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Nonperiodic tunable quantum echoes have been observed in experiments with an open microwave billiard
whose geometry under certain conditions provides Fibonacci-like sequences of classical delay times. These
sequences combined with the reflection at the opening induced by the wave character of the experiment and the
size of the opening allow to shape quantum pulses. The pulses are obtained by response of an integrable
scattering system.
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Wave mechanics in billiards can be implemented by flat
microwave cavities �1–4�. They model single particle quan-
tum aspects of mesoscopic structures, e.g., two-dimensional
electron gases in quantum dots or more complicated systems
�5–8�. Recently billiard systems with large openings have
attracted attention �9–14�. In �15� properties of the classical
dynamics of open mushroom billiards were investigated.
Mushroom billiards, which were proposed by Bunimovich
�16� recently, consist of one or more circular or elliptic hats
which are attached to stems composed of straight walls.
Their phase space has the particular property that the chaotic
and the regular areas are sharply separated with no fractal
structure in the border region. The mushroom billiards con-
sidered in �15� consist of a circular hat and a triangular stem.
Trajectories of particles passing the stem belong to the cha-
otic part of phase space, whereas the hat comprises chaotic
and regular trajectories �16–18�. In �15� we were interested
in the number of bounces a particle entering the hat of the
mushroom experiences before exiting back into the stem.
Note that the starting conditions for these trajectories all be-
long to the chaotic part of the phase space. The result of
these studies of the classical dynamics was that for a fixed
angular momentum a selective number of bounces, in fact a
total of three, is possible. Only trajectories of particles,
which are scattered from inside the stem immediately into
the hat are considered and followed only until they reenter
the stem. Thus, as these particles never touch the boundary
of the stem the results presented in �15� are independent of
its geometry. Indeed it was shown there, that the selectivity
persists when considering the hat as an open scattering sys-
tem with the opening obtained by removing the stem. Then
one observes for a fixed angular momentum only three dif-
ferent delay times, i.e., times a particle sent into the hat
spends there before exiting it. These observations lead to the
question how far this selectivity influences the pulse struc-
ture of the corresponding open quantum billiard. Here we
report on measurements of the time resolved response of
such a scattering system to incident waves and the detection

of aperiodic and selective pulse sequences. In the experi-
ments a pulse is sent into an open mushroom-billiard hat
from the outside and the pulses sent back to the exterior are
recorded. The sensitive dependence of the corresponding
classical response on the size of the opening can be used as a
guideline to design desirable pulse sequences in the wave
domain. This is in stark contrast to systems whose classical
or ray dynamics is mixed with no sharply divided phase
space or chaotic. In the former case periodic echo signals
were seen �19� and theoretically understood �20,21� for the
short time behavior, in the latter a noisy response is ex-
pected. The experiment described here was performed for a
quantum billiard with the shape of a quarter circle, but the
flexibility of design can be enhanced, e.g., by deforming the
circle to an ellipse �15�. Keeping in mind the analogy to open
nanostructures, e.g., for two-dimensional electron gases
�22–24� this paves the way to convert a simple quantum
pulse into a complicated nonperiodic pulse sequence and
thus to obtain a tunable quantum pulse generator by a simple
scattering mechanism.

We recall briefly that billiards, which are paradigmatic
dynamical systems �25,26�, are two-dimensional domains
with free motion except for specular reflections at the walls.
The corresponding quantum systems are determined by the
time independent Schrödinger equation with Dirichlet
boundary conditions at the walls. For the experimental inves-
tigation of such quantum billiards we exploit the equivalence
of the related Schrödinger equation and of the Helmholtz
equation for the electric field strength in a flat, cylindrical
microwave resonator of corresponding shape below the fre-
quency, where the first transversal electric mode is excited
�27,28�. Up to this frequency the electric field strength is
perpendicular to the top and bottom plate of the resonator
and the Helmholtz equation is scalar. Such a microwave
resonator consists of two parallel plates and a third plate with
a hole of the shape of the billiard squeezed in between. Spe-
cifically, the hole has the form of a quarter circular boundary
with radius R=240 mm such that the resonator is open along
one straight line of the quarter circle. Note that this geometry
is a realization of a desymmetrized open mushroom-billiard
with circular hat �29,30�. The size r of the hole can be ad-
justed by a bar to yield the shape indicated in Fig. 1. The*richter@ikp.tu-darmstadt.de
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separation of the parallel plates is 5 mm. Microwave power
was emitted into the resonator and received by the same
dipole antenna. A vector network analyzer �VNA� provided
the rf signal for frequencies between 1–17 GHz well within
the limit for the validity of the scalar Helmholtz equation, the
excitation frequency being increased with a step size of 50
kHz. The VNA measured the ratio of the received to the
emitted microwave power and the relative phase thus yield-
ing the complex scattering matrix elements for the scattering
of electromagnetic waves from the antenna into the resonator
and back to it. The antenna was placed perpendicular to the
billiard plates in 7 mm distance from the opening outside the
cavity and 15 mm from corner C of the bar, cf. Fig. 1. We
placed microwave absorbing material A along the opening of
the billiard up to a distance of 15 mm to the antenna thereby
damping multiple wave reflections at the opening. The mea-
surements were performed for different opening parameters
r /R of the billiard.

The overall shape of the reflection spectra shows a mini-
mum close to 8 GHz due to the emission characteristics of
the antenna, cf. upper panel of Fig. 2. The scattering infor-
mation we are interested in is contained in the fine structure
imprinted on this overall shape. A Fourier transform of the
entire spectrum yields the response to a short pulse in the
time domain. The modulus square of the signal obtained in
this way decays as a power law with decay exponent �
�1.95. This value is very close to the predicted one �31� of
2.0 for classical particles which escape from a billiard with
integrable dynamics. However, here we are interested in the
short time characteristics of the system, which deviates from
this behavior. The lower panel of Fig. 2 shows the time re-
sponse of the open quarter circle with r /R=1 /3 for short
times. An aperiodic sequence of peaks is clearly visible, and
their strengths decay on average with increasing time. The
peak seen near time 0 is related to the smooth frequency
dependence of the emission characteristics of the antenna
observed as a broad dip in Fig. 2.

As mentioned above it was shown in �15� that in the cor-

responding classical scattering system a particle injected
from the outside into the quarter circle billiard encounters
only a certain number of reflections on the circular boundary
�shortly called bounces� from a scarce set of possible
numbers before it leaves it. For the opening ratio r /R=1 /3
the sequence of allowed bounce numbers n is
1,4,5,9,14,23,37,51…. It proceeds up to the number 37 such
as a generalized Fibonacci series, i.e., each number is given
by the sum of the two previous ones. For larger n the se-
quence is no longer Fibonacci-like but still each occurring
number is the sum of two smaller ones. When analyzed in
detail �15� one finds that this sum rule is strictly obeyed
within finite intervals of angular momentum values, i.e., of
the impact parameter with respect to the center of the circle.
Each interval is bordered by two singularities of diverging
bounce numbers resulting from the existence of parabolic
manifolds �17�. This behavior can be explained in terms of
number theoretical properties of the circle map �32�.

For an interpretation of the peaks in the Fourier trans-
formed experimental spectra in terms of the bounce numbers
n of the classical scattering dynamics these need to be con-

FIG. 1. Sketch of the experimental setup �top view�. The inner
white part of the light gray area indicates the quarter circle shape of
the flat microwave resonator. The radius is R and the size of the
adjustable opening is r. An antenna �� � in front of the opening near
point C �edge of the bar� couples the microwave signal in and out
and is attached to a VNA. The dark gray bar A indicates microwave
absorber material inserted into a part of the opening of the cavity.
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FIG. 2. Upper panel: reflection spectrum at the antenna shown
in Fig. 1 �linear scale�. Lower panel: Fourier transform of the spec-
trum in semilog-scale. The black arrows mark times at which clas-
sical echoes occur, whereas gray arrows mark times of trajectories
facilitated by quantum effects. Bounce numbers corresponding to
these times are also shown. Exponentially decaying peak sequences
of equal spacings are connected by straight lines. Some peaks cor-
respond to a combination of bounce numbers �e.g., 4+4� or more
complex systematics �� �.
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verted into time delays. Using conservation of the angular
momentum, respectively the impact parameter b, the time T
a particle needs for n reflections at the circular boundary is
given as

T = 2Rn�1 − �b/R�2/v . �1�

Here v denotes the velocity of the particle. Note that the
possible values for b are restricted by the size of the opening,
and typically b�0 for n=1 and b�r for large bounce num-
bers. Applying this formula �with v=c the speed of light and
of microwave propagation� to the sequence of bounce num-
bers given above we obtain classical predictions for the pos-
sible delay times, i.e., the positions of the echoes for the
opening ratio r /R=1 /3. We mark these times with black
arrows identified by the corresponding bounce numbers n in
the lower panel of Fig. 2, and indeed find that they coincide
with the dominant peaks of the measured response, i.e., in a
microwave experiment mimicking an open quantum billiard
of corresponding shape we detected scattering echoes at the
predicted times.

However, many additional peaks appear although the pre-
dicted peaks protrude above the average decay of the time
response. The smaller peaks marked by stars are related to
multiple reflections caused by diffraction at the edges of the
opening. The peaks corresponding to 1 and 5 bounces at the
circular boundary as well as the one denoted by 5+5 are
followed by an exponentially decaying sequence of peaks
with constant spacing, equal in all three cases. To guide the
eye, the exponential decay is indicated by the straight lines in
the lower panel of Fig. 2. We see that also the decay rates
coincide. The sequences are caused by waves that hit the
corners of the opening and there get partially scattered into
the 1-bounce orbit. Both escape and reflection of the
1-bounce orbit at the opening may happen repeatedly, lead-
ing to the exponentially decaying sequence of peaks. The
purpose of the absorbing materials covering part of the open-
ing is to suppress 1-bounce reflections. Experimental setups
without the absorber material and with the antenna nearer to
the center showed dominance of trivial 1-bounce peaks and
many secondary peaks for large openings. Other peaks can
be attributed to a wave impinging on the opening and scat-
tered into classical orbits which bounce more than once at
the circular boundary before they hit the opening again.
These peaks are marked by gray arrows and are labeled by
n+m for the scattering of an n bounce orbit into an m bounce
orbit. Effects caused by the coupling to regular modes of
waves re-entering the cavity due to diffraction at the corners
of the opening were investigated in detail in �33�, of re-
fracted fields re-entering a dielectric cavity with the shape of
a mushroom in �34�.

With the argumentation given above we understand the
most prominent peaks of the response function, but we may
ask why we do not see the exponential decay after the 4 and
the 9-bounce peaks. The reason is that the sequence of peaks
following the 4 �9� bounce peak coincides with that of the 5
�5+5� bounce peaks within the peak width determined by the
spectral range and are thus superimposed and then decay, as
mentioned above, exponentially in a sequence of repeated
single bounces. A sharp eye might detect the double peaks in

these sequences, but this effect is at the limit of our reso-
lution. Other smaller peaks, e.g., those labeled by the stars,
admit more complicated assignments but are still understood
in terms of diffractive orbits. Summarizing the analysis of
Fig. 2 we conclude that the pulse structure is essentially de-
termined by the possible classical escape times �depending
on the hole size�, by diffractions at the opening �depending
on the usage of microwave absorbing material� and by the
coupling strength of the waves to the internal states corre-
sponding to classical structures �depending on the antenna
position�. Modifying the experimental setup and thereby
changing any or all of the three determining factors we can
drastically change the output pulse sequence.

To support the validity of these conclusions we performed
measurements for different opening ratios r /R, that is al-
lowed classical escape times. In all cases the interpretation as
given above explains the detected echoes or pulse sequences.
In the upper panel of Fig. 3 we show the time response for
r /R=1 /4. Note that the Fibonacci-like behavior is not as
prominent as in the former case, as already for n=7 the num-
ber of bounces does not equal the sum of the previous two
possible bounce numbers, but that of the first and the third
one. However, the sequence starting with n=1 is character-
ized by a fixed period and the superposition of several of
these sequences again leads to a highly aperiodic pulse sig-
nal. Finally we see in the lower panel of Fig. 3 that in the
geometry of the quarter circle billiard periodic echoes can
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FIG. 3. Same as the lower panel of Fig. 2 for opening sizes
r /R=1 /4 �upper panel� and r /R=1 �lower panel�, where we find
whispering gallery dynamics. The time between two peaks is �R /c.
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also be realized, though they might be of less interest. This is
feasible for r /R=1, i.e., for the fully opened billiard. In this
case the wave travels along high-order polygonal orbits
which follow the circular boundary closely, known as whis-
pering gallery orbits �35�. The time between two successive
echoes is the time needed to travel forth and back along the
circular boundary at the speed of light.

Previous work �19� has shown, that the time structure of
quantum signals will reflect certain classical properties even
if the experiment is carried out far from the classical limit.
Yet known examples lead to periodic or near periodic re-
sponse. Our experiment provides an example for a pulse re-
sponse in terms of aperiodic echoes by wave scattering off an
integrable system. Deviations from the time structure of the
classical problem are mainly due to diffraction at the open-
ing. Moreover, in our microwave experiment the quasi-two-
dimensional interior of the billiard is coupled to the three-

dimensional free space. Such effects are well understood and
can be controlled. Though microwave billiards as model sys-
tems neglect the many body character of a quantum dot as
well as charges and spins of the electrons, the detected ape-
riodicity is expected to be visible also in ballistic scattering
experiments on the nanoscale. As the time resolved treatment
of transport through quantum dots was extremely successful
in the last decade both theoretically �24,36,37� and experi-
mentally �38–41�, the future development of quantum pulse
generators, providing a large diversity of pulse responses,
seems feasible.
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