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Simulation of the time evolution of the Wigner function with a first-principles
Monte Carlo method
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The implementation of Monte Carlo methods acting in the quantum phase space is hindered by the fact that
quantum phase-space information is available only through quasiprobability densities. In this work, we present
a first-principles Monte Carlo method employing a hidden variables representation. This allows the full quan-
tum time evolution of an arbitrary initial quantum state to be calculated by a classical Monte Carlo algorithm,
even for systems subjected to time-dependent potentials. Guidelines for implementing a practical algorithm are

presented.
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I. INTRODUCTION

The Wigner function is the quantum formulation of the
classical phase-space description, being equivalent to the
density matrix. It contains information about a particle’s po-
sition and momentum variables, albeit in a form which is not
easy to interpret classically because it is not positive
semidefinite. This property prevents the Wigner function
from being used as a true phase-space probability density. In
fact, it is claimed that the existence of these negative regions
of the Wigner function indicate the presence of purely non-
classical, quantum phenomena [1].

In the last couple of decades, the Wigner function has
been used to study an increasing number of physical sys-
tems; of great interest is the fact that, unlike the quantum
wave function, there are techniques able to measure the
Wigner function of the electromagnetic field, such as optical
homodyne tomography [2—4].

This way, it is natural to develop methods of efficient
calculation of the Wigner function and its time evolution.
One practical possibility is the extension of Monte Carlo
techniques to the quantum phase space, which is not trivial
because the Wigner function is not a true probability density.
While there are many quantum Monte Carlo algorithms for
the wave function or density matrix [5-11], there are few
such algorithms for the Wigner function [12]. Quantum
Monte Carlo methods, whether applied to amplitudes or to
phase-space calculations, fall into two basic categories: (1)
numerically solving the imaginary time Schrodinger equa-
tion using Monte Carlo integration techniques to obtain the
ground state wave function (or, in some cases, the density
matrix) [5-11] and (2) simulating a random walk of a system
of “particles” under a quantum force (usually obtained from
an approximation of the Wigner transport equation) to evolve
an initial configuration of these “particles” to obtain a
Wigner function at a later time [12,13]. In [12], the negativ-
ity of the Wigner function forces the use of a number of
simulated “particles” much greater than number of actual
particles in the real physical system, as well as the need to
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use a special prescription to generate the initial state. A re-
cent work [14] presents a rigorous derivation of an algorithm
capable of approximating the evolution of the Wigner func-
tion of a particular class of two-state systems using classical
trajectories and state transitions. In all of these cases, the
nonpositiveness of the Wigner function limited the choice of
the initial state to Gaussian Wigner functions. Thus, the fact
that the Wigner function is not positive semidefinite and the
fact that the quantum force is nonlocal, have both hindered
so far the implementation of a code simulating all aspects of
quantum dynamics using solely classical Monte Carlo
techniques.

A first-principles Monte Carlo algorithm capable of simu-
lating the time evolution of quantum probabilities of a one-
particle system, subjected to arbitrary time-dependent poten-
tial, has been proposed by Figueiredo [15]. This algorithm
makes use only of a classical noise source and a set of hidden
variables. It shows that quantum effects are obtained by a
specific renormalization of the time-evolved histograms. In
this work, we will present a formal presentation of a hidden
variable stochastic field that allows an extension of that al-
gorithm to the quantum phase space. Therefore, not only
quantum probabilities but also phase information contained
in the quantum amplitude can be obtained through this new
algorithm. This means that there is a first-principles classical
Monte Carlo method capable of simulating the whole range
of quantum phenomena for spinless particles.

II. TWO LEVEL TRANSITION MATRICES

In this section, the dynamics of a classical two-state sys-
tem is shortly presented. Then it will be shown how it can be
used to properly describe the dynamics of quasiprobability
densities. This enables the construction of a classical Monte
Carlo algorithm which could be used to simulate the time
evolution of a Wigner function. This two-state system de-
fines a kind of hidden variable acting on a probability space
from which quasiprobability values can be restored using a
simple algorithm.

Consider the binary random variable « and its associated
probability distribution P(t)=[p,(t) p,(t)]", where normaliza-
tion demands py(7)+p,(f)=1 and, as required of any classical
probability model, p, and p; are positive real numbers. We
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will assume that there are no memory effects, so that its time
evolution obeys a linear equation of the form

dP() (c(t) b(?)
dr  \a() d@)
where the real numbers a(z), b(t), c¢(¢), and d(¢) are the tran-
sition rates. The solution of this system can be put in the
form

)P(t) = r(t)P(1) (1)

P(1) = M(t,1) P(t,). (2)

Here, the matrix M(¢) is the cumulative transition matrix for
P in the (¢y,7) interval. Its off-diagonal elements describe the
probabilities of changes in the states of « and the diagonal
ones gives the probability of a staying in the same state.
Thus, M is positive semidefinite, and each of its columns
must sum to one. This condition also ensures the normaliza-
tion of P(r) at later times. Hence it has the general form

B(1,10) )
1-B(tt))"

1 - A(t9t())

A(t,15) 3)

M(t,1y) = (
Note that, while the general form of the cumulative transition
matrix is easily obtained, the cumulative transition probabili-
ties A(z,1,) and B(r,t,) do not have a simple relationship to
the matrix r(f) except in some simple cases (such as the case
of time-independent transition probabilities); however, the
exact forms of those coefficients are not needed for the for-

malism we present here. With these considerations in mind,
it follows from the listed properties of M [Egs. (2) and (3)]

( W(t) +v
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that a (classical) Monte Carlo code can readily be written
simulating the time evolution of a.

Now we will show how to make use of this system to
describe the time evolution of quasiprobabilities. In the next
section we extend our reasoning to the more general case of
random fields and show how it can be applied to the simu-
lation of quantum dynamics. In this sense consider a qua-
siprobability, that is a real-valued function W(¢) with a lower
bound —v, such that W(r)=-v for all t. Moreover, assume
|W(t)|=1 and obeys an equation of the form

O _ koo, @

dt

Solutions for this equation can always be put in the form
W(t)=K(t,1)) W(t,). By use of an appropriate definition of a
W-dependant two-level probability vector, we now show
how to define a formal stochastic process whose evolution
embraces all aspects of the evolution of W itself thus allow-
ing that well established techniques designed for classical
Monte Carlo codes be used in the simulation of W too. This
goal is got first by defining a binary stochastic process hav-
ing state probabilities given by

W(t)+v )

PU)z(l—W(t)—v

(5)
The time evolution of P must match both K(z,7,) and Eq. (1),
while preserving the time invariance of v, necessary to give
consistency to this definition. Then, using Egs. (1) and (3)
we get the equivalence

[1—A(1,ty) — B(t,10) ]W(zo) + [1 — A(2,1y) — B(t,19) v + B(1,1,)

1-W()-v ) - (1 —[1=A(z,19) = B(t,15) IW(ty) + [1 = A(t,1y) — B(2,10) Jv + B(t,1,) )

and both sides of this expression can be equated. In view of
W(t)=K(z,15)) W(t,) this procedure leads to an expression for
the transition matrix M(z,7,) whose elements can be ex-
pressed in terms of v and K as

A(t,tg) = (1 =v)[1 = K(2,1)],

B(t,1y) =v[1 — K(z,1)].
More specifically we get M in the form

1= (1-v)[1-K(t1)]

v[1 - K(1,10)] )
(1 -v)[1 - K(t,15)]

M(t,t0) = ( 1-v[1-K(t,1)]

(6)

which allows an immediate treatment of the evolution of P
using standard classical tools. The time invariance of v al-
lows an immediate recovery of W(z) simply given by P(r)
—v. This last step represents a renormalization of the histo-
gram generated by P and has no “classical” analog. Thus,

using this formalism, it is possible to define an extended
probability space (EPS) describing a hidden variable « and
its associated probability vector from which the dynamics of
the real number W can be readily obtained.

III. FORMAL HIDDEN-VARIABLE FIELD

Our main purpose, in this section, is to show how is pos-
sible to overcome the quasiprobability issues that arise when
trying to simulate quantum phase space. A brief summary of
its properties are listed in the Appendix. There a path integral
in phase space describing its time evolution is also presented.

For a system of n particles subject to a potential V(x,z),
the Wigner function obeys the equation

f(z,1) .

P m™'p -V flz,1) - %sin{gvr- V';}V(X,t)f(z,t) =0.
(7)

Here, V! acts only on the potential V(x,?) and V£ acts only
on the Wigner function f(z,r). Variable z comprises the
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whole phase-space variables. Defining the operator Wi(z.1)
Em_lp'Vx—%sin{%Vr-Vp}V(X,t) leads to Qﬁ;—’tﬂW(Z,t)
f(z,t)=0, which has the same form of Eq. (4) for each value
of z. Its solution is the Marinov path integral shown in the
Appendix [Eq. (A5). The short-time evolution kernel
K(z,t;z',t") of the Wigner function between two neighbor-
ing time slices t' and r=t'+¢, as presented in the Appendix,
is given by

1 3n
K(z,t;7',t") = (ﬁ) S"(x' +m 'ep —x)
Xf53”(p—p’+sVV(x,t)+Q)

Xexp{— é[Q S+ sg(x,s,t)]}d3”sd3"Q

(8)

where g(x,s,t):V(x—%s,t)—V(x+%s,t)+s'VV(x,t). Using
this kernel, the Wigner function at a later time ¢,,; can be
obtained from the initial time by a path integral

H K(zji1tjs1 ;Zj’fj)f(zo,to)dénzj' ©)
j=0

f(zn+l7tn+l) =

It is clear from this equation that the Wigner function has the
Markovian property.

The two delta functions in Eq. (8) effectively make the
dynamical variables z=(x,p) to evolve according to the fol-
lowing Langevin-like equations

x—x'=mep, (10a)

p-p =-eVV(x,1)-Q, (10b)

where Q plays the role of a noise source. These equations
define a path in phase space, where each path has a pseudo-
weight given by

3n .
Wk(x,Q,1) = (271%) fexp{— é[Q s+ sg(x,s,t)]}d3”s.
(11)

In general, neither the Wigner function nor this pseudo-
weight is positive semidefinite; this prevents the use of stan-
dard classical Monte Carlo methods to calculate its time evo-
Iution. In what follows we show how to use the EPS to
define a formal stochastic process based on the Marinov ker-
nel and capable of describing the time evolution of the
Wigner function.

Using the boundedness property of the Wigner function, it
is always possible to find a pair of uniformly bounded, posi-
tive semidefinite functions P(z,#) and p(z,7) and a constant
0=wv=1, such that

f@0) =p(z,0[P(z,1) - v] (12)

and by an appropriate choice of v and p we can set 0
= P(z,1)=1. The Marinov integral then becomes
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f(z,t)=Jp(z',t’)K(z,t;z’,t’)[P(z’,t')—v]d6”z'. (13)

Since we are working in phase space, we need to define a
two-state Markov field in order to proceed in an analogous
way to section II. For this reason, we now define the prob-
ability density vector Il(z,7)=p(z, t)(l p(ep))» Which is the
generalization to phase space of vector P(t; defined in Eq.
(5) for normalized p(z,7); in what follows, we obtain an
equation governing the time evolution of vector Il(z,7). In
order to proceed, we must first obtain a matrix analogous
matrix to Eq. (6); it must be a matrix density, which we
define as

e <y—<y—1<><1 -»)

(y-K)v )
(y=K)(1-v)

y-(y-K)v
~ (y-Kv (y=Kv )
"“((y—K)(l—v) (y-K)(1-») Y

Here, y(z,t;z',1") is a positive semidefinite integrable func-
tion chosen so that all elements of matrix M are positive
semidefinite; its primary role is to ensure convergence of
path integrals that will appear as a consequence of the
Marinov integrals. As we will see below, in an actual algo-
rithm, which must always operate on a finite region of phase
space, both y and p can be taken to be constants; in this case,
the formalism becomes much more similar to the analogous
case from Sec. II. From definition (14), it follows that

)
W2 )

for all functions g. Making use of these identities and Eqs.
(13) and (14), we find that the time evolution of the vector
(! ) from time ¢’ to time ¢ is given by

f(zJ))_f,{ (P) (v)}ﬁn,
(—f(z,t) =| p'| M(z,t;7',t") L_p -y L a7’
(15)

Defining p= [p’ yd*"z’' =0, this equation becomes

HEp(lfP>=JMp/(l )d6”z fMH doz’
(16)

With the restrictions we made for 7, p, and v, all elements of
matrix M are positive semidefinite; hence, P will also be
positive semidefinite since P’ is; the same also holds for 1
— P. This result is similar to the one obtained earlier [15] for
the quantum probability density, and defines a time-
dependent two-state system with real probabilities. However,
unlike the former formalism, this two-state system has the
Markovian property since the Wigner evolution kernel [Eq.
(A4)] does; this has the advantage of allowing data generated
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TABLE 1. Values of the constants used in the simulation of the
Gaussian potential well. In this table, m is the simulated particle’s
mass, V, and o are the potential’s maximum value and half-width
[Eq. (22)], B is the half-width of the first element of the Gaussian
nonorthogonal basis [Eq. (23)], € is the width of the time slice used,
and x,,c and p., are half the width of the phase-space box used.

fL=m=V0=,3=l

xmax=20
o=10
e=0.1

pmax = 8'xl']"l‘il)(

by the algorithm to be used as the initial conditions of new
simulations.

Recursive application of Eq. (16) leads to a chained Mar-
kov process defined by

/
P(211151141)
P(ZZ+1J1+1)< T H M (zp4 1114132 1) p(205 1)
1= P(zp15t141) =0
P(zp,1,
x( (Zo.1o) )d%,. (17)
1 —P(Z(),lo)

As a consequence, we show below that this path integral can
be calculated using a classical Monte Carlo code.

In order to obtain an expression more suitable for numeri-
cal work, we will select a compact region () such that, for
any desired accuracy 6>0, we have

f flz.d*z=1-6.
Q

Region () will be split into disjoint subregions (}; such that
Q=U ;. These definitions allows us to write a discretized
version of Eq. (17) in the form

P(z,1) ) EM,p,<1P

- P(z,1)

!

P(>A(2j, (18)

J

p(z, t)(

where the subscript j in F, M, p’, and P’ indicates the mean
value of the function in the subregion (), and A(); is the
volume of that subregion. Since () is compact, we can
choose v; so that y;AL);=1 for all j, and we can also take p
to be a constant. Thus, Eq. (18) takes the following
discretized form:

HE(lfP)

=2

-KAQ)(1-v) (1

- KAQ)v )
~ K;AQ)(1-v)

= l2‘,MH', (19)
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where Z=p/p'=[yd*'z'=3;y,AQ;=3,1 is the number of
subregions in (). Since matrix M and vector I’ are both
positive semidefinite and since their columns sum to 1, this
equation defines a path in a discrete two-level Markov chain
given by

1

(215 t1) parn = [T M@tz z0.10) . (20)
n=0

The total probability IT at the final time is given by the sum
of all paths divided by the normalization constant Z'*!. This
is similar to the result we obtained in the previous section:
we have defined an extended probability space in which the
time evolution of the Wigner function can be recovered from
the time evolution of a classical binary random hidden vari-
able field. It must be noticed that this hidden variable field
does not directly influence values of observables which de-
pend only on values of the Wigner function.

At time ¢, the resulting histogram obtained by Eq. (19)
must be inserted in the expression (12), which after a proper
renormalization, results in

1
=5 e
A practical realization of an algorithm simulating this sto-
chastic process may follow the same guidelines described in
[15].

As developed, this method is applicable to an arbitrary
number of spinless particles subjected to an arbitrary scalar
time-dependent potential. Its greatest advantage, however, is
that it allows the use of standard classical Monte Carlo tech-
niques in the study of quantum dynamics. These features
allow the method to be applied to the simulation of problems
where the Wigner function is already a useful tool, like trans-
port problems in semiconductors [16—18]. Moreover, it can
also be used for the study of time-dependent systems such as
the interaction of molecules with ultrashort laser pulses [19]
or the analysis of time-dependent many-body problems [20];
this can be readily achieved with our formalism by supplying
the correct time-dependent potential on each time slice.
However, the case of large multidimensional systems shares
the same difficulties that standard classical Monte Carlo al-
gorithms have for simulating large multidimensional me-
chanical systems.

IV. RESULTS OF A PRACTICAL IMPLEMENTATION

In order to test the formalism, we wrote a code that simu-
lates a simple one-dimensional system subject to an attrac-
tive Gaussian potential given by

2
V(x) = -V, exp(— ;7> . (22)

This particular system was chosen because it admits approxi-
mate eigenstate solutions [21] which were used to check the
accuracy of our work. This potential also has the advantage
of being bounded, making it more suitable for numerical
work. Finally, the fact that it is not harmonic allows us to test
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FIG. 1. Comparison of probability densities for Gaussian potential at various time steps. Solid lines are the eigenvalue and eigenvector
solutions, while symbols are the numerically integrated algorithm output. The algorithm output shows one out of every ten data points. Top
left: initial probability density. Top right: probability density at instant 123e. Bottom left: probability density at instant 228¢. Bottom right:

probability density at instant 333e.

all aspects of our algorithm which, in the harmonic case, is
considerably simpler.

The eigenstates associated to this potential can be written
by an expansion on a set of nonorthogonal normalized
Gaussian wave functions of the form [21],

2
= (k)12 (— o ) 23
) = (k) expl = 5 (23)
In this basis, they can be written in the form
I
Wy\(x,1) = E a)\k'pk(x)exp<_ %EJ)- (24)
k=1

Coefficients a,;, and energy eigenvalues E\ are given by the
generalized eigenvalue equation

> (T + V= E\Bjp)ay, =0, (25)
k=1

where T and V), are the matrix coefficients of the kinetic
and potential terms of the Hamiltonian and

Bj= f lﬂ;(x) i (x)dx. (26)

Equation (25) is of infinite dimension. With this in mind, we
decided to simulate a system in a bound initial state, as such
states naturally fit within a compact region of phase space.
Moreover, using a bound state allows us to restrict the range
of k to a maximum value k=k,,, since high values of k
correspond to near uniform Gaussians that do not contribute
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TABLE II. Comparison of simulated and numerical results. fg is
the Wigner function obtained by the simulation, while f. is the
Wigner function obtained by the approximate eigenstate solution.
The instants shown are the same as those presented in Fig. 1.
C(fs,fc) is the Pearson correlation coefficient of fg and fc.

. max(fs) min(f)
Time C(fs.fc) 0'(|fs_fc|) | 1- max(fi) | | - min(fi) |
123¢ 0.992 1.99x 1076 1.08% 5.30%
228¢ 0.990 2.18 X 107° 0.29% 0.69%
333¢ 0.986 2.65%107° 1.97% 0.99%

to the normalized wave function. It should be stressed that
this is not a limitation of the algorithm itself since the simu-
lation of a nonbounded state could either use different com-
pact regions for each time slice or one large enough to con-
tain the system throughout all time slices.

We numerically solved Eq. (25) using a value of k,,,=9.
The initial wave function ®(x,0) was built from the two
lowest energy eigenstates, W(x,0) and W(x,0), using the
same weight for both of them. This particular state was cho-
sen because it yields a bound state with interference effects.
The wave function at time ¢ is thus given by

| . .
O(x,1) = —r{\Po(x,O)exp<— LEM) + \If](x,O)exp<— iE,t)] .
V2 h h

27)

This expression can be used to calculate the Wigner function
for this system at an arbitrary time.

For the practical realization of the algorithm, we divided
the phase-space region into 401 X401 cells of equal size,
centered at the origin. We have ensured that this Wigner
function, and its associated probability density, are both nor-
malized to within 1%. The parameters used in the present
simulation are shown in Table L.

By means of the code we wrote, the zero-time Wigner
function was evolved until time slice 333, each one having
width e; this particular end time is slightly over (by about
0.04%) one full period of the system’s oscillation. To inte-
grate the Langevin equation, we have used an embedded
Runge-Kutta-Fehlberg (4,5) method provided by the GNU
Scientific Library [22]. It should be noted that no effort was
spent in code optimization or efficiency since the primary
focus of our work was to prove that such a code is possible.
The Wigner function at intermediate times can be obtained
from the histogram data of the appropriate time slice. Figure
1 displays a comparison between the simulated and calcu-
lated quantum probability densities at various times, each
obtained by numerical integration of the corresponding
Wigner function.

Table II shows the Pearson correlation coefficient of the
simulated (f) and calculated (f.) Wigner functions, the stan-
dard deviation of the difference fy—f. and the relative dif-
ference of maxima and minima of the Wigner functions, for
the same time steps as presented in Fig. 1. We ran a total of
1.0 X 108 histories for the full simulation; this corresponds to
an average of about 622 histories per phase-space cell. We
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also see from Table II that the standard deviation error be-
tween the simulated and calculated Wigner function is esti-
mated to be 9 X 107% per time slice. As expected, there is a
degradation over time of the error band of the simulation, but
all errors are consistent with the initial error of about 1% of
the normalization in the working region and the approxima-
tion we used for the evolution kernel. A simple extrapolation
from our algorithm indicates that, for similar accuracy, the
number of histories would grow approximately quadratically
with the number of time slices; this is a consequence of the
Markovian nature of the presented formalism. Similarly, and
in analogy to the classical case, we would expect that the
number of histories, for a given accuracy, increases exponen-
tially with the dimension of phase space. However, the same
techniques used for the classical case could be applied here
to improve efficiency.

V. CONCLUSION

We have reviewed and extended the formalism from [15]
to simulate the time evolution of an arbitrary initial Wigner
function forward by a finite amount of time. It is an alterna-
tive to other methods that are able to propagate an initial
wave function or density matrix. Moreover, since the algo-
rithm simulates quantum mechanics in phase space, expecta-
tion values of physical observables can be obtained by direct
numerical integration of classical phase-space observables
weighted by the Wigner function.

The sample given in the present work shows that the first-
principles Monte Carlo code we have developed admits a
practical implementation. Also, given that the formalism we
presented makes use only of true probability densities,
proven classical Monte Carlo techniques can be used to de-
velop algorithms able to simulate a more complex class of
physical problems where quantum effects are important.
Comparison of our simulation results with theoretical calcu-
lations indicates that the simulation error increases mono-
tonically with time. However, our simulations indicate that
this error can be made arbitrarily small, for any given time,
with a large enough number of histories. Our results show
that the code we developed was able to correctly describe the
quantum evolution. It gives complete information about the
quantum state of the system with a high temporal resolution.

As touched in [15], the existence of a classical Monte
Carlo method capable of fully describing all aspects of quan-
tum dynamics raises questions concerning possible phenom-
ena of stochastic nature underlying quantum physics. It must
be noted, however, that the operation of adding a reference
value to the Wigner function in order to obtain a probability
density, while mathematically and algorithmically straight-
forward, does not have an easy interpretation in terms of the
classical statistical theory. Thus, no physical meaning can be
easily assigned to this rule; hence, it has a purely operational
character. However, this should not be considered as a weak-
ness of the formalism since the wave function has a similar
status in the Copenhagen interpretation.
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APPENDIX: THE WIGNER FUNCTION

In this section we shortly list some properties of the
Wigner function. It has several interesting properties (see,
e.g., [23]), some of which make it an ideal candidate for use
in numerical simulations. It is a particular phase-space rep-
resentation of the density matrix, defined as the image of the
density matrix by the inverse Weyl map given by

1 3n 1 1 '
fx,p,0) = (ﬁ) f <x + Ey X — §y>e"l"y/ﬁd3ny'

(A1)
The first important property of the Wigner function we are
interested in is that it contains the same amount of informa-
tion as the density matrix of the system [24]. However, un-
like the classical case it cannot be properly treated as a prob-
ability density because it may assume negative values. In
addition, it is uniformly bounded [24],

A

p

2 3n
[f(x,p.0)| = (Z) : (A2)
These bounds are also valid for mixed states since the den-
sity matrix for such states can be written as a statistical mix-
ture of pure states [23]. As consequence of Eq. (A2), any
integral of the Wigner function in an arbitrary compact re-
gion of phase space is bounded; this property is extremely
important in the implementation of numerical algorithms
based on the Wigner function as it ensures that expectation
values of bounded observables are bounded.

Similarly to the quantum amplitudes, time evolution of
the Wigner function has the Markovian property; that is, it
can be written in the form

f(z,t)=JK(z,t;z’,t')f(z’,t')dé”z’ (A3)
[here, z=(x,p) and d®'z=d*xd*"p] where K(z,t;z',t') is
the Wigner evolution kernel. Since it will be needed for the
development of our formalism, we will present here a deri-
vation of its short-time approximation. Starting with the

short-time Feynman kernel for the probability amplitude
[26]:

B det(m) |2
v, = [ (27Tiﬁs)3"]

Xfexp{é[(x—x’) -z(x—x’) —8V(X,l):|}

XIT/I(X,,[,)dsnX,,

where e=¢—t' and m is the mass matrix, a diagonal 3n
X 3n matrix composed of the masses of each individual par-
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ticle, each with a multiplicity equal to 3 (the dimension of
the space). Inserting this expression into Eq. (A1), and mak-
ing use of its inverse,

<x+%y p x—%y> =ff(z,t)ei"'y/ﬁd3”p
we obtain
K(z,t;2',t") = L’?)Sf exp{i|:p’ Sa-p-w
[27h)e]™" h

(W—a)~m(x—x')}}
+

€

] 1 1
X exp{és{V(x — Ea,t) — V(x + Ea,t)]}
Xd"wd> .

Since the exponential in the integrand is linear in the variable
w, its integral can be explicitly performed, yielding a Dirac
delta function of the form &"[%(m 'ep+x’-x)]. Inserting
this in the above expression, we obtain

d m
—(2:;5’:))311 53”[;(m_18p +x' - x)}

f { i [m(x—x’) ,}}
X|expy—-Ta- | —-p
fi €
conl- s Lo
exp ﬁs X Za’
—-eVlx—-—-a,t d"a
2
1 3n
= (_zﬂ-ﬁ) &'(x" +m 'ep —x)
SS—— - =S
cos P 7 X 55
- VIx+ —s,t d’"s.
2

Using this kernel, the Wigner function at a later time #,,; can
be obtained from the initial time by a path integral

K(z,t;7',1") =

(Ad)

F@pista) = HK(Z]‘HJ]‘H§Zj,tj)f(209fo)d6”2j (A5)
Jj=0

in full consistency with the results obtained by Marinov [25].
However, given that both the Wigner function and its kernel
can take negative values, neither can be used in classical
Monte Carlo codes.
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