edges, F is the number of faces, and 
torus is the
Euler characteristic for the 2-torus, which is zero. Because
every face has exactly three edges �i.e., the network is fully
triangulated�, and every edge is shared by exactly two faces
�the network has no boundary�, we have E=3F /2, and we
can rewrite the Euler relation as follows:

V −
3F

2
+ F = V −

F

2
= 0 �A2�

and thus F=2V. Q.E.D.
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