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The kinetic equation governing a strongly magnetized transverse plasma flow past a convex ion-collecting

object is solved numerically for arbitrary ion to electron temperature ratio 7. The approximation of isothermal
ions adopted in a recent fluid treatment of the same plasma model [I. H. Hutchinson, Phys. Rev. Lett. 101,
035004 (2008)] is shown to have no more than a small quantitative effect on the solution. In particular, the ion
flux density to an elementary portion of the object still only depends on the local surface orientation. We
rigorously show that the solution can be condensed in a single “calibration factor” M, function of 7 only,
enabling Mach probe measurements of parallel and perpendicular flows by probing flux ratios at two different

angles in the plane of flow and magnetic field.
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I. INTRODUCTION

The development of models describing the contact be-
tween plasmas and solid objects such as electric probes [1],
dust [2], or ionospheric spacecraft [3] is a problem of noto-
rious difficulty. Surfaces behave as ion and electron sinks,
inducing a localized electrostatic perturbation that needs to
be self-consistently resolved with the particles’ distribution
functions. Although the fast-paced development of super-
computers recently started to enable first-principles simula-
tions of a full system under various plasma conditions [4—6],
analytic or semianalytic treatments are possible in the regime
of strong magnetization, where the ion motion is constrained
across the field lines and the dynamics are effectively one
dimensional. This situation arises quite often in experimental
plasmas, for instance when considering (millimeter-sized)
Mach probes in tokamak scrape-off layers (SOL) [7], and in
fact most theories of magnetized probe operation rely on
one-dimensional models.

The present work focuses on ion collection by such
strongly magnetized probes, further assuming that the Debye
length is negligible compared with other scales in the prob-
lem (probe size and ion Larmor radius), and the electrons are
Boltzmann distributed. The first assumption, usually well
satisfied, implies that the plasma region of interest is
quasineutral and the thin sheath at the probe surface need not
be resolved; the latter is valid provided the probe is nega-
tively biased enough [1]. Because the only solution to the
one-dimensional divergence-free quasineutral plasma equa-
tions is spatially nonvarying, the probe presheath in the ab-
sence of transverse flow extends along the magnetic field
lines and is progressively repopulated by weak effects such
as ionization, anomalous cross-field transport or convective
transverse flow. A comparison between ionization and
anomalous transport effects can be found in Ref. [8]; we here
only consider regimes where ionization is not relevant.

Upon describing the anomalous cross-field flux as diffu-
sive, an isothermal fluid formulation of the model can be
solved [9,10], providing the theoretical calibration for a
Mach probe with electrodes facing parallel and antiparallel to
the field when the flow is field-aligned. This approach, heu-
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ristically based on an unknown diffusion rate, proved fruitful
because the ion current solution only depends on the ratio of
particle to momentum diffusion rates, which was argued to
be close to one [11]; the absolute value of the diffusivity only
affecting the presheath length. The result is usually expressed
by a calibration factor M, such that the ratio of upstream to
downstream ion flux density to the probe for a plasma flow-
ing at isothermal parallel Mach number M., is R
=exp(M.,/ M ). For equal particle and momentum diffusivi-
ties the model yields M.=0.41, in agreement with laser-
induced fluorescence (LIF) measurements [12] to within ex-
perimental uncertainty. The kinetic formulation of the same
model [13], accounting for the ion thermal dynamics, yields
similar calibration factors with slight dependence on the ion
to electron temperature ratio at infinity.

In situations where the plasma has a transverse flow com-
ponent M | due to strong radial electric fields in tokamaks’
edge for instance, diffusion is not required and purely con-
vective equations are more appropriate. The recently solved
isothermal fluid formulation of this model [14] predicts
for subsonic flows an ion flux ratio R=exp[(M.,
—-M, cot 7,)/ M ], where 7, is the angle of probe surface to
magnetic field in the plane of flow and magnetic field [see
Fig. 1]. M_,=1/2 exactly as anticipated in Ref. [11] for the
particular case of a semi-infinite probe, but the treatment in
Ref. [14] has the remarkable property of being applicable to
finite-sized probes of arbitrary convex shape.

The purpose of this publication is to solve the kinetic
formulation of the same convective, strongly magnetized
Mach probe model. This approach naturally provides infor-
mation about the ion distribution function in the presheath
and is not based on approximate fluid closures. After deriv-
ing the appropriate ion kinetic equation and discussing our
solution method, we show that the findings of Ref. [14] are
not a consequence of the isothermal approximation and ap-
ply for arbitrary ion to electron temperature ratios. In particu-
lar, (a) flux ratios for subsonic flows are still given by R
=exp[(M,—M  cot 7,)/M_], where M, varies with tempera-
ture between 1/2 and 1/v2r, and (b) the solution applies to
arbitrary-shaped convex probes. This straightforwardly al-
lows simple calibration of four-electrode Gundestrup-like
[15] Mach probes.
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FIG. 1. (Color online) Illustration of the “planar probe” geom-
etry. B and the parallel velocity v are in the e, direction, while the
cross field drift v, is along e,. e is the ignorable axis but supports
the convective electric field. The downstream region can be param-
etrized by (z,y) or (u,w), where u measures the fan angle cotangent
at the origin and w measures the parallel distance to the probe.

In the entire publication, Mach numbers “M” are normal-
ized to the isothermal sound speed at infinity although the
ion temperature does vary.

II. QUASICOLLISIONLESS CONVECTIVE MODEL
A. Presheath equations

Let us consider a planar probe, tilted by an angle 7, in the
plane of magnetic field Blle, and ion cross-field velocity
v lley. In the limit of infinite magnetization considered here,
v, is constant and constrained by its external driver, taken to
be a uniform convective electric field in the —e, direction.
We further assume that the probe is negatively biased enough
for the electrons to be isothermal and Boltzmann distributed

[1]:
n,=ns exp(¢), (1)

and model the plasma as quasineutral: Zn;,=n,=n. Here Z is
the ion charge, n;, are the ion and electron densities, 7, is
the electron density at infinity, and ¢=¢eV/T, is the electro-
static potential normalized to the electron temperature.

We account for anomalous cross-field transport through
random ion exchange between the perturbed region (or
presheath) and the outer plasma, taking place exclusively in
the e, direction at a volumetric rate ) [10]. This is admit-
tedly an oversimplified picture but models particles and mo-
mentum diffusing into and out of the presheath at equal rate,
which is consistent with reasonable physical arguments [11]
as well as experiments [12]. The key requirement of the so-
called “quasicollisionless” model is that ) be much larger
than the ion-electron momentum transfer Coulomb collision
frequency v;,, in order for the parallel ion dynamics to be
collisionless. The appropriateness of this approach, in par-
ticular with respect to a drift-diffusive parallel treatment, is
discussed in Sec. II B.

The problem geometry, a priori two-dimensional, is
shown in Fig. 1. The perturbed plasma can be divided into
three distinct regions: upstream and downstream presheaths
independent of each other and a shock which we do not need
to analyze. In each region, we write the ion kinetic equation
in steady state as
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where f(y,z,v) is the normalized ion distribution function in
the parallel direction, m is the ion mass, and v refers to the
parallel velocity variable.

In the unperturbed region, the ions are Maxwellian with
drift velocity v.. and temperature 7;.. Drift velocities will
usually be given in terms of isothermal Mach numbers M |
=v,/cyg and M, =v./cy, with the isothermal ion sound
speed defined by

ZT,+ T, \'?
co=\" | - 3)

We discuss in this publication the downstream equations,
the upstream physics being recovered upon replacing (7,,v)
by (7-17,,-v). It is therefore convenient to make the change
in variables illustrated in Fig. 1;

Z
u=-—
{Z -1 : @)
y Q
w=—[z-yu,]
vy

where u=cot 7 is the cotangent of the angle between the
magnetic field and the position vector (fan angle) and w is a
normalized distance to the probe along the parallel direction.
The probe coordinates are singular at u,=cot 7, and w,=0.
Defining the cold-ion sound speed c,,=(ZT,/m)"?, Eq. (2)
can then be rewritten as follows:

w-vZ 22U W |, )L
V=0 U)oy =— V=V )~
5 0u 0 u av u-u, L5 ow
dd if w
2
—c—— | + v, (fo—f).
°00w&v] u-u, ==/

)

Equation (5) is the general formulation of the strongly
magnetized Mach-probe model, including cross-field trans-
port by both diffusion and convective motion. The relative
weight of those two effects is measured by the Reynolds
number,

v u-—u,
Re(y) = Q—; = —WL (6)

B. Discussion of the diffusive limit

Initial investigations of the present model by Hutchinson
[9,10] in its isothermal fluid formulation and later by Chung
and Hutchinson [8] in the kinetic formalism, considered par-
allel flows (v, =0) only, hence Re=0 and the cross-field
transport required to repopulate the probe magnetic shadow
was purely diffusive. In the case Re<<1, Eq. (5) reduces to
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=v,(f=—1). (7)

Van Goubergen et al. [16] considered nonzero convective
velocity but still solved the diffusive limit implicitly assum-
ing Re<<1 as well.

The ion distribution function at the magnetic presheath
entrance (hence the collected ion current), solution of Eq. (7)
at w=0, is clearly independent of €): our model is therefore
not based on any estimate of this heuristic parameter. In fact
) does not even need to be spacially uniform, rather could
be function of z—yu,, (parallel distance from the probe sur-
face) provided the definition of w in Eq. (4) is replaced
by w=Q/v [(dz—u,dy). The numeric value of ) neverthe-
less affects the diffusive presheath length, scaling as Aw
~cylv |, ie., Ly~ cy/Q in physical units.

() can be related to an effective transverse diffusivity D |
by D, =QAx? where Ax,Ay are the probe extents in the
e, directions. Let us consider a probe characterized by
Ax=Ay=2 mm plunged in a tokamak SOL with the follow-
ing sample parameters: pure hydrogen plasma with n,
=10" m™3, T,,=T,=30 eV, and B=5 T. Measurements
performed in the Divertor Injection Tokamak Experiment-
(DITE) tokamak edge [17] and in the Plasma Interaction
with Surface and Components Experimental Simulator
(PISCES) facility [ 18] show that anomalous cross-field trans-
port in probe presheaths follows reasonably well a Bohm
scaling, where Bohm diffusivity is D | =7,/ 16eB. We there-
fore take Q=D /Ax*=10° s~!, while the classical ion-
electron Coulomb collision frequency governing parallel
transport would be v;,=1500 s7!, ie., v, <. As antici-
pated the parallel ion motion is collisionless, and when
Re(Ay)<<1 Eq. (7) is the appropriate diffusive equation de-
scribing the presheath.

C. Convective limit

The question is, can we really use the diffusive equation
when the cross-field velocity is not negligible ? Let us con-
sider again an equithermal plasma (Z7,=T};.), and anoma-
lous cross-field transport described by the Bohm diffusivity
D, =T,/ 16eB=QAx?. Substituting the ion isothermal sound
Larmor radius p,=\(ZT,+T;.)m/ZeB, the characteristic
Reynolds number Re(Ay) is

VL oy Ax Ax
QAy FAypy
The strong ion magnetization condition requires Ax> p,, let
us say Ax=20p,; (10 Larmor diameters in Ax). If we are
interested in measuring non-negligible perpendicular veloci-
ties, such as M, =0.1, Re(Ay)<1 implies Ay/Ax>64.
Mach probes are of course not built with such an high aspect
ratio, therefore Eq. (7) is only suitable to situations with
M, <1.

For finite values of M, we should rather consider the
opposite limit Re(Ay) > 1 when the second term in the right-
hand side of Eq. (5) can be eliminated and the physics be-
comes purely convective () cancels in wd/dw). The prob-
lem boundary conditions are that the plasma be unperturbed

Re(Ay) = (8)
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when u— o and w=w"(u), where w* is defined by w*(u)
=(u—-u,)/Re(Ay). w>w"(u) corresponds to the shock region
(y>Ay), hence not to a boundary in physical space. Pro-
vided w=w"(u), the above boundary conditions only depend
on u; the equation being furthermore hyperbolic in u, d/dw
=0 and the solutions only depend on u. This argument self-
consistently holds with ¢ being a function of u only since in
the quasineutral regime the potential is unambiguously deter-
mined by the local density. Of course if we were to consider
a finite Debye length plasma, whose potential is governed by
the three-dimensional elliptic Poisson equation, ¢ (hence f)
would a priori depend on u, w, and presumably also the
transverse position in the e, direction.

The appropriate kinetic equation that we need to solve is
therefore

af  , dpaf
— ~_2L2 )
@ Ui”)au 0 9u dv

)
coupled with quasineutrality ¢=In[[f(v)dv]. The corre-
sponding convective presheath length scales as L
~Aycylv .

c

D. Ion-electron symmetry

Because this work focuses on the ion saturation regime,
we have sofar considered the ions to be the attracted species
and treated the electrons as a Boltzmann fluid. A reasonable
question to ask is whether mentally inverting ions and elec-
trons would be sufficient to study the opposite regime of
electron saturation.

In the diffusive limit, the answer is most likely negative.
Indeed the electron-ion Coulomb collision frequency v,; is
larger than v, by a factor equal to the ion to electron mass
ratio, while anomalous cross-field transport is presumably
ambipolar, i.e., {) is equal for ions and electrons. Therefore
for the tokamak edge parameters considered in Sec. II B,
v,;= () and the parallel electron motion is collisional, gov-
erned by a parallel diffusivity D=7,/ (mv;,).

The answer is not so definitive in the convective limit. Let
us consider for example the tethered satellite system (TSS-1)
flight, a low earth orbit experiment aimed at studying elec-
tron collection by a positively biased spherical subsatellite
(radius 7,=0.8 m) [19]. The ambient plasma conditions were
B=03 G, n,=10"" m™, v, =8 kms™!, and T,.=T,.,
=(.1 eV. Therefore the electron Debye length was Ap,
=7.5 mm, and the average electron Larmor radius p,
=3.1 cm, a priori justifying a quasineutral, strongly magne-
tized treatment (\p,,p, <7,). The electron-ion Coulomb col-
lision mean-free-path being furthermore much longer than
the convective presheath length scale (I,;~700 m versus
L.~2r,v,/v, =40 m), the parallel electron motion was
collisionless. Unfortunately the repelled ions being suprath-
ermal (v,;=1 kms™'<v ) their density did not follow a
Boltzmann relation, and Laframboise has shown that
quasineutrality must be violated at the leading edge of the
subsatellite magnetic shadow [20]. It is unclear how to adapt
Eq. (9) to account for this phenomenon, and we will not
attempt to do so.
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FIG. 2. (Color online) Ion orbits in u-v space for an ion to
electron temperature ratio 7=1 at convergence of the numerical
iteration. Phase-space density at position u [Eq. (11)] is obtained by
tracing the orbit back to infinity, where the parallel ion distribution
function is known to be Maxwellian with drift velocity v...

III. CONVECTIVE SOLUTION

A. Solution method

Equation (9) shows that f is conserved along (u,v) orbits
that satisfy

dv , 0¢ldu
E|Orbit =—Cy

(10)

v-v.u

These orbits are not energy conserving but consistent with
the ions only feeling the parallel gradient of the electrostatic
potential while moving across the field lines. The work origi-
nating from the e, part of the potential gradient is exactly
canceled by the work of the convective field E n,=
—-v, AB, as the ions slowly drift in the e, direction with
velocity v,=-mc2,/(Ze)V pAB/B.

Equation (10) is invariant upon making the changes
UV—>U—U, and v u—>v, u-v.,. We can therefore solve Eq.
(9) as illustrated in Fig. 2, using the notation

M=V U~V (11)

for compactness. We start at infinity (u> 1), where the nor-
malized parallel ion distribution function is Maxwellian with

drift velocity v., and thermal speed v,;=(2T;./m)"?, and
fo0)=fu(v=02):
] (U - Uoo)2
folv) = rexp(— 5 . (12)
VN Uy

There a set of orbits, typically originating in the range v,
€ [v.—4v,;,v.+4v,], is integrated according to Eq. (10) us-
ing an explicit fourth-order Runge-Kutta scheme. The ion
distribution function at position u and velocity v is then
obtained by tracing the orbit back to its starting velocity vy:

J(u.v) = fulvo(p.v —v..)]. (13)

PHYSICAL REVIEW E 80, 036403 (2009)

As we do not know the potential gradient a priori, we
start with the initial guess d¢p/du=M | and iterate the orbit
integration with the self-consistent potential ¢p=In(n) up to
convergence, where the ion charge (electron) density is given
by

n(w) =”°°f flu,v)dv =nmf Sfulvo(u.&)1dé. (14)

Similarly, the parallel charge flux-density in the frame mov-
ing with velocity v., and ion temperature are

n(,u)(<v>—voo)=f & mlvolu. )1d¢, (15)

Ny
n(w)

The main quantity of interest, the (positively defined) ion
saturation flux density to the probe expressed in charge
per unit time per unit surface perpendicular to the mag-

IE f [£= ((v) = voo) Pfulvo(p, ©)1dE.  (16)

netic field is then given by I'y=[-n,v(x,)sin 7,
+n,M | ¢,y cos 77,]/sin 7,
FH = np[MLup - Mp]csl’ (17)

where n,=n(u,) and M,=(v)(u,)/c,. If the probe normal is
in the {ey,e,} plane (for example on a purely two-
dimensional probe or on the major cross section of a sphere),

the ion saturation flux density per unit probe surface is

FP=FH sin 77p. (18)

B. Isothermal fluid solution

The fluid equations (continuity and momentum) equiva-
lent to Eq. (9) are

1 on  n )
— - —+——=0,
cs(<v> b.k) du ¢y du
on n v)
5+—3(<v>—viu)3=0, (19)
where
ZT, + y.T;\'?
¢,= (6—7!!) (20)
m
is the Bohm ion sound speed and
1 dnT,;
= —— 21
Y Ti dn ( )

is the ion adiabatic index. c; is not the speed at which sound
waves would propagate in the presheath as it arises from
steady-state equations, rather than the speed at which infor-
mation travels in the parallel direction.

System (19) cannot be solved because it lacks closure (c,
is unknown), thus motivating our kinetic treatment. It is
however clear that for the density and fluid velocity to be
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nonuniform, the determinant must vanish. In other words
either n=n,, and (v)=v.,, or v, u—(v)=c,. This can be con-
sidered as the magnetized Bohm condition, valid at the probe
edge regardless of the presheath model if the probe is infinite
in the e, direction [21], but here derived in the convective
regime for the entire plasma, without the ey-invariance re-
quirement.

Equation (19) can be solved analytically when consider-
ing isothermal ions [14]:

n=n,exp(M-M.,), (22)

M-M,=min(O,M u-M,-1), (23)

where M=(v)/c. The isothermal approximation is exact in
the limit of small ion to electron temperature ratio at infinity
T'oc
T=—"- (24)
7T,
since the ion pressure becomes negligible compared to the
electrostatic force.

C. Analogy with the plasma expansion into a vacuum

Equation (2) with =0 is mathematically equivalent to
the one-dimensional quasineutral plasma expansion into a
vacuum considered by Gurevich and Pitaevsky [Eq. (7) in
Ref. [22]]

of af ZT,d¢ df
v—+—— -7 —— =

dz dt m dz dv

upon replacing time ¢ by the transverse flight time y/v ;. Not
surprisingly therefore, the solution method described in Sec.
IIT A essentially follows their approach. By analogy, we refer
to the region u— —o¢ as the vacuum.

An interesting point demonstrated in Ref. [22] is that in
the limit 7<<1, the ion temperature evolution is given from
the isothermal solution by T;/ T;.=(n/n.,)?. This property has
a clear physical explanation: if we assume thermal conduc-
tivity in a cold ion plasma to be negligible, f is Maxwellian
at each point in space and phase-space conservation imposes
invariance to max(f)=n/( V’FT,-).

D. Free-flight solution

The kinetic model [Eq. (9)] can be solved analytically in
the free-flight regime when the potential gradient effects
on the ion motion are neglected. The orbits in u—v space are
then vertical lines ending at u=v—-uv., and the ion distribu-
tion moments given by Egs. (14)-(16) have closed form ex-
pressions. Using the notation w;=u/cy and w=-cyl/v,;=
-[(1+1/7)/2]"%

n= nferfc(w,u,,), (26)

cg/w
n((v) —v.) = nmz%exm— w’ud), (27)
n

/

and
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FIG. 3. (Color online) Normalized ion distribution function at
different positions u [Eq. (11)] along the presheath for originally
equithermal ions and electrons (7=1).
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(28)

After tedious but straightforward algebra, the Bohm
sound speed given by Eq. (20) can be calculated analytically
and reduces to ¢;=v , u—(v). In other words, the magnetized
Bohm condition discussed in Sec. III B is marginally satis-
fied in the entire presheath.

Free-flight calculations are justified in the limit 7>1 (i.e.,
w=-1/42) since the electrostatic force becomes negligible
compared to the ion pressure. We refer to this limit as the
extended free-flight solution.

IV. RESULTS AND PHYSICAL DISCUSSION
A. Plasma profiles

We start the discussion of our numerical results with the
plasma profiles. Figure 3 shows the evolution of the normal-
ized ion distribution function f with position in the presheath
for originally equithermal ions and electrons (7=1). The ions
cool down as they are accelerated, and f has a sharp cutoff
corresponding to the probe shadowing ions streaming away
from it. The sheath edge, degenerate with the probe surface
in our quasineutral model, is located at p=p,,.

After computing the evolution of f for different tempera-
ture ratios 7, it is straightforward to take the moments [Egs.
(14)—(16)]. Density and temperature are shown in Fig. 4,
with the fluid [Eq. (22) with T;/T;,=(n/n.)*] and the ex-
tended free-flight curves [Egs. (26) and (28)].

A first noticeable result is that those analytic solutions,
valid, respectively, at 7<<1 and 7> 1, are envelopes for the
profiles at arbitrary 7; in other words the plasma properties
vary monotonically with temperature ratio, which is not ob-
vious a priori.

Figure 4 shows that except when 7=0 and the fluid solu-
tion has a slope discontinuity at M , u—M =1, the tempera-
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(a)

FIG. 4. (Color online) (a) Evolution of the electron density and
(b) ion temperature along the presheath parametrized by u;=M u
—M,. for different temperature ratios; the probe is located at u;,
=M up—M «. “Fluid” refers to Hutchinson’s fluid solution, and
“eFF” to the extended free-flight solution described in Sec. III D.

ture perturbation extends much farther than the density per-
turbation. High-order moments are indeed more sensitive to
the cutoff experienced by the ion distribution function on its
positive velocity tail. Except for the singular case 7=0, the
ion adiabatic index [Eq. (21)] therefore goes to infinity as we
approach the unperturbed plasma; this is required in order for
the magnetic Bohm condition to be marginally satisfied in
the entire presheath.

A further point of interest in Fig. 4(a) is that the density
(hence potential) profiles are monotonic. In particular there is
no localized region where the electrons are attracted,
strengthening a posteriori our Boltzmann assumption. This is
a consequence of the parallel ion motion being collisionless
and the probe being at ion saturation. The situation would be
fundamentally different if the probe were biased close to
space potential, i.e., operating in the collisional electron col-
lection regime yet far from electron saturation. Indeed the
potential would then overshoot at approximately one electron
mean-free-path from the probe sheath edge, in order for the
collected electrons to overcome Coulomb friction with the
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FIG. 5. (Color online) Evolution of the parallel ion flux-density
in the frame moving with velocity v., [Eq. (15)], normalized to the
isothermal sound speed cg;. “Fluid” refers to Hutchinson’s fluid so-
lution [Eqgs. (22) and (23)], and “eFF” to the extended free-flight
solution [Eq. (27)].

ions. This effect, first reported by Sanmartin in his kinetic
treatment of stationary electron-collecting probes [23] and
later recovered with fluid arguments [24] as well as experi-
mentally observed [25], is absent for our purposes.

B. Ion flux density to a flat probe

The ion flux density to the probe [Eq. (17)] can be rewrit-
ten

FH=[_ np(Mp_Moo) +np(MJ_up_M00)]Csl’ (29)

where n(M—-M.,)c,; corresponds to the parallel ion flux den-
sity in the frame moving with velocity v... This term can be
computed from our kinetic simulations using Eq. (15) and is
plotted for different values of 7 in Fig. 5.

Provided the flow Mach number is moderate and the
probe surface is not grazing the magnetic field, the interest-
ing physics lies around u;=0, recalling the definition w;
=M u—M.. It can be derived directly from the ion kinetic
equation that

(M =M. ==~ 4 O (30)
sl

n=ng+0(uy), (31)

where we defined ny=n(u;=0) and I'y=ng[v.—v(u;=0)]; re-
call that our calculations are performed in the downstream
region of the probe, hence n({v)—v,)=0. We can therefore
define a and B such that Eq. (29) expanded to third order in
=M u,— M., is

1—‘|| = [FO(I + alu’?p) + nOMlp(l + ﬁlu?p)csl] + O(IU’Ip)4-
(32)
The upstream physics is recovered upon replacing (7,,v)

by (7-7,,-v), enabling evaluation of the upstream to
downstream ion current ratio R=Fﬁjp/f“l‘) ©

036403-6



KINETIC SOLUTION TO THE MACH PROBE PROBLEM IN...

0.52
QLB 1
- -
- o Kinetic
0.48} AN - - - Fitting -
= IR Fluid
0.46} AN ——eFF 1
(&) \
= :
0.441 LN 1
AN
AN
N
0.42} =R 1
S
045 I R 1]
0.38 : : :
107 107" 10° 10' 10°
T

FIG. 6. (Color online) Mach probe calibration factor M. as a
function of temperature ratio 7. M, varies from M,=1/2 in cold ion
plasmas (“fluid”) to M,=1/+2 in hot ion plasmas (“eFF”). “Fit-
ting” refers to analytic expression (37).

_ FO(I + alu’%p) - n()lu‘lp(1 + Blu‘?p)csl
Lo(1 + CVM%,,) +nopp(l + BM%p)CSI
With the notation

+0(ug)*. (33)

1T

= 34
= 3 e (34)
and €=1/2+6(8-a)M?, Eq. (33) simplifies to
My 1 M? 1+ 6:“3 mp \*
R=1-"F4-=B_——=L10(=L]. (35
M, 2M> 6 M M,

€ can be calculated numerically from our kinetic code, but
this will not prove necessary as € is extremely small, of the
percent order. The analytic limits are €=0 at 7<<1 and €
=(1-3/m)/2=0.02 at 7> 1.

In other words,

ryr M,.-M
R= Do=eXP<TME> (36)

to second order in w;, exactly and almost to third order, with
all the physics included in M.

Calculation of M, requires the temperature dependence of
I'y and ny corresponding to the slice u;=M ju—M,=0 in
Figs. 4(a) and 5. Figure 6 shows our numerical solution,
interpolated between the fluid and extended free-flight limits
as follows:

M (1) = kM g+ (1 = M | 1., (37)
where analytic limits are
Myo=1/2 and M,_.=11\2m. (38)

The interpolating coefficient is fitted to the numerical solu-
tion by

1
k(1) = Eerfc(O.lZ +0.401n 7). (39)
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FIG. 7. (Color online) Upstream to Downstream flux ratio
against M.—M | u,, € [0,3] for different temperature ratios. The tan-
gents of the flux ratio logarithms at the origin have a slope given by
1/M (7).

Figure 7 shows the upstream to downstream ion flux ratio
against M.—M u, € [0,3]. For supersonic flows Eq. (36) is
in theory not valid, the error on In R at M,—M ju,=2 is
however only ~10%.

C. Extension to transverse Mach probes

The purpose of a transverse Mach probe is to measure
M | and M. The two main competing designs are rotating
probes, where a planar electrode such as schematized in
Fig. 1 is rotated to measure fluxes at different tilt angles 7,
and Gundestrup-like probes, where simultaneous measure-
ments at different angles are made by a set of electrodes
spanning a single probe head [12].

Although we derived and solved our governing equations
with the assumption that the probe is flat, the solution is
applicable to any convex probe, upon considering 7 as the
angle between the magnetic field and the line passing by the
considered point and tangent to the probe. This configuration
is illustrated in Fig. 8 for the case where the probe cross

Shock region

Downstream

, L
Isou Unperturbed region v,B

FIG. 8. (Color online) Schematic view of a convex probe with
circular cross section. Each point at the probe surface is paramet-
rized by the angle between the magnetic field and the local probe
tangent 7, or by #=n—/2. The plasma solutions are invariant
along the lines of constant u, the probe tangents.
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FIG. 9. (Color online) Angular distribution of ion saturation flux
density [I', defined in Eq. (18)] for a drift M.,=0.5 and M, =0.5
from our numerical kinetic solutions with 7=1, compared with the
isothermal fluid and extended free-flight solutions. @ is the angle
between the magnetic field and the normal to the probe surface in
the plane of flow and magnetic field.

section is circular. It is here easier to think in terms of 6
=7—m/2, angle between the magnetic field and the normal
to the probe surface, because for circular cross sections it can
be interpreted as the polar angle.

This was proved in the isothermal fluid formulation [14]
by analyzing the characteristics of the coupled continuity and
momentum equations. In the same publication, a second
proof was given by considering the convex envelope of an
arbitrarily shaped two-dimensional probe as the limiting case
of a multifaceted polygonal surface. For this second argu-
ment to be valid here, one needs to show that information
cannot propagate in the direction of decreasing u. Math-
ematically, this simply derives from the kinetic Eq. (9) being
hyperbolic in # in the quasineutral regime considered here.
The physical interpretation is that (a) the orbits shown in Fig.
2 are never reflected, in other words the ion trajectories curve
toward the probe, and (b) the magnetic Bohm condition is
always marginally satisfied, hence information traveling at
the Bohm sound speed (in the frame locally moving with the
fluid at velocity (v)e,+v ,e,) is confined to the lines of con-
stant u.

Figure 9 shows the angular distribution of ion saturation
flux density for a drift M..=0.5 and M =0.5, calculated
from the kinetic equation with 7=1. Comparison with the
isothermal fluid and extended free-flight solutions shows that
the ion temperature has little quantitative impact on the flux
distribution when normalized to the isothermal sound speed.
The difference is maximal at cos #=*1 and vanishes at
cos =0 where the probe either collects the unperturbed flow
(6=—m/2) or zero flux (6=7/2).

D. Mach probe calibration

The simplest experimental procedure to find M, and M.,
is to measure the upstream to downstream flux ratio at two
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different angles with either a flat or a convex Gundestrup
probe: R =I'(7,+m) /() and Ry=T' (19, +m)/ (7). It is
desirable to avoid grazing angles with the magnetic field in
order for the exponential calibration introduced in Sec. IV B
to be applicable, while maximizing the tilt spacings to limit
experimental noise. The optimal choice is therefore 7
=3m/4 and n,=m/4, yielding

M
Ml=7€(ln R,—InR,), (40)

M
szj(ln R, +InR,). (41)

Equations (40) and (41) require four measurements, while
physically only three single measurements should be needed
to find the problem’s three unknowns (n,,, M |, and M.,). The
temperature ratio 7 is indeed treated as an input, supposed to
be known from other diagnostics. Unfortunately M, would
only provide a three-point calibration valid to first order in
the flow Mach number, each additional order requiring an
additional calibration factor. Only probing flux ratios at
angles 7+ over 7 as in Eq. (33) takes full advantage of the
symmetries in the kinetic equation solutions, yielding the
compact, quasi-third-order formula (36).

If one is interested in M., only, it is in theory possible to
measure R on the magnetic axis (parallel Mach probe con-
figuration), and the calibration is then M,.=M_,In R. We
however expect the double measurement [Egs. (40) and (41)]
to be less sensitive to finite ion Larmor radius effects. Indeed
the choice n;=3m/4 and 7,=m/4 has the elegant property of
being meaningful to nonmagnetized Mach probes as well.
Particle in cell simulations [4] show that the unmagnetized
ion flux-density distribution on a spherical probe’s major
cross section is approximately given by I',>exp[-K cos(6
- 6)vyl 2], where v ¢ 1s the total flow velocity, 6 is the angle
of flow with respect to the e, axis, and K=1.34/c,, for 7
=3; the flux ratio at angle 6 is therefore R=I,(6
+) /T, (6)=exp[K cos(6—60p)v,]. The only possible values
of 7 such that there exists a scalar M, such that this flux ratio
can be expressed as in Eq. (36) are p==*w/4 or 7z
==*37/4 [yielding M.==*\2/(Kc,) on the sphere major
cross section].

V. SUMMARY AND CONCLUSIONS

The probe presheath solution at ion saturation developed
in this publication, derived from the kinetic Eq. (9), is valid
when coherent cross-field flow dominates anomalous trans-
port, ion magnetization is strong enough for the cross field
velocity to be constant, and parallel ion collisionality is neg-
ligible. Those conditions are usually well satisfied in the
presheath of Mach probes plunged in tokamak SOLs, in par-
ticular in the presence of strong radial electric fields.

Our key result is that to second and almost third order in
the external flow Mach number, the ion flux ratio to elec-
trodes whose tangents are oriented at angle »+ 7 and 7 with
respect to the magnetic field in the plane of flow and mag-
netic field is given by R=exp[(M..—M , cot 5)/M_] [Eq.
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(36)]. Although the model is not isothermal, Mach numbers
are normalized to the isothermal ion sound speed. M. is the
Mach probe “calibration factor,” function of ion to electron
temperature ratio_r only found to vary between M —y=1/2
and M | —.=1/2m=0.4 [Eq. (37)]. As can be seen in Fig. 6,
the exponential form (36) can be used for supersonic external
flows as well, albeit introducing a small error, of the order
~10% at M..—M | cot »=2 for instance. Measuring the flux
ratios at angles 37/4 and /4 then readily gives the external
Mach numbers [Egs. (40) and (41)].

Recalling the isothermal fluid solution [14] yields M,
=0.5 regardless of 7, we conclude that the isothermal ap-
proximation induces an error less than ~20% on M, which
might not be detectable in today’s Mach probe measure-
ments. Although not a proof, it is reasonable to expect the
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more sophisticated isothermal calculations accounting for
diamagnetic and self-consistent convective drifts of Ref. [26]
to be valid within experimental accuracy as well.

The diffusive Eq. (7), appropriate when anomalous trans-
port dominates convection, is mathematically similar to the
convective Eq. (9), hence yielding similar solutions. Chung
and Hutchinson [13] found M, =0.44,0.42,0.48, respec-
tively, when 7=0.1,1,2 for Eq. (7). This very convenient
observation suggests that the Mach probe calibration is not
strongly dependent upon the cross-field transport regime.
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