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We propose a model of the evolution of the networks of scientific citations. The model takes an out-degree
distribution �distribution of number of citations� and two parameters as input. The parameters capture the two
main ingredients of the model: the aging of the relevance of papers and the formation of triangles when new
papers cite old. We compare our model to three network structural quantities of an empirical citation network.
We find that unique point in parameter space optimizing the match between the real and model data for all
quantities. The optimal parameter values suggest that the impact of scientific papers, at least in the empirical
data set we model, is proportional to the inverse of the number of papers since they were published.
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I. INTRODUCTION

The boom of networks studies of the last decade �1,2� has
potentially an impact of the structure of science itself. Net-
work measures can help creating better bibliometric quanti-
ties to evaluate scientific impact �3� and the sociological as-
pect of scientific collaboration and exchange of ideas.
Indeed, the study of scientific citations has become a subfield
of complex network studies �4–13�.

One typical feature of academic citation networks is that
the number of citations to a paper decreases with its age.
Inspired by this point, many works have been focused on
how a paper’s age influences its ability to attract new cita-
tions �9–11,13� �or, equally, new attachments in the net-
work�. Specifically, it is believed that the attachment rate �the
rate of new citations to an old paper� is dependent on both
the current number of citations �its in-degree in the network�
and its age. �Here we consider citations going back in time
meaning that out-degree is the number of references and in-
degree is the number of citations.� Another important con-
straint of citation networks is that they are time ordered—of
any pair of papers, one is the oldest. �It might, in practice, be
more relevant to consider papers published almost simulta-
neously unordered, but in this work, we assume this is a
negligible effect�. An important consequence of the time or-
dering is that citation networks are acyclic, i.e., there are no
closed �directed� paths. In Fig. 1, we show a small citation
network as an example. This network shows the references
of this paper and how they cite each other. In a recent paper
�14�, Karrer and Newman �KN� proposed a random graph
model for directed acyclic graphs. In the KN model, the ver-
tices are ordered by time and their in- and out-degrees are
preassigned �similar to the undirected “configuration model”
�15��. The vertices are added to the network iteratively �from
1 to N, with N being the network size� and for each new
vertex v, arcs �directed edges� are added from old vertices
whose in-degree is lower than their prescribed value until v’s
out-degree is as large as its prescribed value. Karrer and
Newman validated their model with empirical measurements

and get good agreements for some quantities �14�, but their
model does, as we will show, not generate as many triangles
as real citation networks have. �Note that there are two topo-
logically different directed triangles, but only one of them is
acyclic, which makes the word “triangle” unique in this
study.� In this work, we present a model of academic citation
networks that remedies the lack of triangles in the KN model
by building on mechanisms arguably at work in the scientific
process. In this paper, we first discuss the structure of em-
pirical citation networks, then present the model and last test
it against three network-structural quantities of real citation
networks.

II. EMPIRICAL MEASUREMENTS AND THE
PREDICTIONS OF THE KN MODEL

Before presenting our model, we state the most important
motivation for this study. In Fig. 2, we show the number Ti
of triangles in an empirical citation network consisting of
N=27 770 papers �or rather preprints� on theoretical high-
energy physics. There are in total 352 285 citations �or arcs,
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FIG. 1. �Color online� An example of a citation network—the
citation network of articles cited by this paper �with the indices
being the indices of the reference list�.
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directed edges� among them. The data set comes from pre-
prints posted on arxiv.org between 1992 and 2003. We define
a triangle as the pattern “paper A citing B and C, and B citing
C,” and calculate the number of such patterns present in the
network when going through the papers from 1 to N �the
order of their appearance on the website�. To reduce the com-
putational complexity, we sample each 200th i value. For
comparison, we also plot the predicted number of triangles
of the KN model and a simple extension of the KN model
introducing more triangles. When a new vertex enters the
network, rather than randomly matching all its out-degrees
with those in-degrees among the existing vertices, after first
matching one out-degree randomly with an in-degree belong-
ing to an older vertex w �such as the KN model�, we let as
many of the remaining arcs as possible to come from neigh-
bors of w �and after that, also the neighbors of its new neigh-
bor�. Note that by the definition of the KN model, both the
network size N and the degree sequences �both in- and out-
degrees� are identical with the empirical data. Both the KN
model and the extension underestimate the number of di-
rected triangles in the real network.

III. MOTIVATION AND DEFINITION OF THE MODEL

In this section, we will discuss and motivate our model.
We start by ordering the vertices temporally as in the real
data and their out-degrees �the number of citations� are kept
as the same as the original. �Alternatively, the degrees can be
drawn from some appropriate distribution.� We do not re-
strict the number of in-degrees—that will be an emergent
property of the model that we will use for validation. We add
the vertices one by one and fill up the out-degrees of the new
vertex before adding a new.

A common assumption is that the relevance of a paper
decays with its age �3,5,6,8–11,14�. In other words, science
will move away from any paper. For this reason, we let the
first arc from a new vertex i go to an old vertex with a
probability �i→j proportional to its age tj = i− j to a power �
�where a negative � reflects an attachment probability decay-
ing with age�. To fill up the remaining out-degrees of i, we

attach arcs with probability � to random �in or out� neigh-
bors of j and otherwise �i.e., with probability 1−�� attach
arcs to older vertices with probability �i→j as above. If there
is no available neighbor to attach to �we assume one vertex
cannot link to another vertex twice or to itself�, we make an
attachment of the first type. Note that the number of candi-
dates whom i can connect to increases with more out-degrees
in the system, i.e., with time. This triangle-formation step
�proposed in Ref. �16� as a model of scale-free networks with
a tunable clustering coefficient� is a mechanism that, we ar-
gue, fits well to citation networks. To put a scientific paper in
the right context, one cites papers of the same theme, since
these papers are similar to each other they are likely to each
other. This in itself means that we can expect many triangles,
if paper A cites B and C and B also cites C with a relatively
large probability, which is effectively the same as the triangle
formation sketched above. As a more explicit mechanism,
one can imagine that when working on paper A the research-
ers may find paper C from the reference list of paper B. In
sum, our model has two input parameters � and � �in addi-
tion to the degrees�, governing the two key ingredients: ag-
ing and triangle formation.

IV. MEASURED QUANTITIES

Following Ref. �14�, for each vertex i, we define a param-
eter

�i = �
j=1

i−1

kj
in − �

j=1

i

kj
out, �1�

where �i is thus the sum of in-degrees of the vertices that
have been added in the network before i �i.e., from the vertex
1 to the vertex i−1� minus the sum of in-degrees. As pointed
out in Ref. �14�, this parameter should satisfy the conditions
�i�0 for i=2, . . . ,n−1 and �1=�n=0. The interpretation of
�i is that it is the number of arcs that is connecting vertices
later than i to vertices earlier than i �14�. We will also mea-
sure P�kin�, the probability of randomly selecting a vertex
whose in-degree is kin, and Ti. After the networks are con-
structed, we measure these three quantities and compare
them to the corresponding empirical values. The results pre-
sented below for models are averages over 200 independent
network realizations.

V. RESULTS

Now we turn to the numerical results for our model. We
first investigate the model dependence on the parameters �
and � and compare the values of Ti and �i to the real data.
By construction, large � values give large numbers of tri-
angles. As seen in Fig. 3�a�, there are �unlike the results in
Fig. 2� parameters giving a number of triangles that matches
the empirical curves. A negative � value is important not
only to get Ti values matching the empirical data, but also to
obtain matching �i values �Fig. 3�b��. We have scanned the
regions of �� �−2,0� and �� �0,1� and found that the com-
bination �=−1 and �=0.99 gives the best fit to the empirical
data �17�. To give an overview of the model’s behavior, we
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FIG. 2. �Color online� The number Ti of triangles as a function
of the order the vertex is added i. The solid, dotted, and dashed lines
correspond to the empirical citation network of high-energy physics
papers, the KN model, and the extended KN model, respectively.
The values of Ti for the two theoretical models are averages of over
200 independent samples.
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plot three other combinations of � and � values in Fig. 3. In
Figs. 3�c� and 3�d�, we show the results for �=0 and �
=0.99. When �=0, the chance of acquiring new arcs is in-
dependent of age. The chance of reaching a vertex with a
triangle-formation step is proportional to the degree of the
vertex leading to a preferential attachment �an attachment
probability increasing with degree� for high � and low �.
�Note that the first network model with preferential attach-
ment was a model of citation networks �4�.� Figure 3�c�
shows that even though � is nearly maximal, the number of
triangles is not as large in the empirical data. The reason for
this is that there are more successful triangle-formation
steps—or, equally, that it is less probable to attach to a vertex
with lower total degree than the desired total degree of the
new vertex—for negative �. In Figs. 3�d� and 3�e�, we
present the results for �=0 and �=0. In this case, both the
aging effect and clustering effect are absent. Not surprising,

neither Ti nor �i matches the real data. Even though the arcs
reach longer back in time for this case, the number of arcs
passing i �i.e., �i� is lower. Data for �=−1 and �=0 are
plotted in Figs. 3�g� and 3�h�. We note that with the absence
of the triangle-formation step, not only the number of tri-
angles but also �i is underestimated. As a final comment to
Fig. 3, the cusps around i=21 000 are due to a change in the
raw data where the sampled database was split into different
categories and the sampled papers after this point cite, on
average, fewer other papers.

Our third quantity is the in-degree distribution that we
plot in Fig. 4. Both curves with �=0.99 fit the real distribu-
tion well. As mentioned, there is an effective �though not
necessarily linear� preferential attachment in this case, which
explains the broad distributions. �i puts strong constraints on
the in degree distribution—if both �i and the out-degree dis-
tribution would be fixed to the observed data �not only the
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FIG. 3. �Color online� Net-
work statistics for our model.
Solid lines correspond to the cita-
tion network of high-energy phys-
ics papers and the dashed lines
represent our model data. In �a�
and �b�, we use the model param-
eters �=−1 and �=0.99. �a�
shows the average number Ti of
triangles as a function of the index
of the added vertex i. �b� displays
the number of arcs passing i, �i as
a function of i. �c� and �d� corre-
spond to �a� and �b� but for �=0
and �=0.99. �e� and �f� show the
same for �=�=0. �g� and �h� also
correspond to �a� and �b� but for
parameters �=−1 and �=0.
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out-degree distribution as in our case�, then the in-degree
distribution is the same as the observed data. With low �
values, the in-degree distribution becomes much narrower
than the empirical data. Combining Figs. 3 and 4, we note
that though appropriate large values of � could generate net-
works with in-degree distribution fitting the empirical data,
the aging effect is needed to model the evolution of
scientific-citation networks. Taking all these observations
into account, both aging and triangle formation are seem to
be important mechanisms in the citation network.

VI. CONCLUSIONS

We have proposed a random, evolving network model for
scientific paper citations. In our model, the attractiveness of a
vertex �paper� decays with its age with power �; another
parameter � determines the number of triangle formations
�when a new paper cites two papers where one cite the
other�. We compared our proposed model to an empirical
citation network of high-energy physics preprints posted at
arxiv.org. The out-degree distribution is an input to our
model. In this paper, we take it from empirical data. We use

three quantities to validate our model—the number of tri-
angles, the number of arcs passing the vertex, and the degree
distribution. All these quantities are best modeled for param-
eter values �=−1 and �=0.99 �17�. From these observations,
our model suggests that in citation network of scientific pa-
pers, the probabilities of attracting new citations of the pa-
pers are about inversely proportional to their age �measured
in its position in the sequence of publication� and that there
is a strong tendency of citing papers where one paper cites
the other. For the future, we believe it would be informative,
as a complement to generative models such as the present, to
study the mechanisms of citations by interview studies and
questionnaires to researchers.
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FIG. 4. �Color online� The in-degree distribu-
tion P�kin� for our four parameter combinations
�indicated in the panels�.
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