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When a two-dimensional Ising ferromagnet is quenched from above the critical temperature to zero tem-
perature, the system eventually converges to either a ground state or an infinitely long-lived metastable stripe
state. By applying results from percolation theory, we analytically determine the probability to reach the stripe
state as a function of the aspect ratio and the form of the boundary conditions. These predictions agree with
simulation results. Our approach generally applies to coarsening dynamics of nonconserved scalar fields in two

dimensions.
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What is the fate of a kinetic two-dimensional Ising ferro-
magnet after a quench from above the critical temperature to
zero temperature? While the ground state is always reached
in one dimension and never reached in three dimensions [1],
the two-dimensional system is enigmatic. Previous numerical
evidence indicates that a square lattice system can either get
trapped in an infinitely long-lived metastable stripe state with
probability close to % [1-3] or reach the ground state. In this
work, we propose an exact value for the probability for the
two-dimensional system to reach the stripe state, thereby es-
tablishing that the ground state is not necessarily reached.

Our argument is based on relating the nonequilibrium
phenomenon of coarsening and equilibrium continuum per-
colation at the critical point. We will exploit this unexpected
relation to argue that the probability to reach a stripe state
equals %—%ln%zOBSSS... for free boundary conditions;
the corresponding freezing probability for periodic boundary
conditions is 0.3390.... This result applies to any curvature-
driven coarsening process with a nonconserved scalar order
parameter, such as the time-dependent Ginzburg-Landau
equation [4-6].

Our approach is based on two key observations:

(i) Soon after the quench, an emergent characteristic do-
main length scale € becomes substantially larger than the
lattice spacing a, while remaining much less than the system
size L: a<<¢<<L. In this regime, this domain mosaic is a
realization of the critical point of continuum percolation, as
previously observed in various two-dimensional systems
[7.8] and as argued below.

(ii) In the coarsening regime, €(f)>a, the dynamics be-
comes deterministic and domain wall evolution is driven
only by local curvature [4—6]. Thus the global domain topol-
ogy does not change once the coarsening regime is reached
[9].

These two features imply that the ultimate fate of the
system is predetermined once the critical percolation state is
reached. For instance, if a domain exists that crosses the
system only horizontally or only vertically, a stripe state is
necessarily reached. Figure 1 shows such an example of a
vertical spanning domain shortly after the quench that ulti-
mately coarsens into a vertical stripe; conversely, a domain
mosaic that spans in both horizontally and vertically coars-
ens into a ground state.
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The connection (i) with critical percolation may seem sur-
prising since the initial fraction of spins of a given sign ap-
proaches % in the large-size limit. This value is below the
random site percolation threshold p.=~0.5927 on the square
lattice. However, after a quench to zero temperature, the spin
system quickly approaches the critical state of continuum
percolation [7]. To appreciate this connection, note that in the
coarsening regime (at least the first two panels of Fig. 1), the
concentrations of up and down spins remain very close to %
and the boundaries between spin-up and spin-down domains
are smooth and do not contain singular points where four
domains meet (as in Fig. 2). This topology coincides with
continuum percolation at its threshold; for example, by a
surface whose height ¢(x,y) is a random function of (x,y)
that is symmetric about ¢=0. The regions with positive and
negative ¢ correspond to the spin-up and spin-down domains
in coarsening, respectively.

While individually observations (i) and (ii) are known,
their combined use allows us to apply exact results about
crossing probabilities in percolation to determine the final
state of the kinetic Ising system in two dimensions. These
quantities are defined as the probabilities for the existence of
a spanning cluster with a specified topology. We denote these
crossing probabilities for free and periodic boundary condi-
tions as F and P, respectively. For a critical rectangular sys-
tem with aspect ratio r (ratio of height to width) [10], the
crossing probabilities are nontrivial (i.e., strictly between 0
and 1), universal functions of r [11,12]. Beautiful exact ex-
pressions for various crossing probabilities were originally
calculated via conformal field theory [13-16], and some of
them have been proved in Refs. [17-19].

We begin with the analytically simpler case of free bound-
ary conditions. In this setting, every domain mosaic either
spans only vertically, only horizontally, both horizontally and
vertically (dual spanning), or the mosaic does not contain a
spanning cluster. Their respective probabilities, Fj,, Fjz
Fiy» and Fj, (the dual spanning and non-spanning probabili-
ties are identical by up-down symmetry) therefore satisfy the
normalization condition

Fﬁv+fh17+2fhv=1' (l)
Moreover, the exact form of F5, is known to be [15,16]
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FIG. 1. Coarsening in the kinetic Ising model on a 1024 X 1024 square lattice with periodic boundary conditions at times (a) 200, (b)
1000, (c) 5000, and (d) 2.5 X 10* Monte Carlo steps following a quench from 7= to 0. Domains are regions of either spin up (gray) or spin
down (black). A spanning spin-up domain that eventually coarsens into a vertical stripe is highlighted.
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where qu(a,, .os@y3by, ..., by N) is the generalized hyper-

geometric function [20], A=\ (r) is defined implicitly by

1-k\? . 2K (k%)
AN={—], with r=——"—-
1+k K(1-k%)

and K(u) is the complete elliptic integral of the first kind
[20].

The corresponding horizontal crossing probability follows
by symmetry

Fua(1/r) = Frp(r). 3)

while the crossing probability for dual spanning satisfies
1
fhv(r)=§[1—ﬁu(r)—fh,;(r)]thv(l/r). (4)

The basic relation between Ising domains and critical perco-
lation implies that, e.g., the crossing probability F3, coin-
cides with the probability for the Ising system to freeze into
a vertical stripe state as a function of r.

To test this basic prediction for the freezing probability,
we simulate the kinetic Ising model at zero temperature us-
ing single-spin-flip dynamics with the Metropolis acceptance
criterion—a spin is flipped if its energy decreases or remains
the same as a result of the flip. To make this simulation more
efficient, a list of “active” spins—those whose energy will

FIG. 2. (a) A state where four Ising domains meet at a single
point is dynamically unstable and evolves into (b) a state with no
singularities on the domain boundaries.

not increase upon being flipped—is maintained and con-
stantly updated during the dynamics. In each update step an
active spin is chosen at random and flipped. One Monte
Carlo step corresponds to each active spin flipping once, on
average.

We simulate many quenches from 7= to 0 on lattices of
dimension (256/r) X 256. For each value of r, we performed
2 X 10* simulation runs, with each starting from a different
random initial condition. We define a domain as a connected
cluster of nearest-neighbor aligned spins. Clusters are iden-
tified using a cluster multilabeling method [21]. To determine
whether a quenched system ultimately freezes into a stripe
state, one should, in principle, simulate until the system
ceases to evolve. The final stages of the evolution take a
disproportionately large amount of CPU time, however, and
it is advantageous to stop the simulation when the domain
mosaic first reaches its final state topology. For this Ising
system, our simulations indicate that after 200 Monte Carlo
steps, domain mosaics have reached the topology of the final
state with a probability that exceeds 0.998. Thus we may
identify the state of the system at this early time as the pre-
dictor of the topology in the final state.

Figure 3 shows our simulation results for the probability
for a specified ultimate fate of an Ising system with free
boundary conditions for a variety of aspect ratios r. The mea-

surements, labeled using the notation .72'(“.), agree well with
the corresponding exact crossing probabilities given in Egs.
(2)—(4). For the important special case of a square geometry,
r=1, Eq. (2) can be simplified to [22],

1 V3 27
fhv(l)—fhv(l)—4 477_1n16—0.1779... (5)
from which the probability of the Ising system coarsening
into a stripe state equals 275,(1)=0.3558.... An earlier nu-
merical estimate for the probability of reaching a stripe state
[1] is consistent with this exact result.

For periodic boundary conditions, a parallel set of results
can be constructed to again connect the ultimate fate of the
Ising system and percolation crossing probabilities. The na-
ture of the crossing probabilities is substantially more com-
plex for systems with periodic boundaries because spanning
clusters can wrap around the torus multiple times in the ver-
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FIG. 3. Probabilities of various domain topologies in the kinetic
Ising model following a quench with free boundary conditions: ver-
tical stripes (+), dual-spanning configurations ((J), and horizontal
stripes (X ). Error bars are about 1/3 the symbol size. The lattice
dimensions are (256/r) X256 for various aspect ratios between 0
and 1. Also shown are the corresponding exact percolation crossing
probabilities F,, F5, and 2F,, respectively, from Egs. (1)—(4).

tical and horizontal directions. There are two types of span-
ning clusters [14,23,24]. “Winding” clusters are labeled by
their vertical and horizontal winding numbers, (a,b). For
example, winding numbers (0,1) and (1,0) correspond to a
vertical and a horizontal stripe, respectively. A spanning clus-
ter that wraps around the torus once in the vertical direction
and once in the horizontal direction can have one of two
winding number pairs, (1,1) or (1,—1), and gives a diagonal
stripe configuration when the torus is unrolled onto the
square. The other cluster type is the “cross topology” in
which a spanning cluster is formed by the union of two or
more spanning clusters with distinct winding numbers.

Let P, ,(r) denote the crossing probability for a spanning
cluster with winding numbers (a,b) to exist on a rectangle
with aspect ratio r and periodic boundary conditions. This
probability is given by [14]

1
Pop(r) = > Z3a1301 = Zoalob1 — EZ(3I+1)a,(31+1)b
leZ

1

- EZ(3I+2)a,(SZ+2)b + Zoinaib | » (6)

where Z, , is a shorthand for Zm,n(% ;r); generally

e—ﬂ'g(mz/r+n2r)

Vg
Zm,n(g =5 o
Vrop(e™)
and 7(q)=¢"**11;~,(1-4¢*) is the Dedekind 7 function [20].
Additionally, the configuration with cross topology occurs
with probability [14]

Px(r)zé[Z(g,l;r)—Z(g,%;r)], (7)

where Z(g,f;1)=f2, ncrZim a(g:7). By symmetry, Px(r)
also represents the probability that no cluster spans the sys-
tem.
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FIG. 4. Probabilities of various domain topologies in the kinetic
Ising model following a quench with periodic boundary conditions:
vertical stripes (+), dual-spanning configurations ([J), and horizon-
tal stripes (X ), with error bars about 1/3 of the symbol size. The
lattice dimensions are (256/r) X 256 for aspect ratios between 0 and
1. Also shown are the corresponding exact percolation crossing
probabilities Py, Py 1, and 2Py, respectively, from Eqs. (6) and
7).

To compute the crossing probabilities numerically, it is
preferable to employ the asymptotic expansions [23]

Poa(r)=1-2p""+p’+2p" = 4p>* 4+ 3p 4 -+

2r
Piolr) = A ,?(PS—pls—p27+4p35+---),

Po(r) = ¥ = 0P = 2p2 420530 —2p15 4 - |

where p=e¢~™%" rather than evaluating the special functions
directly. These expansions provide an excellent approxima-
tion for the entire range of aspect ratio 0<<r<1 [23].

Again, a domain mosaic characterized by winding num-
bers (0,1) [or (1,0)] occurs with probability P (or P; ) as
given by Eq. (6), and coarsens into a vertical (or a horizon-
tal) stripe state. Similarly, a mosaic with cross topology oc-
curs with probability 2Py given by Eq. (7) and coarsens
directly into the ground state (either all spins pointing up or
all pointing down). However, a domain mosaic can also
reach the ground state by the indirect route of first forming a
diagonal stripe state with nonzero winding numbers in both
directions. As found previously for the specific case of the
(1,1) stripe, such states are long lived [1]; namely, they reach
the ground state at a time scale that is much larger than the
typical coarsening time O(L?).

In Fig. 4 we plot the realizations that evolve to a topology
with winding number (0,1) or (1,0) or to the cross topology
for a variety of aspect ratios r. These again agree well with
the exact percolation crossing probabilities that follow from
Egs. (6) and (7). In the specific case of the square system
(aspect ratio r=1), the probability of reaching an infinitely
long-lived stripe state is 0.3390.... Because the kinetic Ising
model can also evolve to diagonal stripe topologies, P
+P; o+2Px is less than 1.

In conclusion, the probabilities with which Ising ferro-
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magnets freeze into metastable stripe states correspond ex-
actly to crossing probabilities in critical continuum percola-
tion. This correspondence relies on the initial statistical
symmetry between up and down spins, which applies when
the system is quenched from equilibrium at any supercritical
initial temperature, 7>T7,. Our simulation results for the
probabilities to reach a specified ultimate fate (Figs. 3 and 4)
are in excellent agreement with theoretical predictions. Our
approach can be applied to arbitrarily shaped domains and
boundary conditions and also can be used to determine more
subtle characteristics, such as the distribution of the number
of stripes.

Our theory generally applies to phase ordering kinetics in
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two dimensions with nonconserved scalar order parameter,
as well as to quenches to nonzero subcritical temperatures. In
the latter case, the coarsening regime requires that £<<€(¢)
<L (where the equilibrium correlation length ¢ may be ar-
bitrarily large). Metastable stripe states will now persist for a
finite but very long time compared to the coarsening time
scale before the final approach to the equilibrium state.
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