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We present experimental heat transport measurements of turbulent Rayleigh-Bénard convection with rotation
about a vertical axis. The fluid, water with a Prandtl number ��� of about 6, was confined in a cell with a square
cross section of 7.3�7.3 cm2 and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2
�105�Ra�5�108 and Taylor numbers 0�Ta�5�109. We show the variation in normalized heat transport,
the Nusselt number, at fixed dimensional rotation rate �D, at fixed Ra varying Ta, at fixed Ta varying Ra, and
at fixed Rossby number Ro. The scaling of heat transport in the range of 107 to about 109 is roughly 0.29 with
a Ro-dependent coefficient or equivalently is also well fit by a combination of power laws of the form
a Ra1/5+b Ra1/3. The range of Ra is not sufficient to differentiate single power law or combined power-law
scaling. The data are roughly consistent with an assumption that the enhancement of heat transport owing to
rotation is proportional to the number of vortical structures penetrating the boundary layer. We also compare
indirect measures of thermal and Ekman boundary layer thicknesses to assess their potential role in controlling
heat transport in different regimes of Ra and Ta.
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I. INTRODUCTION

Turbulent thermal convection plays a key role in many of
the phenomena associated with geophysical and astrophysi-
cal fluid dynamics �1� as well as providing a well-posed
problem for the study of fundamental fluid dynamics �2�. In
several important examples including oceanic deep convec-
tion �1� and convection in stars �3� and giant planets �4�, the
effects of rotation are critical in determining the nature of the
fluid motion. Rotation also provides an additional parameter
for understanding the origins of heat transport scaling in tur-
bulent convection, a topic of tremendous experimental activ-
ity in recent years �2,5�. In comparison, the research efforts
applied to rotating turbulent convection have been rather
modest arising from the pioneering theoretical work of
Chandrasekhar �6,7�. Experimental measurements of heat
transport in rotating convection include the seminal work of
Rossby �8� and later studies that also had qualitative flow
visualization �9�. Numerical simulations have also had sig-
nificant impact �10–14�. Here, we consider both rotating and
nonrotating convection and provide insights into heat trans-
port scaling of rotating convective turbulence. A short report
of some aspects of this work appeared previously �15�, and
further studies of velocity fields in rotating convection moti-
vated by this work were also published �16�. Recent experi-
mental work has elucidated the dependence of heat transport
on Prandtl number as well as on Rayleigh and Rossby num-
bers �17�, made measurements of velocity and vorticity fields
�18�, and related the crossover to rotation-dominated convec-
tion through an analysis in terms of Ekman boundary layers
�19�.

Rotating Rayleigh-Bénard convection can be character-
ized by three dimensionless parameters: the Rayleigh num-

ber Ra which is a measure of buoyant forcing, the Taylor
number Ta which measures the effect of the rotational Cori-
olis force, and the Prandtl number � which determines the
dominant nonlinearity in convection. These parameters are
defined by

Ra =
g�d3�T

�	
, Ta = �2�Dd2

�
�2

, � =
�

	
, �1�

where g is the acceleration of gravity, � is the thermal ex-
pansion coefficient, �T is the temperature difference across
the fluid layer of height d, � is the kinematic viscosity, 	 is
the thermal diffusivity, and �D is the physical angular rota-
tion frequency. Properties of thermal turbulence can also be
affected by the cell geometry characterized by the ratio of a
lateral length to a vertical length. For our square geometry,
we define the cell aspect ratio as 
�L /d, where L is the
lateral size of the cell.

Although Ra, Ta, �, and 
 completely define the param-
eter space of rotating convection, the behavior of different
quantities such as heat transport is complicated when one
parameter is varied while keeping the others constant. For
example, as Ra is increased at fixed Ta, the relative influence
of buoyancy and rotation changes, making an evaluation of
the influence of rotation alone difficult. To mitigate this ef-
fect, it is useful to define �13� a different measure of
rotation—the convective Rossby number Ro

Ro =� Ra

�Ta
�2�

which is a ratio of a buoyancy time scale �b	�d / �g��T� to
a rotational time �r	1 /�D. This definition is equivalent to
those used previously �11,20� and is closely related to other
definitions of convective Rossby number �10,21,22�.
Roughly speaking, the border between rotation-dominated
and buoyancy-dominated flows should be approximated by
the condition Ro=1.
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The quantity of interest here is turbulent heat transport as
measured by the Nusselt number Nu, which is the total heat
transported by convection normalized by the heat transported
by molecular diffusion alone. To appreciate the influence of
rotation on Nu, it is important to understand the dependence
of Nu on Ra without rotation. The investigation of nonrotat-
ing convection has been extensive over almost 40 years with
early work focused on classical theories �23–25� that pre-
dicted a power-law relationship of the form Nu=A Ra� with
�=1 /3. Later measurements, particularly those in helium
gas, suggested a value �=2 /7 with theory and early numeri-
cal simulations providing a solid basis for such a law. A
detailed review of these results was presented by Siggia �2�.
An extension �26,27� of the kinetic and thermal boundary
layer theory �28� that included an expanded analysis of com-
peting boundary and bulk dissipation processes produced a
phase diagram with power-law exponents of simple integer
ratios, i.e., 1/5, 1/4, 1/3, and 1/2, in each region. Because of
the finite extent of each region, one expects crossover effects
between different regions which suggests a form Nu
=a Ra�1 +b Ra�2 with specific predictions for the coefficients
derived from fitting a few data sets in each region: for �

6, the predictions are �1=1 /5 and �2=1 /3 �27�. In this
latter regard, high-precision experimental data for room-
temperature fluids �29,30� have been extremely valuable in
elucidating differences between a single power-law descrip-
tion and one involving two power laws with fixed coeffi-
cients. The measurements presented here are over a modest
range of Ra�109 and, thus, cannot distinguish between
these two forms. We compare our results with other measure-
ments of heat transport of nonrotating convection as a bench-
mark for considering the effects of rotation on turbulent heat
transport.

The effects of rotation on convection, especially on heat
transport, might be expected to be substantial given that ro-
tation profoundly changes the nature of boundary layer in-
stability and modifies the length scales over which motions
occur. Whereas thermal plumes are formed in long sheets
and are swept across the cell by mean flow, rotation spins up
these plumes into intense vortical structures. Furthermore,
rotation is known to shorten the linear length scale dramati-
cally as rotation is increased �7�. Additional ingredients in-
troduced by rotation are the Ekman pumping or suction im-
posed by the differential rotation of the boundary and the
interior flow and the dynamical constraints imposed by the
Taylor-Proudman theorem for strongly rotating flows. De-
spite these interesting factors, previous heat transport mea-
surements have not been well understood for a number of
reasons. Rossby, in his seminal paper on rotating convection
�8�, reported heat transport measurements for water and for
mercury as a function of Ra and Ta with emphasis on the
regions close to onset and of moderate Ra ��3�106�. His
measurements, as well as later measurements in helium �31�,
quantitatively showed that the convective onset was below
the theoretical prediction of linear stability analysis �6,7�.
This reduction in critical Rayleigh number was attributed to
a transition to azimuthally periodic modes localized near the
wall �31,32� but neither of the experiments had flow visual-
ization capabilities. The existence of such wall states was
later confirmed �9,33� using shadowgraph flow visualization,

but rather than being stationary the sidewall states were ob-
served to precess in the rotating frame counter to the direc-
tion of rotation. This resolved one difficulty with the data set
of Rossby. In what follows, we denote Rac �Rab� as the onset
Ra for the wall-mode state �bulk state�.

Other experiments �21,34,35� and numerical simulations
�10,12,22� of rotating convection involve an open upper fluid
surface where one can visualize the development of convec-
tive structures and the interaction of vortices and characterize
some of the statistics of the temperature and velocity fields.
These experiments are, however, not amenable to the mea-
surement of accurate heat transport.

The heat transport experiments �9� that motivated this
work used water in a cylindrical cell �36� with top and bot-
tom rigid boundaries, and measurements were made to
higher Ra �
2�107� than Rossby �8�. The normalized heat
transport Nu at a constant rotation rate appeared, however, to
asymptote to the nonrotating result at high Ra and did not
exhibit a clear power-law scaling over the limited range of
Ra. As noted above, maintaining a fixed Rossby number
mitigates against the crossover to buoyancy dominated flow
at high Ra and allowed numerical simulations �14� to show
that Nu scaled approximately as the 2/7 power for a fixed
convective Rossby number with no-slip top and bottom
boundary conditions. To test this prediction and to further
characterize heat transport as a function of rotation, it was
necessary to extend the heat transport measurements to
higher Ra than in �9�.

This paper is organized as follows. The experimental ap-
paratus and procedures are described in Sec. II. The heat
transport results of nonrotating and rotating turbulence are
presented in Secs. III and IV, respectively. Sec. V summa-
rizes the paper.

II. EXPERIMENTAL PROCEDURE

A. Rotating apparatus and cell

The experimental apparatus, shown schematically in Fig.
1, was an improved version of the one used previously in
studies of rotating convection �9,37�. The top-plate tempera-
ture of the cell was controlled by water flow which was
distributed evenly by a set of 12 turrets divided into two
groups pointing to 1/3 and 2/3 of the radius, respectively.

The water flow was temperature controlled by a refrigera-
tor circulator and then fed into the rotating frame through a
water slip connection. The flow was further temperature
regulated by a feedback temperature control unit that main-
tained the top-plate temperature constant with root-mean-
square fluctuations of less than 1 mK. A film heater attached
to the bottom plate provided a constant heat current to the
fluid layer. The power input was obtained by measuring the
voltage across the film heater and the current through it. The
latter was obtained from the voltage across a temperature-
controlled standard resistor.

All electrical wires were fed into the rotating frame
through an electrical slip ring and inside a hollowed steel
shaft which also served as the drive train for rotation. The
electrical noise of the slip ring was small enough that there
was no measurable difference in the signals with or without
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rotation. Rotation was provided by a microstepper motor
through a shaft, two gears, and a timing belt and was under
computer control. The gear ratio sets a lower limit for the
frequency of about 0.01 Hz. The maximum frequency sur-
veyed was 0.5 Hz.

The convection cell was constructed with aluminum top
�1.27 cm thick� and bottom �0.64 cm thick� plates and Plexi-
glas sidewalls �0.32 cm thick�. The aluminum plates were
anodized to prevent corrosion in water. The cell had a height
d=9.40 cm and horizontal dimensions Lx=Ly =7.30 cm
with an aspect ratio of 
=Lx /d=0.78. The cell’s bottom and
sides were insulated by 2.5-cm-thick Styrofoam to reduce
thermal losses from radiation and conduction or convection
by air. Four thermistors were embedded in the top plate at
positions �x ,y�= �Lx /4,Ly /2� , �3Lx /4,Ly /2� , �Lx /2,Ly /4� ,
�Lx /2,3Ly /4� with the vertical centerline of the thermistor at
0.32 cm from the fluid. The four bottom thermistors were
positioned similarly but at a vertical distance of 0.23 cm
from the fluid. The four thermistors in each plate gave the
average plate temperature. The wires from the film heater
and from the four thermistors were heat sunk on the bottom
of the cylindrical can, which was maintained at the same
temperature as the top plate.

At the top of the apparatus, a thermistor probe could be
inserted into the cell to measure the temperature at a point
�or small number of points� within the cell. The probe was a
0.32 cm stainless steel tube that penetrated the top plate
through a snug fit hole at the plate center. The height of the
probe was adjusted by a stepper motor that was under com-
puter control. Using this probe one could measure the mean
vertical temperature profile including the thermal boundary
layer structure. One probe had a single thermistor along the
cell centerline whereas a second probe had five thermistors
positioned along a line spanning about 70% of the diagonal
distance in the cell to allow measurement of lateral variations
in the temperature distribution. Details of the temperature
measurement and results on the local measurements of the
temperature field and thermal boundary layer will be pre-
sented elsewhere.

B. Heat transport

Heat is transported more efficiently by convection, where
heat can be advected by the fluid motion, than by conduction
where heat is transported solely by molecular diffusion. The
enhancement of thermal transport by convection is character-
ized by the Nusselt number Nu=Kef f /K, where Kef f and K
are the effective thermal conductance and molecular thermal
conductance of the fluid layer, respectively. In an experimen-

tal realization of convection, heat Q̇ is applied to the bottom
plate while the top plate is maintained at constant tempera-
ture Tt. Most of the applied heat flows through the fluid but a
small amount is lost to parasitic thermal conductance includ-
ing heat flow through the cell side walls, thermal conduction
along other pathways such as wires or foam insulation sur-
rounding the cell, and thermal radiation between the cell bot-
tom plate or sidewalls and surfaces at different temperatures.
An accurate measurement of fluid heat transport requires ac-
counting for these different parasitic conduction pathways
and properly subtracting them from the total measured heat
transport. Below the onset of convection, the background
conductivity can be measured and effectively subtracted
from the total heat transport contribution provided that the
thermal conductivity of water, available from the literature,
is assumed. For turbulent convection in room-temperature
experiments, this is difficult to accomplish because if �T

10 K corresponds to the maximum achievable Ra
109,
then the onset of convection occurs at �Tc
2�10−5 K, far
below experimental resolution. This problem can be over-
come by rotating the cell, thereby increasing the onset of
convection by about four orders of magnitude �7� �note
�Tc	Rac	Ta2/3�, so that 
Tc
0.2 K, thereby allowing the
background thermal conductivity to be measured directly.
We now describe this procedure in detail.

The background thermal conductance was determined to
be Kb=0.0423�0.0004 W /K, comparable to the water lay-
er’s thermal conductance K=0.0341 W /K at a cell mean
temperature of 21.5 °C. Assuming that Kb is independent of
the mean temperature of the cell, the Nusselt number is given
by

Nu =
Q̇/�T − Kb

K
, �3�

where �T=Tb−Tt is the temperature difference across the
water layer with Tt and Tb being the top-plate and the
bottom-plate temperatures and K is the thermal conductance
of the water layer at the mean temperature T0= �Tt+Tb� /2.
Subtracting the sidewall conductance is important in these
measurements because it can account for as high as a 10%
correction at the smallest Nu measured for the purposes of
determining scaling behavior, which is Nu�15. The top and
the bottom temperatures are corrected for the temperature
drop in the aluminum plates although this correction was
always less than 0.3%.

In our experiment, we measured Kb at a single tempera-
ture because the temperature dependence of the background
terms is quite small and does not affect the data presented
here. To evaluate the systematic error in our measurements
of Kb, we have estimated the different contributions in that

Stepper
Motor

Stepper
Motor

In
Out

Thermistors

FIG. 1. Schematic of the experimental apparatus.
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quantity. The major contributors to Kb are the Plexiglas side-
walls, the insulating foam, the electrical wires, and thermal
radiation. The first three contributions have very weak tem-
perature dependence �less than 1% change over a 20 K tem-
perature difference� and small magnitude, estimated to be
0.006, 0.006, and 0.003 W/K, respectively. The rest of the
measured background heat transport, about 60% of Kb �

0.027 W /K�, comes from a series combination of conduc-
tion through the foam, convection in the air surrounding the
insulation, and from thermal radiation from the outer sur-
faces of the insulation to the surroundings, which are main-
tained at the top-plate temperature. The top-plate temperature
was held constant and the bottom-plate temperature was
changed by a maximum of 20 K corresponding to the maxi-
mum heat input. This produces about a 2 K increase in the
average temperature of the radiating surfaces, or about a 2%
increase in radiated heat, which results in about a 0.02 over-
estimate in Nu. Therefore, for the measurements with fixed
Tt, Kb can be taken to be constant as the correction to Nu is
less than 0.1%.

This analysis neglects an important point regarding the
heat transported through the sidewalls �38�. Rather than sup-
porting a linear temperature profile as in the nonconvecting
state where the background is measured, the sidewalls are in
contact with a turbulent fluid that is approximately isother-
mal in the bulk of the flow. For nonrotating convection this
effect leads to an enhancement of heat transport through the
sidewalls in the turbulent state. For conditions similar to
those presented here �thin Plexiglas walls relative to the lat-
eral extent of the system�, however, the correction to the total
heat transport was shown by numerical modeling �38� to be
small, ranging from about 2% for Nu=10 to 1% at Nu
=100. Our sidewall is thicker than the one used in the nu-
merical model by about a factor of 2, so in the worst case
these values might be twice as large. Applying a correction
of this order shifts the exponent of a power-law fit by at most
1% �higher� and the constant term by about 7% �lower�.
These estimates contribute to the systematic error in our re-
sults but we do not explicitly correct for the sidewall effect
in the data presented below. To properly account for the side-
wall in a systematic way for rotating convection, one would
need to take into account the mean vertical temperature gra-
dient that develops in rotating thermal convection �13,39�.

C. Parameter space

The parameter space for rotating convection is defined by
Ra and Ta, which are proportional to the physical control
variables of �T and �D, respectively. In Fig. 2, the param-
eter space is shown over a range which encompasses our
experimental measurements. The shaded region denotes the
area in which most of our efforts are focused.

The limitations which determine that area are the range of
measurable �T for a given cell height d; a four-decade varia-
tion in Ra was obtained by varying the temperature differ-
ence across the cell from 2 mK to 20 K. The Taylor number
for the shaded area ranged from about 1�106 to 5�109,
corresponding to rotation frequencies from 0.01 to 0.5 Hz.
The lower limit was determined by the range of stability of

the stepping motor given a particular gear ratio. By reducing
that ratio, lower Taylor numbers could have been investi-
gated but this proved unnecessary as the interesting range of
Ta was spanned with the chosen gear ratio.

During the experiments, we fixed some parameters and
studied the dependence of measured quantities on the others.
For instance, we fixed Ra to study the dependence on Ta, and
vice versa. One important parameter, the convective Rossby
number Ro which provides a relative measure of buoyancy
relative to rotation, was maintained fixed by varying both �T
and �D for each data point. The contours of constant Ro,
plotted in Fig. 2, are approximately straight lines in the log-
log plot �small deviations arise from variations in � with Ra
of about 20% over the full Ra range, discussed in detail
below�. Numerical simulations of turbulent rotating convec-
tion with �=1 �13,14� followed the contour of Ro=3 /4
where buoyancy and rotation had roughly comparable impor-
tance. This particular line is noted in the figure. Several other
sets of data shown in the figure are discussed later. Overall,
the parameter ranges in our experiments fall roughly into the
region studied in open-top experiments �21,34,35�; the pa-
rameter space of experiments on rotating convection prior to
about 1990 was summarized in �21�. To compare between
the two parameter spaces, one needs to notice that the flux
Rayleigh number used in the open-top experimental param-
eter space is related to Ra by Raf =Nu Ra so that the highest
Ra in our experiments, where Nu
60 corresponds to Raf

3�1010.

III. HEAT TRANSPORT IN NONROTATING CONVECTION

In this section, we present experimental results for nonro-
tating convection. This enables us to compare our results

109

104

105

106

107

108

RO=3/4

106
1010109108107

Ta

R
a

Chandresekhar (1961)

0

Wall-mode Ra c

Conduction

FIG. 2. Parameter space of Ra vs Ta. Most measurements were
conducted in the gray area by fixing Ra, �D, or Ro. The measure-
ments at �D=0.0 and 3.14 rad/s �Ta
5.0�109� started at Ra as
low as 5�105. Five solid lines in the gray area represent five dif-
ferent Ro �from right to left, 0.30, 0.52, 0.75, 1.15, and 1.49� used
in the measurements. Data ���, from heat transport measurements
at constant �D, set the lower bound of Ra above which Nu could be
expected to exhibit turbulent convection. Symbols ���, deduced
from Nu data at fixed Ra, represent the loci of maximum Nu at
constant Ra. The data ��� at the highest Ta
5�109 spanned the
largest Ra number range. The theoretical predictions of bulk �7� and
wall-mode �40,41� convective onsets under rotation are shown as
solid and dashed lines, respectively, and labeled in the figure.
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with existing theories and with other nonrotating convection
experiments, of which there are many. It also serves as a
reference for our results on rotating convection. We concen-
trate here on measurements of heat transport in fluids with
Prandtl number �
6.

The Nusselt number of nonrotating convection measured
with fixed Tt is shown in Fig. 3 as a function of Ra for
4�106�Ra�5�108. The results are reasonably well
described by a power law with scaling coefficients A
=0.158�0.003 and �=0.289�0.002, which were obtained
by fitting all data for 4�106�Ra�5�108 shown in
the figure. Fitting the data between 4�107 and 5�108

yields slightly different values: A=0.164�0.003 and �
=0.286�0.002. These latter values have the virtue of being
derived from a range of Ra that is more fully in the turbu-
lence regime but with the disadvantage of a shorter scaling
range. To account for this systematic uncertainty we take A
=0.164�0.006 and �=0.286�0.003 as the best estimates
for the scaling coefficients. The exponent is very close to 2/7
and agrees well with earlier work as summarized in Table I.

Although the 2/7 value has been shown not to describe heat
transport data over a much larger range of Ra �29�, we use it
here for convenience. Further, the uncertainties associated
with the exponents and coefficients are the result of statisti-
cal fits and underestimate the systematic errors associated
with the different experiments.

Compared to the scaling exponent �, the coefficient A is
quite different from one experiment to another. A is sensitive
to the exponent and a precise determination of A requires a
larger range of Ra than has been available in any of the
experiments using water. Fixing the exponent at 2/7 and
computing a value for A2/7 �equivalent to Nu /Ra2/7� at dif-
ferent Ra give a better comparison between data sets �see
Table I�. For the water experiments and for 107�Ra�109,
the coefficients agree quite well except for the experiments
of Solomon and Gollub �44� where a liquid mercury bottom
surface may account for the discrepancy. All of the data re-
ported earlier and listed in Table I do not directly measure
the background heat transport contribution that we are able
to account for using rotation. This background measurement
is important in eliminating systematic error for smaller Nu.
An average over all the data sets for convection in water
yields A=0.161�0.007 and �=0.287�0.008 with no statis-
tically significant dependence of Nu on 
. In summary, our
data for nonrotating convection agree well with earlier re-
sults despite the significant variation in aspect ratios between
experiments.

We also took heat transport data at fixed mean-cell tem-
perature T0 to estimate the Prandtl number dependence of
the heat transport �15� �not reported here�. We can use that
data to correct the data at fixed Tt. In the fixed Tt measure-
ments reported in the remainder of this paper, we had a
variation in the range 21.5�T0�31.4 °C �and resultant
variation 6.7���5.2� corresponding to changes from the
lowest to highest heat input. Such nonconstant � or T0 results
in an uncertainty in Nu on the order of 0.8%. We interpolate
the Nu data to a constant mean temperature or a constant �.
We choose T0=26.0 °C �where �=5.93� as the reference
temperature which was about the average of the mean tem-
peratures in the experiments. The interpolated value is given

10
7

10
8

Ra

10

100

N
u

FIG. 3. Nu vs Ra for nonrotating convection. The solid line is
the power-law fit Nu=0.158 Ra0.29 over the range 4�106�Ra
�5�108. An equivalent fit is Nu=0.26 Ra1/5+0.047 Ra1/3.

TABLE I. Values of heat transport scaling parameters: A, �, A2/7 �Ra=107�, A2/7 �Ra=108�, Ra range, 

�C: cylindrical with 
=diameter /height, S: square with 
=width /height, R: rectangular with 
x�
y�, and
reference. All the experiments listed here used water as the working fluid. The Prandtl number for different
experimental conditions varied slightly but was in the range 4���7.

A �
A2/7
�107�

A2/7
�108�

Ra range
��106� 
 Reference

0.131 0.300�5� 0.165 0.170 0.03–2 2.8–10 �C� Rossby �1969� �8�
0.183 0.278 0.162 0.159 0.3–100 1.5�2.5�R� Chu and Goldstein �1973� �42�
0.145 0.29 0.155 0.156 30–4000 3.5–14 �S� Tanaka and Miyata �1980� �43�
0.137 0.275�7� 0.115 0.112 2–200 0.71, 1.6 �S� Solomon and Gollub �1991� �44�
0.129 0.299�3� 0.160 0.164 0.1–20 2.0 �C� Zhong et al. �1993� �9�
0.19�4� 0.28�1� 0.172 0.170 1–400 4�1 �R� Chillá et al. �1993� �45�
0.145 0.292 0.160 0.162 400–7000 1.0 �C� Cioni et al. �1996� �46�
0.16 0.281�2� 0.147 0.145 800–6000 1.0 �C� Shen et al. �1996� �47�
0.164�6� 0.286�3� 0.164 0.164 40–500 0.78 �S� This work

0.154 0.291 0.168 0.170 3000–60000 1.0 �C� Nikolaenko and Ahlers �2003� �30�
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by Nu=Num�� /5.93�0.029, where Num is the measured Nus-
selt number using Eq. �3�. The difference between the inter-
polated and the measured values of Nu is less than 0.8% and
does not change the scaling coefficients within their specified
error bars. Nevertheless, the interpolated values are reported
in Fig. 3.

One important feature of turbulent convection is the large-
scale circulation that is driven by an accumulation of thermal
plumes that congregate near the lateral boundaries �2,5�. The
general circulation in our cell was visualized using glass en-
capsulated thermochromic liquid crystals �TLCs�. A white
light sheet about 0.1 cm in width was used to illuminate the
cell from the side and a black background was provided for
good contrast. The mean-flow direction was typically across
the cell diagonal. Flow reversals were observed as was a
shifting of the main diagonal circulation in a clockwise or
counterclockwise direction as viewed from above. Occasion-
ally, the flow would shift to the other cell diagonal. This
cross diagonal flow has been observed before in convection
cells with square cross section �44�. In addition to the large
diagonal flows there were often small recirculating cells in
the corners and along the bottom-side boundary. Viewed
from above the thermal plumes near the bottom boundary
layer were arranged into coherent sheets which were swept
up by the mean flow. This was also seen in a number of
convection experiments in water where the flow is easy to
visualize �43,44,48�.

IV. HEAT TRANSPORT IN ROTATING CONVECTION

Heat transport measurements in the presence of rotation
are complicated by the changing influences of buoyancy,
proportional to Ra, and rotation, proportional to �D. The
simplest thing to do experimentally is to fix �D and vary �T.
Because the mean temperature changes with �T �fixed Tt�,
however, Ta changes owing to the temperature-dependent
viscosity of water. This can be as large as 25% over the Ra
range that we studied. As noted above � also changes some-
what but that influence is small. Even constant Ta is not the
appropriate variable to hold constant if one wants to evaluate
the behavior of Nu as a function of Ra for a constant rota-
tional forcing. From previous heat transport measurements
�9�, it appeared that Nu at fixed �D was enhanced by rotation
for intermediate Ra but seemed to asymptote to the nonro-
tating value of Nu at higher Ra. This situation was clarified
by a numerical simulation of rotating convection �13,14�
where a proper measure of rotational forcing is defined by
the convective Rossby number Ro. Ro
1 should mark the
border between strongly rotating convection with Ro�1 and
weakly rotating convection with Ro�1. In the numerical
simulations of rotating convection at fixed Ro=0.75, Nu
scaled approximately as Ra2/7. Here, we present heat trans-
port measurements to higher Ra than previously �9� and con-
sider Nu as a function of Ra at fixed Ro. In addition, we
compare our results to earlier ones by Rossby �8� who com-
piled constant Nu contours as a function of Ra and Ta. To get
a good understanding of the whole system, it is useful to
consider different slices of the parameter space. We present
them in the order of contours of Nu, fixed �D, fixed Ra, and
finally fixed Ro.

Heat transport measurements in rotating convection can
be summarized by a contour plot of Nu presented in Fig. 4.
The points on each constant-Nu line were obtained by inter-
polating Nu data measured under different controlled condi-
tions �namely, fixed �D, Ra, and Ro�. The individual data
points are within 1% of the smooth curves for the largest
Nu
55 and within 3% for the smallest Nu
10. Figure 4
complements the Nu contour plot in Fig. 11 of Rossby �8�
where the highest Nu was 12, and the combination of the two
gives a rather complete description of Nu in the parameter
space of Rab�Ra�109 and 0�Ta�1010. As shown in Fig.
11 of �8� for the lower Ra and Ta range, there is a minimum
Ra for constant Nu or alternately there is a maximum Nu at
constant Ra. At fixed Ta, however, Nu is a monotonically
increasing function of Ra. In the following, results are pre-
sented which elucidate the origin of the maximum Nu at
fixed Ra �or the minimum Ra at fixed Nu� and which inves-
tigate the variation in Nu as a function of Ra, Ta, and Ro.
Before proceeding with these details, however, we can al-
ready see the overall trend of heat transport at fixed Ra. For
low rotation, Nu is rather insensitive to changes in Ta �note
the discontinuity in the horizontal axis in Fig. 4�. In the
intermediate range between lines L2 and L1, Nu increases
with increasing Ta, as rotation enhances heat transport. For
high enough Ta, however, rotation suppresses convection and
Nu decreases as the onset of bulk convection is approached
at Rac�Ta�.

A. Constant ΩD

Shown in Fig. 5 is Nu versus Ra at �D=3.14 rad /s where
we obtained the background conductance Kb as described in
Sec. II. The first few points have larger uncertainty because
of the small temperature difference �T across the cell and
the long thermal diffusion time in our cell �about 16 h�. The
transition to convection from a conduction state occurred at
�Tc
150 mK and Rac
2�106, which is much lower than
the theoretical value of 1.6�107 for a laterally infinite sys-
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FIG. 4. Lines of constant Nu as a function of Ra and Ta. The
dotted line is for the bulk convective onset from Chandrasekhar and
Rab�Ta2/3. Line L1 connects the loci of maximum Nu at constant
Ra and agrees well with the loci of the minimum Ra at constant Nu.
Line L2 delimits the parameter space into the right section where
we made measurements under rotation and the left section, which
are interpolated between zero rotation and the data with the lowest
Ta.
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tem at this rotation rate �7�. This lower-than-expected transi-
tion was observed in early heat transport experiments
�8,9,31� and was later visually identified as a transition to a
sidewall traveling-wave state �9,33�. Extrapolating the re-
sults in �9� to Ta=3.3�109, one obtains the onset to the
traveling state at about 3�106, which is not far from our
value of 2�106. There is also an inflection point in Nu at
Rab
1.6�107, coinciding with the theoretical prediction �7�
for the transition to bulk convection �9,37�. Note that as the
mean temperature of the cell increased during the measure-
ments �constant Tt�, Ta increased from 3.31�109 at small Ra
to 5.12�109 at the highest Ra. We also measured Nu at fixed
�D=0.00, 0.188, 0.502, and 1.26 rad/s. These measurements,
shown in Fig. 6, served as a rough characterization of the
system.

The first observation is that higher rotation suppresses
convection relative to nonrotating convection from onset up
to a value of Ra that depends on rotation. Above that Ra, Nu
is higher than its corresponding value without rotation. Thus,
the notion that rotation is a damping influence on convection,

as suggested by the Taylor-Proudman theorem, is only valid
near onset and the opposite is true for turbulent convection in
this range of �. The values of Ras for this crossover are
plotted in Fig. 2 as solid circles. It is the crossover that gives
rise to the maxima in the contours of Nu. The second thing to
notice is that although Nu�Ra,Ta� /Nu�Ra,0��1 at interme-
diate Ra, it appears to asymptote to 1 at higher Ra. This
suggests that buoyancy wins out over rotation at high Ra and
fixed Ta.

Revisiting the presence of mean flow, a feature of nonro-
tating convection over a large range of Ra, we consider mean
flow for rotating convection. Flow visualization in the rotat-
ing frame for a cylindrical cell with 5�107�Ra�5�108

�16� used both TLC and particle image velocimetry to deter-
mine the flow structure near the upper boundary layer �16��.
The sheetlike plumes evolved under rotation into vortices
and for small enough Ro, i.e., for rotation-dominated flow,
there was no indication of a large-scale circulation extending
over the size of the container. It seems that the shear on the
boundary layer is of a very different form than for nonrotat-
ing convection as strong vortical motions dominate the flow
just outside the boundary layer. Results for higher Ra in the
range of 109 to 3�1011 �49� indicated a precessing mean
flow provided Ro�0.5. Similarly, recent results showed a
breakdown of large-scale circulation for Ro�1.2 �18�.

B. Constant Ra

Another way to look at the influence of rotation on con-
vection is to fix Ra and vary Ta. We measured Nu as a
function of Ta at Rayleigh numbers of Ra=5�107 ,1
�108 ,2�108 ,4�108, with results as shown in Fig. 7. For
each Ra, the data are corrected so that � is constant. We have
also included data for Ra=2�107 ,1�107 ,5�106, which
were obtained by interpolating data measured at constant Ro
and �D. For all the data sets, Nu increased with rotation
before decreasing at higher Ta with a maximum Nu that var-
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FIG. 5. Nu vs Ra for �D=3.14 rad /s �Ta
4.4�109�. The ar-
rows indicate the onset of the sidewall traveling state at Rac and the
bulk state at Rab. The approximate onset of turbulent convection is
indicated as Ras. The line is a guide to the eye.
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FIG. 6. �Color online� Nu vs Ra at constant �D �approximate
Ta�: 0.00 �0.0� ���, 0.188 �1.6�107� ���, 0.502 �1.1�108� ���,
1.26 �7.1�108� ���, and 3.14 �4.4�109� ���. The lines are guides
to the eye.
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FIG. 7. �Color online� Nu vs Ta at �from top to bottom� Ra
=4.0�108, 2.0�108, 1.0�108, 5.0�107, 2.0�107, 1.0�107, and
5.0�106. �: measured experimentally with Ra held fixed and �:
interpolated from data measured at constant �D �Fig. 6�. Solid lines
are least-squares fits of the data to the form Nu=Nu0+�Ta0.36;
dashed lines are guides to the eye.
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ied with Ra. The loci Tam of maximum Nu are plotted in Fig.
2 as solid squares and in Fig. 4 �line L1�. Note in the latter
figure that this line approximately connects the loci of mini-
mum Ra for each Nu contour. Line L1 can be approximated
by Ra
2.2 Ta0.85, differing from the relation of Ra

206 Ta0.63 at lower Ra and Ta reported by Rossby �1969�.
The very different exponents indicate a continuously steep-
ening curve and suggests that there is no clear asymptotic �in
Ta� power-law scaling for the Nu maxima over the Ta range
studied so far. Evaluating Nu along the line L1 yields the
quantity Nut discussed below.

An interesting conjecture regarding the enhancement of
heat transport by rotation is that rotation creates thermal vor-
tices which increase Nu through Ekman pumping in the
boundary layer �9,14�. Thus, the enhancement in Nu might
be proportional to the number of such vortices. Because we
have not visualized the flow for the rotating system, the num-
ber of vortices as a function of Ta is not known directly
�16,50�. Instead we consider the linear prediction for the
number of structures at the convective onset. The linear wave
number kc increases with Ta and asymptotically scales like
Ta1/6 �7�, which implies that the number of cellular structures
should scale like kc

2	Ta1/3. This scaling for vortex number
was observed even significantly above onset in experiments
with an open-top surface �34�, which suggests that it is a
reasonable assumption here. Instead of the 1/3 scaling of the
asymptotic theory, however, we will compare with an em-
pirical fit to the linear data over our range of Ta, which gives
�kc�Ta� /kc�0��2
0.09 Ta0.36. In Fig. 8, we plot Nu in Fig. 7
as a function of Ta0.36.

For Ta�Tam, there is a linear region for each Ra that
shrinks as Ra decreases. In the linear region, we have

Nu = Nu0 + � Ta0.36, �4�

where Nu0 and � are fitting parameters and values for differ-
ent Ra are listed in Table II. Solid lines in Figs. 7 and 8 are
calculated from these fitting parameters. The deviation from

the solid lines �linear behavior� at higher Ta is a result of
rotation suppressing convection in the weakly nonlinear re-
gime near onset. Also listed in Table II is Nu��D=0�, the
Nusselt number of nonrotating convection. The fitting pa-
rameter Nu0 for all Ra is nearly identical to Nu�0� within
fitting and experimental uncertainties. This indicates that the
fitting is consistent with the data in the range 0�Ta�Tam.
Thus, the enhancement of Nu by rotation is given by �Nu
=� Ta0.36 with � about 0.006. This result supports the con-
jecture that the enhancement is proportional to the average
number of thermal vortices.

Using velocity field measurements �16�, the number of
vortices could be evaluated more quantitatively. At a fixed
Ra=3.2�108, Ta was varied from 0 up to about 1010. The
variation in vortex �cyclonic� density with �	Ta1/2 was
slightly sublinear, over the range 107�Ta�109. This result
suggests that the number of vortices depends on Ta with a
power a bit less than 1/2, which is roughly consistent with
the estimate based on linear stability arguments. Unfortu-
nately, the vortex density data are too sparse to provide better
estimates in the Ta range of interest.

C. Constant Ro: Power-law scaling

Many experiments in thermal convection without rotation
showed that Nu scales more closely as the 2/7 power of Ra in
the regime 107�Ra�109 than with the classical 1/3 power
law. As discussed earlier, a generalized theory in terms of a
phase diagram in Ra and � and more precise experimental
measurements suggest a form with the sum of two power
laws with exponents of 1/5, 1/4, 1/3, or 1/2 depending on the
region in phase space. Rotation complicates the issue of scal-
ing since the relative influence of rotation changes with
changing Ra at fixed Ta. Numerical simulations �14� showed
that the convective Rossby number is a good measure of the
relative importance of buoyancy with respect to rotation: for
Ro=0.75 and �=1, they found that Nu	Ra2/7, which indi-
cates that the details of rotation are relatively unimportant in
the determination of the scaling exponent. We have tested
this result and over the range 0.1�Ro�1.5, we also find
approximate 2/7 power-law scaling. We use this single
power-law description for convenience—a fit of the form
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FIG. 8. �Color online� Nu vs Ta0.36 so that least-squares fits
�solid lines� of Nu=Nu0+�Ta0.36 yield straight lines. From top to
bottom, Ra=4.0�108, 2.0�108, 1.0�108, 5.0�107, 2.0�107,
1.0�107, and 5.0�106. The dashed lines are guides to the eye and
show deviation from linear fit.

TABLE II. Fitting parameters Nu0 and �. Num and Tam are the
maximum Nusselt number and its location at constant Ra. Nu�0� is
the nonrotating value obtained by cubic least-squares interpolation
of log10 �Nu� vs log10 �Ra� for nonrotating convection.

Ra
��106� Num

Tam

��107� Nu�0� Nu0 �

400 58.0 420 48.38 48.2�2� 0.0051�5�
200 49.0 200 39.87 39.5�1� 0.0061�4�
100 40.5 90 32.62 32.5�1� 0.0065�2�
50 33.0 42 26.60 26.7�1� 0.0067�3�
20 25.5 14 20.31 20.6�2� 0.0066�4�
10 20.5 6 16.62 16.9�2� 0.0059�9�
5 16.0 2.5 13.65 13.8�3� 0.0055�12�
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Nu=a Ra1/5+b Ra1/3 yields equivalent fits. For the nonrotat-
ing case, the coefficients are a=0.26 and b=0.04, for Ro
=0.75, a=0.33, and b=0.048 and, for Ro=0.30, a=0.33, and
b=0.053.

We have measured Nu at several Rossby numbers: Ro
=0.12, 0.30, 0.52, 0.75, 1.15, 1.49, and � �zero rotation�. For
clarity, only parts of the data for Ro=0.30, 0.75, and � are
plotted on a log-log scale in Fig. 9 with the coefficients of
power-law fits listed in the plot. The Nusselt number agrees
well with a 2/7 power law and is different from the 1/3
power law, especially at higher Rayleigh number ��4
�107�. The coefficient A2/7 is plotted in Fig. 10�a�. The trend
of decreasing A2/7 with increasing Ro demonstrates the en-
hancement of heat transport by rotation. An empirical fit to
the coefficient A2/7 yields its approximate Ro dependence:
A2/7=0.17�1+0.24e−Ro/0.8�.

We also fit the data with Nu=A� Ra� to obtain the coef-
ficient and the exponent as functions of Ro. Least-squares
fitting was performed in the range 4�107�Ra�5�108 to
avoid possible deviation from power-law scaling at lower
Ra.

In Fig. 11, we plot Nu /Ra� versus Ra to gauge how well
the power law with exponent � describes the data. Over the
Ra range where the a power law with exponent � is satisfied,
a constant value of A�=Nu /Ra� is expected. The description
is reasonably good for the nonrotating case, but becomes a
little worse as Ro decreases or rotation increases. In all three
cases, the value of A� varies by less than �2% over the
range of Ra. The results for A� and � versus Ro are plotted
in Figs. 10�b� and 10�c�, respectively. For nonrotating con-
vection the coefficient A=0.164 and exponent �=0.286 are
slightly different from the values obtained by fitting the data
for 4�106�Ra�5�108. For finite Ro, the exponent de-
pends on Ro: it increases almost monotonically from 0.269
at Ro=0.12 to 0.287 at Ro=1.5. As shown in Figs. 9–11, the
coefficient A decreases as Ro increases �lower rotation� al-
though its value is sensitive to the fitting value of the expo-
nent as can be seen by comparing Figs. 10�a� and 10�b�.

Determining unambiguously the scaling behavior of the
heat transport requires many orders of magnitude in Ra.
Thus, an absolute comparison of scaling exponents in our

experiment is uncertain. Nonetheless, our experiments
yielded some interesting results, especially when compared
to numerical simulations �13,14�. First, at fixed Ro, Nu de-
pends on Ra with a power law close to 2/7, in agreement
with numerical simulation �14� for Ro=0.75 and �=1. If
anything, rotation seems to reduce the scaling exponent
slightly. This could be the result of different scaling ranges as
a function of Ro, because fixed Ro does not exactly maintain
a balance between buoyancy and rotation, or because rota-
tion modifies the scaling exponent directly. An extended
range in Ra would be necessary to resolve this quantitatively,
perhaps in a gas system.
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Ro=0.30
Ro=0.75
Ro=infinity (non-rotating)

Nu=0.201 Ra0.284

Nu=0.195 Ra0.282

Nu=0.158 Ra0.289

FIG. 9. �Color online� Nu vs Ra at constant Ro: 0.30 ���, 0.75
���, and � ���. The dashed lines are power-law fits with ampli-
tudes and exponents listed in the legend.
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From the perspective of turbulent convection theory
�26,28,51�, the relative insensitivity of the scaling exponent
to rotation is rather interesting because rotation affects many
properties of the turbulence, such as the change from thermal
plumes to vortices and the existence of a turbulent Ekman
boundary layer and associated Ekman pumping. In nonrotat-
ing convection, the relationship between the thermal bound-
ary layer thickness 
T and the viscous sublayer thickness 
�

determines the power-law scaling in the sheared boundary
layer theory �28� where Nu	Ra2/7 applies when 
T�
�. Ro-
tation introduces another vertical length scale, the Ekman
layer thickness 
E, which could, in principle, play a role
similar to 
� in nonrotating convection.

Numerical simulations �13� showed that the transition to
turbulent scaling occurs at Ra
4�107 for Ro=0.75, where

T

E. Further suggestion that this is a more general con-
dition was presented in an analysis of experimental and nu-
merical data �19�. We can use our data to indirectly consider
the relationship between thermal and Ekman boundary layer
thicknesses for different conditions of the flow. A direct mea-
surement of local thermal and velocity boundary layers has
not been done here. Rather, we consider the quantities 
T and

E defined as


T =
1

2

d

Nu
, �5�


E = � �

2�D
�1/2

=
d

Ta1/4 = d Ro1/2�1/4 Ra−1/4. �6�

In Fig. 12, we plot 
T versus 
E at different Ra using the
same data as in Fig. 7. The data have the general form that at
high 
E /d the flow is turbulent and 
T /d decreases slightly
with decreasing 
E /d indicating the trend of slightly in-
creased Nu �smaller 
T /d� at higher Ta �smaller 
E /d�. From

the analysis above for Fig. 7, we have Nu=Nu0�Ra�
+� Ta0.36, which implies the relationship 
T /d=
To

/d / �1
+� Ta0.36d /2
To

�=
To
/d / �1+��
E /d�−1.4d /2
To

�, where 
To
=1 / �2Nuo�Ra��. In this regime Nu scales approximately as
Ra2/7 with a Ta-dependent prefactor as discussed above. As

E /d decreases further, one approaches a transition to a re-
gime with approximately linear scaling such that Nu
	Ra /Rab where we have that Rab	Ta2/3. �In �19�, a slightly
different form Nu	�Ra /Rab�6/5 was used.� Translating this
expression, we have 
T /d= �ao /Ra��
E /d�−8/3 �bounded
above by the condition 
T /d=0.5�, where ao is an order one
coefficient. This curve is plotted in Fig. 12 and reproduces
well the rapid increase in 
T /d for small 
E /d.

There are several other interesting comparisons to make
for these data. The transition from linear scaling to sublinear
turbulent scaling occurs along a line given by 
T /d
2
E /d
shown in Fig. 12. This line is quite close to the condition
Ro=0.1, also shown as a dotted line. On the other hand the
condition 
T /d=
E /d corresponds to constant Ro=0.55 as
illustrated by curves in the plot. Thus, the condition postu-
lated recently �19� that the transition to turbulence occurs
when 
T /d

E /d as suggested earlier from numerical simu-
lations �13� is not quantitatively confirmed for our data.
Rather, the condition Ro
0.1, or equivalently 
T /d

2
E /d, seems to more accurately describe the transition to
the turbulent regime in rotating convection than does the
condition 
T /d

E /d. Whether this factor of two is an im-
portant distinction remains unclear.

In summary, the interplay of these two length scales is not
yet understood based on measurements done up to this point;
it is not really even clear that 
E defined from nonconvecting
problems with differential rotation is the proper variable to
use here. A direct measurement of the turbulent Ekman layer
in the presence of a thermal boundary layer would be very
useful to augment the arguments based on numerical simu-
lations �13� for a coexisting thermal boundary layer with a
linear Ekman layer. Subsequent flow visualization �16� using
particle image velocimetry showed a diverse set of interest-
ing behaviors of velocity and vorticity fluctuations but did
not yield a definitive conclusion regarding the complex in-
terplay of thermal and kinetic boundary layers involved in
determining heat transport for turbulent rotating convection.
Recent measurements of kinetic boundary layers �18� may
help to resolve these questions as will pushing to higher Ra
to see if the trends presented here continue.

V. CONCLUSIONS

We have presented experimental studies of turbulent ther-
mal convection in water confined in a cell with a square
cross section with and without rotation �36�. In nonrotating
convection, the Nusselt number was found to scale roughly
as Ra2/7 for 4�106�Ra�5�108. Heat transport measure-
ment in rotating convection confirmed the findings by other
researchers �8,9� that rotation enhances thermal transport
over a certain range of Ra and Ta for �
6. This enhance-
ment was attributed to Ekman pumping of the boundary
layer by rotation-induced vortices �13,52� and was supported
in this study by results that showed indirectly that the en-
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FIG. 12. �Color online� Calculated thermal boundary layer
thickness 
T vs Ekman layer thickness 
E at �from top to bottom�
Ra=4.0�108, 2.0�108, 1.0�108, 5.0�107, 2.0�107, 1.0�107,
and 5.0�106. Same data as in Fig. 7. Solid lines are guides to the
eye. The bottom �top� dashed line labeled in the plot shows the
condition 
T=
E �
T=2
E�. The bottom �top� dotted line labeled in
the plot shows the lines of constant Ro=0.55 �0.1�. The dashed-
dotted line shows a contour where Nu	Ra, a condition which
translates to 
T /d= �ao /Ra��
E /d�−8/3 with ao	1.
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hanced heat transport was roughly proportional to the num-
ber of vortex structures—each contributing an extra bit of
Ekman pumping of the boundary layer. At fixed Rossby
number, Nu was found to scale approximately as Ra2/7, as
does Nu of nonrotating convection and predicted from nu-
merical simulation �14�. Characterization by a combination
of power laws �26,27� was equally good at fitting the data for
both rotating and nonrotating convections.

Analysis using Ekman layers instead of kinetic boundary
layers as input into a scaling theory did not provide addi-
tional insight into the heat transport data, and it remains un-
clear how rotation and its associated modification of bound-
ary layer structure affects heat transport. Given the extensive
study of nonrotating convection in recent years with great
advances in characterizing boundary layers, heat transport,
and large-scale circulation �5�, there seems to be an emerging
opportunity to apply similar rigor to the geophysically im-
portant case of rotating thermal convection �18,17�. We hope

that our work may stimulate more experimental and theoret-
ical studies on rotating thermal turbulence. A rigorous test of
the power-law scaling of Nu under constant Ro and the va-
lidity of Ro as the “good” parameter in rotating convection
requires a much larger Ra and Ta range than what was avail-
able in our experiment. A gas convection may be needed to
achieve such experimental conditions. The interplay among
various length scales, such as horizontal vortex wavelength,
Ekman layer, thermal boundary layer, and viscous sublayer,
was not well understood in our experiment and certainly
calls for further work on this aspect of turbulent convection.
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