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Characteristic times in the nanometer-picosecond translational collective dynamics
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Molecular-dynamics calculations of the translational dynamic structure factor in liquid CO, and CD, are
analyzed by means of the generalized Langevin equation for the intermediate scattering function in the second-
order memory function approximation. We give a rigorous general relation among the decay times of the
memory and the lifetimes of the modes of the density-density correlation function. The comparison of the
various characteristic times among them and with the collision time, carried out as a function of the wave
vector, reveals strong relationships between the memory relaxation and the density-density correlation modes,

some of which have purely “collisional” and other “collective” character. We show that essential information
about the life time of structural properties in a molecular liquid at nanometer dimensions can be obtained if the
time behavior of the correlation function is considered in addition to that of the memory function.
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Experimental and computer simulation studies of transla-
tional collective dynamics of dense fluids approaching the
molecular space-time scales have received continuous atten-
tion in the last decades due to the great interest in under-
standing relaxation processes in the high-frequency regime
[1-4]. A generally accepted data interpretation is still lacking
though. The aim of this Rapid Communication is to shed
light on relaxation phenomena in liquids by showing that a
clear interpretation can be given of the characteristic times
involved in the description of the dynamic structure factor
S(Q,w) at high wave vector Q.

Molecular fluids have also been extensively studied [4]
through spectroscopic and molecular-dynamics (MD) simu-
lation methods. For such systems it can be argued [5] that the
correlation relevant to translational dynamics is the one be-
tween the molecular centers of mass. Here we consider the
case of CO, and CD, in their dense liquid state. Indeed, we
recently reported [5-7] accurate analyses of their transla-
tional dynamics as represented by the carbon-carbon (CC)
partial dynamic structure factor Scc(Q, w) since in both mol-
ecules the carbon atom occupies the barycentric position.
Such data were calculated by means of MD simulation with
experimentally validated anisotropic intermolecular poten-
tials [8,9]. This is the unique mean we have up to now to
determine the purely translational part of the total S(Q, ) in
molecular fluids. In the following, all dynamical quantities
will refer to the center-of-mass—center-of-mass correlation
although we shall omit the subscript CC to simplify the no-
tation.

S(Q,w) spectra are usually analyzed and interpreted in
terms of a generalized Langevin equation of motion for the
intermediate scattering function F(Q,7), which acquires a hi-
erarchical nature through the definition of a sequence of
memory functions [1]. The closure of the equation hierarchy
is typically carried out at the level of the second-order
memory function M(Q,?), for which a simple time evolution
is assumed as an “ansatz” defining the model interpretation.
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M(Q,1) is customarily built with one or more time exponen-
tials and/or a &(r) function. This choice reflects the physi-
cally sound concept that memory decays in first approxima-
tion exponentially, with &(¢) possibly modeling a situation
where the decay is very fast compared to the fluid time scale
set by F(Q,r). We will not consider here memory functions
containing other forms of time dependence.

When M(Q,1) is modeled as said above, F(Q,r) will
show the presence of properly defined collective modes; one
or more of them are nonpropagating modes decaying expo-
nentially with time, while two others consist of exponentially
damped oscillations corresponding to propagating excita-
tions. Consistently, the spectrum S(Q,w) is the sum of a
number of quasielastic Lorentzian lines plus two inelastic
(“Brillouin”) lines [6].

It is worth noting, however, that the presence of a (1)
term in M(Q,1) leads to an infinite fourth frequency moment
of S(Q, w) [6]. This can limit considerably the spectral range
in which the data can be theoretically reproduced at the level
of the second-order memory function, which otherwise has
the capability of giving a finite fourth moment as well. In-
deed, as shown below, a memory modeled with one expo-
nential and a ¢ term, such as the one corresponding to lin-
earized hydrodynamic theory [6], will not be proven
adequate for the cases under study although any valid model
is bound to recover the hydrodynamic theory of fluids in the
Q—0 limit.

We then adopt for M(Q,t) a phenomenological time evo-
lution made of two exponentials, which, as shown below,
turns out to be the minimum required for an accurate de-
scription of the spectral data. This approach leads to the in-
troduction of an extra relaxation mode in F(Q,t), with re-
spect to the hydrodynamic description, which appears to be
necessary to correctly interpret the spectra of collective
modes for Q in the range between ~0.10, and ~0.80,.
Here Q, is the main peak position of the static structure
factor S(Q), i.e., the frequency integral of S(Q,w). The de-
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tailed analysis of the Q dependence of all the quantities
which define either the memory model or the spectral distri-
bution allows to disclose the existence of quantitative con-
nections among the various times involved in the behavior of
M(Q,t) and F(Q,1).

The so-called viscoelastic (VE) model for M(Q,1?) is

M(Q.1) = [w;(Q) - Y Q)X wy)lexp[— t/HQ)] + [ Q) - 1]
X (wpyexp[— t/7(Q)], (1)

where <w2Q> is the normalized second frequency moment of
S(Q,w), wi(Q) is the ratio of fourth to second spectral mo-
ment, and y(Q) is a Q-dependent generalization of the ther-
modynamic specific-heat ratio y,. These parameters define
the amplitudes of the two exponential terms of M(Q,1),
whose characteristic times are 7(Q) and 7,(Q).

All the above quantities tend to their respective hydrody-
namic expressions for Q—0 so that <w2Q)~cfQ2/ Yo»
i (Q)~ciQ?% and 7{(Q)~1/(y,D7Q?), where ¢, is the
0 —0 limit of the infinite-frequency sound velocity, c; is the
adiabatic sound speed, and Dy is the thermal diffusivity. The
Q— 0 limit of 7(Q) is given by 7y=v/(c; —c?), where v is the
kinematic longitudinal viscosity.

For ease of reference, we denote the two terms of the
memory (1) as “viscous” and “thermal,” extending to the
whole Q range the meaning that they assume in the Q—0
limit where 7 and 7 are directly bound to viscosity and
thermal diffusion, respectively, although such identifications
become less stringent when a nonhydrodynamic regime is
attained with increasing Q.

The general expression of the spectrum
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where M(Q,z) is the Laplace transform of M(Q,1), takes in
the VE case the form [6]
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made of two nonpropagating plus two propagating modes.
The corresponding time correlation is

F(Q,1)
F(Q.0)

where b, and ¢ are defined as in Ref. [6]. For the sake of
simplicity the Q dependence of the parameters of M(Q,?)
and S(Q, w) will not be indicated in the following.
Equation (4) shows that the translational time correlation
has a damped harmonic oscillator component. We recall [6]
that this is true for the whole class of memory functions
defined by exponential or 6 functions and that the propaga-
tion (damped) frequency w;, is related to two intrinsic prop-
erties of the oscillator, namely, the “self” (undamped) fre-
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FIG. 1. MD simulated center-of-mass S(Q,w) of CD, at

0=8.2 nm™' (error bars). The thin line is the VE best fit, and the
thick line is the best fit obtained with a hydrodynamiclike memory
model (see text).

quency ) and the dampinfg coefficient z,, by the relation
w,=\Q?-7z2, where Q:\ﬂ(w2Q>/zlz27'TT if model (1) is
assumed.

MD S(Q,w) data were calculated for 28 Q values be-
tween 2.0 and 159 nm~' in CD, at n=16.6 nm™ and
T=97.7 K and for 58 Q values between 1.4 and 14.9 nm™!
in CO, at n=15.88 nm™ and 7=221.9 K, where n is the
molecular number density and 7 the temperature. Details of
the computer calculation method have already been given
[5.8]. The analysis is based on fitting line shape [Eq. (3)] to
MD spectra using as free parameters, besides S(Q), either
those of the memory [Eq. (1)] or directly those of Eq. (3)
itself. In the latter case z;, 25, z,, w,, and I; are fitted, while
I, I, and b, are derived from them [5]. For whatever choice
of the fit parameters, all quantities in both Egs. (1) and (3)
can be obtained as functions of Q as explained in Refs. [5,6].
As an example, Fig. 1 shows one CD, spectrum together
with the line yielding the best fit up to a frequency in the
wings where the intensity decreases to 107X S(Q,0). The
VE fit is very good at all Qs for both liquids. In Fig. 1 we
also show the inadequacy of the best fit obtained with a
simpler hydrodynamiclike M(Q,) model where the first ex-
ponential is replaced by a &(¢) term, which reduces the num-
ber of spectral lines to three [6].

Figure 2 displays (), z,, and w, versus Q and shows that
propagation is maintained (w;>0) up to Q~14 nm™' in
CO, and Q~15.5 nm™' in CD,. Beyond such Q values
propagation is forbidden (w;=0) because () either stops in-
creasing with Q (CO,) or begins to decrease (CD,) leading
to 1<z, and bringing the oscillator into its overcritical
damping state. When this happens, Egs. (3) and (4) are modi-
fied as explained in Ref. [5].

We next discuss in detail the Q dependence of the time
decay constants relevant for the collective dynamics. Besides
77 and 7, we consider the life times of the modes of F(Q,1)
or S(Q,w) defined as 7=1/z;, »,=1/2,, and 7,=1/z,. In
Egs. (61a) and (68a) of Ref. [6] we showed that, with the
assumption of the memory model (1), the rigorous relation
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FIG. 2. Parameters of the damped harmonic oscillator representing the propagating modes. (a) Q) (open circles) and z, (full circles), with
the respective lowest-order hydrodynamic behaviors ¢,Q (solid line) and [(yy—1)Dy+»]Q?/2 (dotted line). Data refer to CO,. (b) The same
as in (a) for CD,. (c) Dispersion curve w, for CO, (full squares) and CD, (open squares) with the respective lowest-order hydrodynamic
behavior ¢,Q (dotted line for CO,, solid line for CD,). For the values of c,, vy, Dy, and v see Refs. [5,11].

Urp+ Ur=1/m+ Un+2/7, (5)

is obeyed, which highlights that the parallel decay of the
memory into two channels implies the parallel decay of the
correlation into four channels, with conservation of the total
decay frequency.

Figure 3 shows the Q dependence of the various 7s and,
for comparison, the value of the Enskog mean free time fg
which provides an estimate of the collision time in a liquid
taking into account its structural properties. For a fluid of
hard spheres with diameter d, tz=\m/mkzT/[4nd*g(d)],
where m is the molecular mass, kg is the Boltzmann constant,
and g(d) is the pair distribution function at contact. In our
real molecular systems, an effective diameter d has been es-
timated by fitting at best the hard sphere S(Q) [10] to MD
results, obtaining d=0.354 nm and #;=0.107 ps for CO,
and d=0.379 nm and t;=0.056 ps for CD,.

From the results displayed in Fig. 3 we can observe the
following:

(a) An overall deviation from hydrodynamics sets on at
rather low Q. The departure is larger in CD, than in CO, and
a transition to clear nonhydrodynamic behavior definitely
takes place around Q~3 and ~5 nm™!, respectively. Thus,

when the wavelength of the probed fluctuations becomes of
the order of 1-2 nm, corresponding to volumes containing a
few tens of molecules, all relaxations in both memory and
correlation function change character.

(b) 7;/7y and 7, which are prescribed by theory to have
the same hydrodynamic limit [6], actually coincide at all Qs.
This fact highlights a close relation between the thermal
memory relaxation and the correlation mode labeled as 1.

(c) 77 and 7 differ by at least one order of magnitude in
the whole Q range, therefore describing two distinct pro-
cesses in the memory relaxation, with the thermal one decay-
ing much more slowly than the viscous one. The latter ap-
pears to be directly related to binary collisions since 7=t
while the slow relaxation of the thermal process suggests that
more collisions, therefore more molecules, are involved in
the decay of the correlation.

(d) The memory fast decay time 7 decreases smoothly
with increasing Q and shows a plateau between Q~5 and
~8 nm~!, where correlation distances of the order of 1 nm
are probed. Interestingly, in this Q range a clear change oc-
curs in the relation of 7 with the time decay of the correlation
mode labeled as 2 and with the life time of the propagating
modes. At high Q, we find 7~ 7,/2, indicating that the damp-
ing of the propagating modes changes continuously from a
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FIG. 3. Characteristic times of M(Q,7) and F(Q,1). (a) 77 (dots with error bars) and 7,/ (open circles). CO, data are the upper curves;
CD, plots are shifted downwards by one decade for graphical convenience. Solid lines give the lowest-order hydrodynamic behavior
1/(yoD7Q%). (b) 7, (full squares), 7, (stars), 7,/2 (open circles), and 7 (dots) for CO,. Solid lines give the lowest-order hydrodynamic
behavior 1/(D7Q?) of 7; and 1/[(yy—1)Dy+v]Q? of 7,/2. The short line on the right side marks the value of #£. (c) The same as in (b) for

CD,.
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hydrodynamic character at low Q into a behavior dominated
by the fast memory relaxation process which in turn is due to
binary collisions as shown above.

(e) On the other hand, 7, behaves like 7 at low Q, show-
ing that the fast memory relaxation is reflected in the decay
of a nonpropagating correlation mode but clearly increases,
more evidently in CO,, up to a practically constant value at
high O which is largely above the collision time, namely up
to 7, ~ 3fg. Such a change to a “long” living nonpropagating
mode in F(Q,t) suggests the existence in the liquid of clus-
ters with dimensions of order 1 nm? or less with life time 7,
quite larger than the collision time. However, such micro-
scopic structures do not affect the life time 7, of propagating
excitations, which remains of the order of 7.

In conclusion, we have shown that a suitably modeled
memory function explains in detail the translational dynam-
ics of simple molecular liquids determined through the
center-of-mass dynamic structure factor simulated with ex-
perimentally tested pair anisotropic potentials. For both stud-
ied liquids, a VE modeling proves adequate in the Q range
up to O~ 0, and reveals strong relations among the charac-
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teristic times of M(Q,t) and F(Q,r). The first nonpropagat-
ing correlation mode directly reflects the decay of the
thermal part of the memory function. The second nonpropa-
gating mode and the pair of propagating modes that give rise
to the Brillouin spectral lines are both related in different O
ranges to the faster decay process in the memory, which is
dominated by binary collisions. A transition from a colli-
sional to a collective behavior of 7, is detected, which can be
interpreted as the evidence that nanoscale clusters with life
time of the order of a few tenths of picosecond do exist in the
liquid. Such a transition occurs at Q values slightly larger
than those where the onset of nonhydrodynamic behavior
takes place.

Our approach also shows that the analysis of the Q de-
pendence of the memory time constants provides only a lim-
ited picture of the evolution of structural properties at the
nanometer scale, while a far deeper insight can be obtained if
the time behavior of F(Q,1) is also explored. In this way, for
example, important information on structural relaxations
contained in the second nonpropagating spectral mode can
be evidenced.
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