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Tension dynamics and viscoelasticity of extensible wormlike chains
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The dynamic response of prestressed semiflexible biopolymers is characterized by the propagation and
relaxation of tension, which arises due to the near inextensibility of a stiff backbone. It is coupled to the
dynamics of contour length stored in thermal undulations but also to the local relaxation of elongational strain.
We present a systematic theory of tension dynamics for stiff yet extensible wormlike chains. Our results show
that even moderate prestress gives rise to distinct Rouse-like extensibility signatures in the high-frequency

viscoelastic response.
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Recent experiments have successfully linked the vis-
coelastic properties of living cells to the rheological behavior
of prestressed biopolymer networks [1-4]. Single filaments
within these networks are well described by the wormlike
chain (WLC) model, where very stiff backbones are ideal-
ized as inextensible space curves [5], giving rise to a char-
acteristic f~!/? divergence of the force f required to attain full
stretching [6]. Here, “stretching” needs to be seen as a
“straightening” of excess length stored in thermal contour
undulations [7], suggesting the phrase “pulling out stored
length.” If sudden forces are applied, stored length can be
pulled out at first only from growing boundary layers of size
€,(#) near the ends due to longitudinal friction with the vis-
cous solvent [7-11]. The precise time dependence of €,(¢) is
influenced in a quite subtle way by the applied prestress [12],
and a nonhomogeneous distribution of stored length along
the contour corresponds to a nonuniform tension profile.

Modelling prestress as prestretching force applied at the
filament’s ends, a larger prestress clearly implies that an in-
creasing contribution to the longitudinal extension stems
from the microscopic elasticity of the backbone bonds and
less from thermal undulations. Hence, for an extensible
backbone the polymer’s response is characterized by a local
competition between destroying thermal stored length and
creating elongational strain. While it has long been recog-
nized that stretching modes of long and slender elastic rods
relax extremely fast [13], their local equilibrium value de-
pends on the local tension, which in a nonequilibrium situa-
tion is in turn coupled to the much slower stored length
relaxation. Especially for bead-spring simulations, where re-
alistically stiff backbones often require unfeasibly short time
steps, it is not immediately clear if and how backbone
stretching affects the longitudinal relaxation. In this Rapid
Communication, we present a theory of tension dynamics for
stiff yet finitely extensible wormlike chains. A brief compari-
son of extensible and inextensible polymer models is used to
motivate the ensuing systematic derivation based on the in-
extensible analog presented in Ref. [8]. We then calculate
viscoelastic response properties and show that even moderate
prestress can give rise to distinct extensibility signatures
reminiscent of a Rouse-like dynamics.
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In the WLC model, the polymer backbone is idealized as
continuous space curve r(s). Contour undulations are penal-
ized with a bending energy proportional to the squared local
curvature. Strict inextensibility would require that s be the
arclength such that r'(s) is a unit vector, and this hard con-
straint allows exact solutions only for special cases [5]. In
general, Lagrange multipliers of varying sophistication are
used to enforce miscellaneous constraints of different rigidity
[14]. Specifically, for a nonequilibrium scenario with nonuni-
form stored length dynamics, it is inevitable to use a local
constraint [7,8,11,15-18], which is intuitively interpreted as
backbone tension. In the case of an extensible backbone this
tension arises naturally as a spring force [19-21], and al-
though it is generally far from trivial [22], our results will
permit taking the limit from soft to rigid constraints.

For an extensible but very stiff backbone with only small
stretching deformations, the Hamiltonian reads as [19]

kT
H = ‘; ds[€r + k], (1)

where L is the unstretched contour length, €, is the persis-
tence length, k. is the stretching elastic constant, and
u=|r'|—1 is the elongational strain. Our theory relies on the
weakly bending limit r(s)=(s—r,r )’ of small transverse
and longitudinal contour deviations r, and ry from a straight
line, which gives u=~-r| +-r L to leading order. Observing
that the polymer’s longitudinal extension in the limit of large
prestress f,>kgT/{, is given by [19]

R La
z”:fO Zs(l—ru)—1+<u> <—rl> )

we can quantify the simultaneous limits of an only slightly
extensible backbone and a weakly bending contour by re-

quiring that the contributions of longitudinal strain
(wy=fo/ (kgTk)=e,<1 and of thermal stored length
<%r ' =[kgT?¢ o/ (4f0)]"? =gy <1, respectively, are both

small. Although these contributions are independent, we will
also assume that the force extension [Eq. (2)] is dominated
by contour straightening instead of backbone stretching, i.e.,

that (u)<<2r 2y, which is easily fulfilled as long as f; <fx,
where f,=kpT k2/ 3 € 13 is the corresponding crossover force
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scale [20,23]. This assumption is reasonable in most experi-
mental circumstances, considering that f, =75 pN [24] for
actin and f,=50 pN for DNA [19], which in fact is close to
the overstretching transition. For bead-spring simulations,
however, this condition is much harder to obey [25] because
very small time steps Atsk;I are required. Also, in special
situations such as the relaxation from a low-temperature ini-
tial condition [16], short-time transients are quite pro-
nounced, and we will show below that even a prestress of
only about 0.01f, gives rise to observable effects.

To quantitatively assess the influence of backbone stretch-
ing on the dynamics, we proceed with a discussion of the
equations of motion {dr=—35H/or+§, with the stochastic
noise & and the free-draining friction matrix = [r'r’

+Z(1 —r'r’)], where Zz 1/2 accounts for the anisotropy be-
tween transverse and longitudinal friction. To leading order
in g4, and g, and in the absence of external forces, we obtain

o =—r +kur') 1€, +&,, (3a)

Z’(?,}”H+(l—Z)rlé?,ri=—r|'|w—kxu'/€p+§u. (3b)

Here, we have introduced units such that kBTEQ1 and
£, =1, which makes time a length* and force a length™2. In
the following, we are interested in the prototypical rheologi-
cal experiment [1,2,4] where at time =0 a small time-
dependent force &f(¢) is superimposed on a static prestress
fo» which contributes a term [fy+®(r) 5f(¢) | S(L—s)— &(s)]
on the right-hand side of Eq. (3b). In the stationary state at
times t<<0, this gives ku/€,=f,, and the combination
kul €, plays the role of a tension in Eq. (3a) also at later
times.

If we assume constant u:€pf0/ k,, we find that the trans-
verse part Eq. (3a) is correlated on length scales ¢ | () with
€ ~t"if t<fy? and €, (1) ~ (for)"? if 1> £, [8,10]. On the
other hand, disregarding the thermal contribution r; to Eq.
(3b) for the moment, we also find that the diffusive dynamics
of the elongational strain u is correlated on length scales
€X(t)~(kxt/€p)”2 [19]. Given now that €,fy/ky=0(g,) <1,
it turns out that €,>¢, except for very early times
t=(€,/ k,)?, where higher-order terms become relevant.
Hence, after short initial transients the elongational strain u
varies slowly with arclength: stretching modes relax ex-
tremely fast but only to a local equilibrium value, which is
not only nonzero for a prestressed filament but can even
show nontrivial large-scale spatial variations for the previ-
ously mentioned nonequilibrium stretching experiments.
Thus, elongational strain cannot globally equilibrate unless
these tension variations have propagated through the fila-
ment. The latter are linked to the dynamics of thermal stored
length and therefore significantly slowed down by longitudi-
nal friction, and it has been shown that the associated char-
acteristic length scale {5”(t)ocsa1” 2¢,(r) is much larger than
the one of transverse fluctuations [8].

Our goal is now to formulate an equation for the elonga-
tional strain u that integrates over transverse fluctuations de-
scribed through Eq. (3a) (on the short length scale € ) but
retains both large-scale spatial variations in the tension
kil €, (on the scale €)) as well as the effect of short time
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transients stemming from the fast relaxation of elongational
modes. To this end, we employ a multiple scale perturbation
theory both in space and time: small-scale and large-scale
spatial coordinates s and 831425, respectively, account for the
different spatial correlation lengths of transverse and longi-
tudinal contour displacements, while slow and fast time vari-
ables ¢ and 7=(gy,/€,)t account for long-time stored length
and short-time strain dynamics, respectively. Here, the con-
dition &, <gy, (resulting from f,<f,) is essential, and it en-
tails that a 7-derivative of u is of order ey, transients from
strain relaxation can become comparable to thermal stored
length. We briefly sketch the analysis, which in its technical
details is quite analogous to Ref. [26]. Higher-order terms of
this perturbation scheme can in principle be computed, but
the lowest-order results already yield a sufficiently accurate
description [16]. Taking an s-derivative of Eq. (3b)

. . . 1 .
and eliminating r”’z—u+§r'f, we find to zeroth order in

sth:—g:&tu:d?u—kxafu/%. Since ku/€,=O(f,) while every-
thing else is O(e,), we find du=0, and therefore also
dlu=3du=0. This also implies that Eq. (3a) becomes the lin-
ear equation (9,rL:—o7;‘rl +kxuc9frl/€p+ &, . To first order in
em Eq. (3b) now gives {3(dyr )2~ Cewdul ex=—kdmul €,
+H(s,s), where H(s,s) summarizes s derivatives of terms
nonlinear in r ;. These vanish upon coarse graining, i.e.,
when averaging this equation over small-scale variations on
the scale €, [26]. Denoting in such a manner spatially aver-
aged quantities with an overbar and replacing 7— ¢, we ob-
tain

kil €, =~ {3,(0 - ), (4)

where o= %r'f is the local density of contour length stored in
thermal undulations. This relation, which is our main result,
formalizes in an intuitive way the opposing effects thermal
stored length density © and elongational strain i have on the
backbone tension kit/€: if prestress is increased, stored
length is destroyed and elongational strain created and both
lead temporarily to spatial tension inhomogeneities (curva-
ture) and vice versa for decreasing prestress. Further, taking
the “inextensible” limit &, —0 while holding the tension
kyit/ €, fixed leads to the inextensible analog derived in Ref.
[8], and the limit &4, — 0 of a one-dimensional Rouse chain,
although our assumptions cease to hold, nevertheless gives a
simple diffusion equation for .

In order to solve Eq. (4), we observe that its boundary
conditions are prescribed through the externally applied pre-
stress: (0,1)=u(L,1)=€,[fo+O(t) 5f(t)]/ ky. Further, ¢ has
to be computed from Eq. (3a), which to lowest order depends
only parametrically on u(5,7). It is thus effectively linear in
r, and can be solved in Fourier space by means of the re-

sponse function [26] x, (g:1,¢')=e ¢ 10 0= Why(UO-UG"))G,]

where U(t)=[ odt'u(t') is the time-integrated strain. Because
spatially averaging @ over many effectively uncorrelated
segments of length €| produces an ensemble average, the
stored length density is given by [26]

— (" dq | x1(g:1.0) zf’
Q=f — | Fr o +2¢ | dr X (gt | (5)
0 ng{ a’+fo 0 .

Solutions to Eq. (4) can now be obtained similarly to Refs.
[12,16,26].
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In the remainder of this Rapid Communication, we focus
on a small oscillatory stress 8f(¢)=Jf sin wt superimposed
on a large prestress f;,. This situation has been analyzed in
Ref. [27] for an inextensible filament, and our calculation
proceeds along these lines. While we cannot actually take the
linear response limit f— 0 because then the assumptions
underlying the multiple scale perturbation theory become in-
valid [8], we can still for small enough 8f <f, linearize Eq.

(5) by writing U(5, t):fpfot/kx+AU(§, t) and find from Eq.
(4) a simple equation for the Laplace transform AU(S,z)

[26,27]:
FAU(5,2) = M(2)AU(5.z). (6)

The kernel M(z)={ 1/ M (zfaz)/€p is defined as

dk| 2k* 4kt
M 3/2A 7
@= J {k2+1 wEernez) tEE D

and ¢, =fy/f,<<1 is the ratio of prestress to the critical force
fx:ki/ 3 €3/ 3. In contrast to the inextensible case treated in
Ref. [27], where M(3) =2 for all £> 1, we obtain now an
additional high-frequency regime M(%) ~ %2 for £ ¢°.
Considering that M~"2(z) is the analog in Laplace space to
the characteristic length scale €,(7) for the large-scale spatial
tension variations, we find that €,(1) = (k/€,)""> [19] shows
a diffusive scaling in the corresponding extensibility-
dominated short-time regime ¢<<¢,, only then crosses over to
the well-known growth law €,(1) =, 2458 110], before finally
arriving at €(z) = 61/ fol4e12 8, 11] for 1>£,2 (ie., <<1).
We emphas1ze that the scaling of the crossover time
t,=¢ 8/3/ k4/3 = f cannot simply be inferred from dlmensmnal
analy31s because any combination of the lengths €, and k"
could be used.

The observable of main interest is the change SRy(¢) in
projected length R, which is through the force-extension re-
lation [Eq. (2)] related to the integrated change in #—@ and
thus through Eq. (4) to the features of the tension kyit/ €

' L
_. k

5R(f)=f df'f i-0)=—"

0 0 &t

In Laplace space, we thus obtain from a straightforward so-
lution of Eq. (6) 8R(z) ——M”Z(z)tanh[ M"2(2)18f(z), which
can be backtransformed 1n the stationary limit ¢— o0 [27]:

(8)

SRy(1) = T (ofy?)cos(w],  (9)

[] (wf )sin(wt) —
f

with the dimensionless compliances

J'(®) :% [V 1/ZM(lw)tanh\/—qb”zM( }
w
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FIG. 1. (Color online) Plot of J’,J" (top) and G'.G" (bottom)
from Eq. (10) for ¢y=fy/fx=10"2 and for ¢,=100 (left) and
=1 (right), where ¢.=fo/f. with f.=€>/({*L*) and f,=k"1€]".
Solid lines: J'(G') and dashed lines: J”(G”). Short lines indicate
high-frequency scaling laws of Table 1.

j”(d)):%Re{\/qﬁé”[&l(id))tanh iq)sz(i@)]. (10)
w

Here, ¢.=fy/f. gives the ratio of f to the longitudinal criti-
cal force fcsz)/(g:zL“) and can be used to distinguish “long”
(¢>1) and “short” (¢p.<<1) filaments, respectively [12].
Figure 1 depicts numerical solutions of Eq. (10) for a
fixed value of ¢,=10"2 and different values of ¢, as
well as results for the corresponding viscoelastic modulus
(é’ +ié”):(j ! +ij”)". It is straightforward to check that Eq.
(10) obeys scaling laws in different intermediate asymptotic
regimes, which are summarized in Table I. Most of these

TABLE 1. Asymptotic scaling results [10,17,27-30] for the
compliances J'(®) and J"(®) from Eq. (10) with é):mfgz for (a)
¢.>1 and (b) ¢.<<1, respectively, where ¢, =fy/fy and ¢.=fo/f.
with f,=k7"/€)% and f.= €7/ (PLY).

J(&) J(&)
(a)
N ) 1/4 43/4 A
o> ¢x d)c ¢x & 172
P> a>1 atoall
1>d)> ¢;l/2 ¢(l:/4d\)—1/2
¢;1/2>é) ¢’i/2 ¢i/2‘:’1/2
(b)
. ) 1/4 4314 ~_1/2
0> P, ¢ P
¢;2> o> ¢;2 ¢i/4d)—7/8
R b2
1>6 ¢’i/2 ¢C|/2(31/2
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results have been obtained previously (cf., Refs.
[10,17,27-30]), and we will therefore not comment on them
in detail. We merely emphasize that for low frequencies
®=1 the presence of a prestress leads to the well-known
nonlinear response regime with its characteristic % exponents
[30,31]. The intermediate regime ¢l/2<d)<1 with J' ~J"
~ @ "2 corresponds to the previously discussed regime of
nonlinear tension propagation [8,11] and can only be ob-
served for large ¢.>1. Also, for small prestress (¢.<1),

there is an intermediate regime with J'~J"~ @& for
¢->> > 1 equivalent to the force-free case [17,28].

The predominant effect of an extensible backbone is to
produce a Rouse-like scaling in the new high-frequency re-
gime w3 f2. Here, we find J' (&) ~J"(&) ~ 224 412,
corresponding to G’ ~G" ~ 273274434312, From Fig. 1
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we conclude that a moderate prestress f;, of merely 1% of the
critical force f, suffices to significantly shorten the 7/8-
regime and to produce a distinct Rouse-like signature, espe-
cially if ¢, is not too large.

In summary, we have presented a systematic theory of
tension dynamics for extensible wormlike chains including
the opposing effects of thermal stored length and elonga-
tional strain relaxation at short times. These produce a
Rouse-like scaling in the high-frequency viscoelastic re-
sponse and are expected to be especially relevant for the
proper design of bead-spring simulations.
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