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Self-similar nested sequences on a chaotic attractor for traveling-wave electrophoresis
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Oscillating electric potentials are applied to interdigitated arrays of cylindrical electrodes above and below
a stationary conducting viscous fluid. The phases of these potentials are chosen to produce a longitudinal
traveling wave that traps high-mobility ions and partially traps intermediate-mobility ions in periodic and
narrowband chaotic attractors with average velocities that are commensurate with the wave speed. Stable
periodic attractors have periods up to 101 times the wave period. Incommensurate broadband chaotic attractors
are described by one-dimensional iterated contact-angle return maps, which feature self-similar nested se-
quences that converge geometrically at unstable trapped orbits. Sequences of singular angles and sequences of
step transitions are characterized by distinct convergence factors. A criterion for allowed interelectrode orbits
is developed. Experiments are suggested to evaluate the applicability of the theory to microfluidic separations.
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I. INTRODUCTION

Since Edward Lorenz’s 1963 discovery of aperiodic non-
linear behavior with sensitivity to initial conditions in a
simple model of buoyancy-driven convection [1], such cha-
otic behavior has been identified in virtually every field of
science and technology. The fascination of chaos is that de-
terministic systems of equations can produce inherently un-
predictable behavior marked by the divergence of nearby
phase-space trajectories.

While Lorenz investigated the time-dependent amplitudes
of three modes that are fixed in space, recent interest in non-
linear dynamics has been drawn to spatial patterns that
evolve with time. Examples include wave behavior in the
photosensitive Belousov-Zhabotinsky chemical reaction with
imposed spatiotemporal noise [2,3], wave mediated synchro-
nization of coupled chemical oscillatory cells with randomly
distributed frequencies [4], localized excitations in arrays of
synchronized coupled laser oscillators [5], coupled arrays of
forced, damped, nonlinear oscillators [6], and periodic pull-
ing in light-emission fluctuations in neon glow discharges
[7].

In this paper, we model the motion of ions of charge ¢,
hydrodynamic radius r, and velocity v through a stationary
electrically conducting fluid of viscosity # in response to a
four-phase oscillating electric potential applied to periodic
arrays of stationary cylindrical electrodes. In contrast with
previous studies of oscillator synchronization [4-6,8], the
potentials of our oscillators are external functions of time
and the focus is on the dynamical response of ions to the
resulting spatiotemporal forcing.

Our potentials are chosen to produce a longitudinal trav-
eling wave that traps high-mobility ions, separating them
from lower-mobility ions in a process called traveling-wave
electrophoresis (TWE). We recently observed this phenom-
enon for a sandwich architecture in which a microfluidic
channel is bounded above and below by electrode-bearing
surfaces [9]. The purpose of the present paper is to investi-
gate the associated nonlinear dynamical behavior in order to
guide the design of new experiments.

Others have used interdigitated electrode arrays on a
single surface to transport charged species via electrophore-
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sis, imposing static perpendicular gravitational or electric
fields to draw particles to the surface [10-12]. Our sandwich
architecture precludes such fields by bounding a microfluidic
channel by electrode-bearing surfaces above and below.
Single-surface architectures can also transport charged par-
ticles via ac electro-osmotic pumping [13,14] or biased
Brownian motion [15], and can transport neutral bioparticles
via dielectrophoresis [16,17].

Our two-dimensional (2D) model employs a spatially pe-
riodic electrode pattern with four cylindrical electrodes per
wavelength (Fig. 1) that create and sustain a 2D traveling
wave, consistent with the Nyquist-Shannon requirement of
more than two electrodes per wavelength [18,19]. The four
electrodes are held at oscillating potentials ®(z), (),
®,(1), and D5(r) that are synchronized so that each electrode
leads its neighbor to the right in phase by 7/2 according to

D,(1) = ¢y sin(kx; — wr), (1)

where ¢, is the potential amplitude, k=27/\ is the wave
number, x;=i\/4 denotes the axial position of electrode i,
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FIG. 1. (Color online) Channel geometry and periodic four-
electrode pattern of wavelength \ considered herein, a pattern rep-
licated indefinitely in the *x directions. Shown are two replicates
of this pattern including electrode numbers i=0,1,2,...,8 located
at x;=i\/4. Electrodes are treated as impenetrable conducting half-
cylinders of radius a<<\ (a=N\ in the figure for clarity) with axes
perpendicular to the plane of the figure. Oscillating electric poten-
tials Dg(2), @ (1), D,(2), and P5(7) given by Eq. (1) are applied to
the electrodes and are synchronized so that each electrode leads its
neighbor to the right in phase by /2, producing a wave propagat-
ing to the right that traps high-mobility ions. Positions on electrode
surfaces (points A and B) are denoted by contact angles § measured
in radians and satisfying 0= = 7, with 6=0, 7/2, and 7 corre-
sponding to the leftmost, middle, and rightmost contact points.
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and w=27/7 is the angular frequency of the oscillations.
Equation (1) gives the discrete potentials of the electrodes
that are arranged in the 2D pattern shown in Fig. 1. As will
be discussed below, these potentials serve as boundary con-
ditions of Laplace’s equation, which determines the potential
throughout the channel.

We include only the electric force Fy=gE and the Stokes
drag force F,=—6mnrv on the ions, ignoring magnetic and
gravitational fields, molecular diffusion, and ionic inertia.
Accordingly setting Fz+F ;=0 yields the electrophoretic ve-
locity

v=uE (2)

and mobility u=q/6mnyr, where E(x,y,1)==V(x,y,1) is
the 2D time-dependent electric field that results from the
applied electrode potentials. Equation (2) differs from the
Maxwellian distribution of electron velocities pertinent to
particle trapping by longitudinal plasma waves and Lang-
muir waves [20-22].

We define the responsiveness

R=— (3)

of an ion to the wave as the dimensionless ratio of a charac-
teristic electrophoretic velocity wE, to the wave speed ¢
=w/k, where Ey=kd, is a characteristic electric field. Here,
q>0 and R>0 for cations and ¢ <0 and R<0 for anions.

Combining Eq. (2) with v=x and specifying the electric
potential ¢(x,y,r) yields a 2D nonlinear nonautonomous
system of ordinary differential equations

x=flx,y,1) 4)
y=gxy,1), (5)
with functions
f(x,y,t):—,uﬂd)/r?x (6)
g,y 1) =—pd Pldy (7)

that depend explicitly on time. Accordingly, this system has a
three-dimensional (3D) phase space, the minimum dimen-
sionality needed for chaos [23]. Previous studies of 2D non-
autonomous systems [24] exclude impenetrable barriers such
as our electrodes, whose oscillating potentials determine the
potential ¢(x,y,t) within the microchannel.

Periodically forced oscillators, which have received con-
siderable attention [8], obey equations of the general form of
Egs. (4) and (5), but have functions f and g that exclude Egs.
(6) and (7), reflecting fundamental physical differences. A
periodically forced oscillator must reconcile its internal
rhythm against the amplitude and frequency of some external
forcing. Our ions have no internal thythm of their own and
are subject only to external forcing, which entirely deter-
mines their dynamics. Forced oscillators obey

X+ w(z)x = h(x,x,1), (8)

where h(x,x,f) is generally some nonlinear function that is
periodic in time, and where inertia supplies the second-order
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FIG. 2. Steady-state phases from Eq. (I11) (circles) for ions
trapped by a 1D electric potential wave from Eq. (9) (solid trace)
traveling through a stationary viscous fluid. Trapped cations with
dimensionless mobilities R=1 (numerical values accompanying
cation phases) travel on the trailing sides of potential wells, with
lower-mobility cations requiring stronger electric fields to overcome
Stokes drag. Trapped anions with R=-1 travel on the trailing sides
of peaks. Tons with |R| <1 are not trapped by the wave, but execute
periodic oscillations at a frequency given by Eq. (12).

term. Particle inertia is negligible in our system. For forced
oscillators, Egs. (4) and (5) can be recast as Eq. (8) by setting
flx,y,1)=y and g(x,y,t):h(x,y,t)—w%x. Our system cannot
be similarly recast because Eq. (6) is a specified periodic
function of space and time.

II. 1D MODEL

Insight into wave electrophoresis is supplied by a one-
dimensional (1D) model [25,26] with a specified electric po-
tential

d(x,1) = ¢y sin(kx — wr) 9)

and with no electrodes. This potential mimics the applied
electrode potentials of Eq. (1) and corresponds to a longitu-
dinal electric field

E(x,1) = — EgX cos(kx — wi). (10)

For |R| =1, after the decay of transients, this model predicts
a constant velocity v, =c for trapped cations and anions, with
cations traveling within potential wells and anions within
peaks, and both traveling in the direction of wave propaga-
tion. The steady-state phase d=kx—wt of trapped ions satis-
fies

cos 6=-1/R. (11)

Hence, high-mobility cations with R— < are trapped at po-
tential minima while threshold-mobility cations with R=1
are trapped at electric-field maxima. High-mobility anions
with R——o are trapped at potential maxima while
threshold-mobility anions with R=-1 are trapped at electric-
field minima (Fig. 2). High-mobility ions cannot exceed the
wave speed because Fj drives ions toward extrema in the
potential, where Fy vanishes. The larger the mobility, the
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nearer to these extrema that ions reside in steady state.

For |R| <1, ions are insufficiently mobile to keep pace
with the wave. After decay of transients, these ions experi-
ence regular longitudinal oscillations of angular “lag” fre-
quency

Q=ow(l-R»)" (12)

and make net forward progress with average velocity [25]
_ R2)1/2‘ (13)

During each oscillation, an ion fails to catch a passing wave
and lags one cycle behind the wave, like a surfer failing to
catch a passing ocean wave. For |R| <1, ions experience one
lag cycle for each wave cycle () — w) and make only very
slow net forward progress (v,/c— R?/2). For |R|— 1, ions
have long lag cycles ({) < w) and net velocities that approach
the wave speed (0,—c¢). This limit anticipates the time-
independent results Q=0 and v,=c for |R|=1.

I11. 2D MODEL

Viscous damping would quickly attenuate a wavelike
equation (9) unless some means of sustaining it is provided.
For this purpose, we employ a spatially periodic electrode
pattern with four conducting cylindrical electrodes per wave-
length (Fig. 1) to create and sustain a 2D wave that mimics
the 1D wave of Eq. (9), with four-electrode potentials ®(z),
d,(2), Dy(1), and D4(z) given by Eq. (1), which demands that
CI)2=—(DO and CD3=—(I)1.

We assume an electrically neutral bulk solution, in con-
trast with the 1D model which requires non-neutrality. We
treat the time required for charges to redistribute within the
electrically conducting buffer solution as small compared
with 7, the period of the oscillating potentials that drive this
charge redistribution. In this electrostatic approximation, the
2D electric potential ¢(x,y,r) within the solution must sat-
isfy Laplace’s equation,

Vip=0. (14)

This potential must also match the four time-dependent po-
tentials at the conducting electrode surfaces and must ensure
vanishing normal electric field E,=—d¢/dy=0 at the insulat-
ing boundaries at y=0 and y=h.

To investigate the role of geometry on the dynamics, we
define the aspect ratio I'=N/h as the ratio of the electrode
wavelength N to the microchannel height .

Long electrodes facilitate simple closed-form mathemati-
cal representations of the electric potential in the microchan-
nel. The potential produced by two long cylindrical elec-
trodes of radius a separated by a distance of A/2 and held at
potentials @ and ®,=-D, is

ln(l" 2/ I 0)
=0y ———, 15
¢ In(\/2aq) (15)
where r is the distance between one electrode center and the
point at which the potential is being evaluated, and r, is the
distance from this point to the other electrode center. Equa-
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tion (15) satisfies Eq. (14) and the boundary conditions
}l;=a=Po and |, _,=P,=-P, when a<\, and follows
from the potential of two parallel infinite line charges with
opposite uniform linear charge densities [27]. The potential
produced by electrodes held at potentials @, and ®;=—D, is
similar,

ln(r;/rl)
=@, ——. 16
¢ "In(\/2aq) (16)
We now employ a linear superposition of Egs. (15) and (16)
to write the potential at a 2D position r=(x,y) in the channel
and at time ¢,

Dy (1) o |l._r(lm)|
rf)=——"_—_
(r.1) In(\2a) ,E_m "= x|
D (1 r-r; m
(1) e (Z )I (17)
In(\2a) pee e =1i™|
where
™ = (IN,h + 2mh) (18a)
'\ = (\/4 + IN,2mh) (18b)
ry” = (N2 + INh+ 2mh) (18c¢)
r{" = (3\/4 + I\, 2mh) (18d)

are the position vectors of the electrode centers shown in Fig.
3. The value m=0 corresponds to the physical microchannel
electrodes, whose /=0 and /=1 replicates are shown in Fig.
1. The replicates for m= %=1, =2,... lie outside of the physi-
cal domain 0=y =h of the microchannel and correspond to
image charges used to ensure vanishing normal electric field
at y=0 and y=h.

Evaluating the potential ¢(r,7) and the electric field E
=-V ¢ using Eq. (17) poses a challenge because the terms in
the infinite sums depend on the electrode distances as In r
and 1/r, respectively. Accordingly, straightforward trunca-
tions of these sums violate the periodicity property E(x
+\,y)=E(x,y), the symmetry property E(x+\/2,y)
=-E(x,y), and the boundary conditions E(0,y)=0 and
Ey(h,y)=0. To avoid these violations and to preserve overall
electrical neutrality, we use these periodicity and symmetry
properties to translate x onto the interval 0=x<\/2 and
truncate the infinite sums according to

L M Lm)|c
Dy(1) |r—r<2 K
A0 = v2a )ZELm_E el
L M lm)f
D, (¢ - !
20 - 5 allnu (19)

ln()\/Za)l L M

adjusting the weights of the perimeter terms, that is, terms
with /=* L and m= * M, by introducing coefficients satis-
fying a,,=b;=c;=d,,=e;=f;=1 for all / and m except

ay=ylh (20a)
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FIG. 3. (Color online) Periodic electrode pattern used in com-
puting ¢(x,y,?) from Eq. (19), with electrodes held at potentials
d,, &, O,, and P; located respectively at positions r(()l”"), r(ll””),
r(zl’m), and rg[’m) from Eq. (18). Dashed lines separate replicates of
this pattern identified by their values of / and m. Replicates for m
=0 correspond to the physical electrode pattern of the channel (Fig.
1). Replicates for m# 0 correspond to image charges needed to
ensure d¢p/ dy=0 at the channel boundaries y=0 and y=h. The dia-
gram applies to calculations of ¢(x,y,7) within the central compu-
tational area (shaded) defined by 0=x<\\/2 and 0=y <h, and for
the truncations L=M =2. Contributions of the peripheral electrodes
(also shaded) with /==L and m= =M receive reduced weights
according to Eq. (20) in order to satisfy the boundary conditions
and to ensure symmetry and continuity, while the contributions of
the remaining interior electrodes are included fully in the
calculations.

2x/N+1/2, 0=x<MN4
L= (20b)
1, N4 =x<N\2
by=1-b, (20c¢)
0, 0=x<\4
cL= (20d)
2x/IN=1/2, NA=x<N\2
c =1-¢ (20e)
d—M= 1 —ay (20f)
e; =2x/\ (20g)
e_; = 1- ey (20h)
fL=0 (20i)
fo=1 (20j)

These relationships emphasize the /=—L contributions for x
~() and the /=+L contributions for x=X\/2 in order to simu-
late an unbounded periodic system. The values L=60 and
M =2 ensure electric fields that are accurate to within 1%, as
verified by comparing with solutions with larger L. For L
=60, we computed the numerical Laplacian of Eq. (19) for
various values of M and found that M=2 best satisfies
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Laplace’s equation, giving |V2¢|=0.01 V/u m? over the
entire domain for ¢4=0.5 V, A=80 um, =15 um, and a
=1 pm.

We have written a computer code to simulate the motion
of ions subject to the traveling-wave potential given by Eq.
(19). The code integrates Eqs. (4) and (5) using a fifth-order
Runge-Kutta-Fehlberg method with adaptive stepsize control
[28], using about 200 electric-field evaluations to integrate
an ionic path between adjacent electrodes, and predicting
electrode contact angles that are accurate to within 1%. The
convergence of the code was verified by decreasing the av-
erage stepsize and by comparing with the results of a sim-
pler, but much slower, forward Euler integration with fixed
step size that employs as many as 4000 electric-field evalu-
ations between electrodes. We also verified the code by using
it to recover Eq. (13) of the 1D model.

We follow trajectories for a time Ar=20007 in order to
determine the average axial velocity

g
Uy=———, 21
=T (21)
where x; and x, are the initial and final positions of the ion
along the x axis.

IV. ORBIT CONDITION

The phase relationships between the electrode potentials
restrict the allowed interelectrode orbits. Tons that are immo-
bilized electrostatically at electrode surfaces depart at (for
0=0) or near (for 6+ 0) the time at which the sign of the
electrode potential changes to the sign of the charge of the
immobilized ion. For electrode i, this time is ti=jtl 4, with
integer j=i+4m for anions and integer j=i+4m+2 for cat-
ions, and with integer m. Accordingly, the axial ion displace-
ment Ai (in quarter wavelengths) between successive elec-
trode departures and the corresponding elapsed time Aj (in
quarter periods) satisfy Aj=Ai+4m, valid for both cations
and anions. The average axial velocity between departures
must therefore satisfy the interelectrode orbit condition

R (22)
c Aj Ai+4m
where m=0 is the number of lag cycles during the elapsed
time Ar=Aj7/4. The corresponding lag frequency is

4m

=—w. 2
Ai+4mw (23)

Interelectrode orbits must satisfy Eq. (22), which contains
both velocity and orbital information. While the dimension-
less interelectrode velocity is determined solely by the ratio
Ai/Aj, the numerator and denominator of this ratio also
carry information about the orbit. We therefore characterize
orbits by an integer ratio of the form Ai:Aj. A 2:2 orbit is
distinct from a 1:1 orbit even though they have the same
velocity, 0, =c. A 2:2 orbit takes two quarter periods to travel
between electrodes on the same side of the channel, elec-
trodes that are separated axially by two quarter wavelengths
(electrodes 4 and 6 in Fig. 1, for example). In contrast, a 1:1
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FIG. 4. (a) Ratio of the steady-state average axial ion velocity v, to the wave speed ¢ vs the responsiveness R of Eq. (3). Shown are
results for the 1D model from Eq. (13) (trace A) and numerical results for the 2D model for electrode pattern wavelength A=80 um,
electrode radius a=1 wum, and channel heights 2=10, 15, 20, 30, and 40 wm giving aspect ratios '=\/h=8, 5.3, 4, 2.7, and 2 (traces B,
C, D, E, and F). Traces for the 2D model feature commensurate velocity plateaus satisfying Eq. (22) (horizontal dashed traces and integer

ratios). Frames (b) and (c) show small-velocity detail.

orbit takes one quarter period to travel between electrodes on
opposite sides of the channel, electrodes that are separated
axially by one quarter wavelength (electrodes 4 and 5 in Fig.
1, for example).

V. VELOCITIES AND PERIODIC ATTRACTORS

Results for 0, for the 2D model show structure that is not
seen in the 1D model. Equation (13) of the 1D model pre-
dicts a 0, that rises monotonically with increasing |R|=0
until it reaches v, =c at the trapping threshold R,=1, above
which v,=c (Fig. 4, trace A). The 2D model (Fig. 4, traces
B-F) features larger trapping thresholds R, reflecting incom-
plete penetration of the potential into the interior of the chan-
nel, nonzero localization thresholds R; below which elec-
trodes completely localize low-mobility ions (,=0), and
plateaus with commensurate velocities v,/c=1,1/5,1/9,...
satisfying Eq. (22) with Ai=1 and m=0,1,2,..., 25. Each
trace in Fig. 4 satisfies 0,=0 for R<R; and v,=c for R
> R,, with localization and trapping thresholds R; and R, spe-
cific to each trace. For the 1D model, R;=0 and R,=1.

The velocity plateaus are associated with periodic attrac-
tors. For I'=4 (Fig. 4, trace D), trajectories for cations and
anions with arbitrary initial positions converge to the attrac-

tors shown in Fig. 5. Trapped ions of velocity 1 choose be-
tween attractors restricted to the upper and lower electrodes,
both employing 2:2 orbits. Ions of velocity 1/5 and 1/9 pos-
sess attractors respectively involving 1:5 and 1:9 orbits, or-
bits that connect the upper and lower electrodes. Localized
ions for R <R; employ 0:4 orbits (not shown) that oscillate in
the *x direction at y=0 or y=h and contact the right sides of
electrodes (at #=1r) once per period. Orbits are replicated
again and again as the ion moves along the channel in the +x
direction, as shown in Fig. 5. Lag cycles for the velocity-1/5
and 1/9 attractors involve temporary reversals of the direc-
tion of motion that result when the traveling wave passes by
an ion and temporarily pushes it in the —x direction, like a
surfer failing to catch a passing ocean wave. Sudden changes
in orbital direction result when electrode voltages change
sign, switching from attracting to repelling.

Attractors with larger periods and smaller velocities in-
volve combinations of orbits, as shown for I'=2 in Fig. 6
(see Fig. 4, trace F). The velocity-1/13 attractor involves 0:4,
2:2, and —1:7 orbits for each cycle of the attractor, repeated
over and over again. Each cycle advances the ion forward by
one electrode. Labeled in Fig. 6(a) are the orbits associated
with the cycle that begins at electrode 0 and ends at electrode
1, making a stop at the intermediate electrode 2 along the
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FIG. 5. (Color online) Periodic attractors associated with veloc-
ity plateaus of Fig. 4, trace D, for aspect ratio I'=N/h=4. Each
frame shows one wavelength of the electrode pattern of Fig. 1, with
numbered electrodes of radius a=N\/80 shown to scale as small
semicircles. Shown are steady-state trajectories of ions moving
through a stationary viscous solution in response to the 2D
traveling-wave potential of Eq. (19) after the decay of transients.
Trajectories that disappear through the right side of the frames re-
appear on the left. (a) Two attractors of velocity 1 for R=3.6 in-
volving successive identical 2:2 interelectrode orbits, one attractor
involving the upper electrodes 0,2,4,... and the other involving the
lower electrodes 1,3,5,.... (b) Attractor of velocity 1/5 for R=2.5
involving 1:5 orbits, with one lag cycle per orbit [m=1 in Eq. (22)]
during which the ion lags one cycle behind the traveling wave. (c)
Attractor of velocity 1/9 for R=1.92 involving 1:9 orbits with two
lag cycles each (m=2).

way. The second cycle takes the ion from electrode 1 to
electrode 2, making a stop at the intermediate electrode 3
along the way, etc. Because the velocity is the net displace-
ment divided by the elapsed time, it is given by the Farey
sum of the orbits,

4727 7 13
where Farey addition is defined as [29]
+b
2oi=222 (25)
b d c+d

Each cycle of the velocity 1/53 attractor [Fig. 6(b)] involves
0:4 and 1:49 orbits and avoids the intermediate electrode.
Each cycle of the 1/101 attractor [Fig. 6(c)] involves 0:4, 0:4,
2:54, and —1:39 orbits and does contact the intermediate
electrode. It is easy to show that Farey sums of orbits obey
the interelectrode orbit condition [Eq. (22)] as long as each
term in the sum obeys this condition. Accordingly, it is no
surprise that attractors that involve combinations of allowed
orbits have velocities (such as 1/13, 1/53, and 1/101) that
obey Eq. (22).

Small aspect-ratio geometries '=N/h=2 and 2.7 (traces F
and E in Fig. 4) suffer from zero-velocity windows (5 <|R)|
<6.4 for trace F, for example) and larger partial-trapping
ranges R,—R;, which render them less suitable for experi-
mental separations than higher-aspect-ratio geometries.
These zero-velocity windows represent localized modes
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FIG. 6. (Color online) Periodic attractors associated with veloc-
ity plateaus of Fig. 4, trace F, for aspect ratio I'=2 after the manner
of Fig. 5, with velocities 1/13, 1/53, and 1/101 for R=3.94 (a), 2.28
(b), and 1.80 (c), respectively. lon trajectories beginning at arbitrary
initial positions quickly relax to these highly stable attractors.

which are sometimes barely stable to small perturbations.

The remainder of this paper is devoted to the detailed
investigation of nonperiodic behavior for I'=4 (trace D in
Fig. 4), a geometry that is suitable for experimental separa-
tions and that features three velocity plateaus: 1/5, 1/9, and
1/13.

VI. NARROWBAND CHAOTIC ATTRACTORS

Commensurate velocity plateaus support both periodic at-
tractors and narrowband chaotic attractors. Figure 7, trace A,
shows the velocity data for I'=4 from trace D of Fig. 4,
together with steady-state values of the electrode contact
angle € encountered for simulations at fixed R after the decay
of transients (scattered points and traces, B). This contact
angle is measured in radians and is defined in Fig. 1, with
0=0, 6=m/2, and 6=, respectively, representing the left-
most contact point, the midpoint, and the rightmost contact
point on an electrode. At a particular value of R in Fig. 7,
scattered values of the contact angle indicate a chaotic attrac-
tor, while one or more isolated values indicate a periodic
attractor.

Commensurate velocity plateaus yield period-doubling
cascades to narrowband chaos, cascades that are driven by
translational symmetry-breaking transitions. Details of the
velocity 1/5 plateau of Fig. 4 are shown in Fig. 8, which
features a discontinuity in the steady-state contact angle at
R=2.35 (B) that corresponds to a glide-reflection symmetry-
breaking transition. For 2.35 <R =2.56, the periodic attrac-
tor y(x) obeys the quarter-wave glide-reflection symmetry
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1/5

1/9
113

1 R 2 3 Ry 4
IRI

FIG. 7. Details of 0,/c vs. R for aspect ratio I'=4 (heavy trace
A, corresponding to trace D in Fig. 4), with localization and trap-
ping thresholds R;=1.260 and R,=3.554. Also shown (b) are steady-
state values of the electrode contact angle 6 encountered for simu-
lations at fixed R. Chaotic attractors (at R=3.2, for example) feature
scattered random values of 6 whose specific positions vary from
simulation to simulation. Periodic attractors (at R=2.4, for ex-
ample) feature one or more isolated values. Dashed lines identify
commensurate velocity plateaus with v,/c=1/5, 1/9, and 1/13.

y(x)=h-y(x+N\/4) and the translational symmetries y(x)
:y(x+2"1)\) for [=0,1,..., «, employing four identical 1:5
orbits per wavelength as seen in Fig. 5(b). For 2.347<R
=2.35, the attractor breaks the quarter-wave symmetry but
obeys the half-wave (/=0) and higher translational symme-
tries, employing two identical 2:10 orbits per wavelength
[Fig. 9(a), solid trace]. This attractor serves as the period-1
state for a period-doubling cascade. The period-2 attractor at
2.337<R=2.347 breaks the half-wave symmetry but obeys
the whole-wave (/=1) and higher symmetries, alternating be-
tween two distinct 2:10 orbits with slightly different contact
angles [Fig. 9(b), dashed trace]. In general, period-2' attrac-
tors involve 2/ distinct 2:10 orbits, each with a different con-
tact angle, and obey translational symmetries of order / and

1 L

41/5

0.2
gk J
22 23 24 25 26
(a) IRI
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higher. This period-doubling cascade converges at an accu-
mulation point R=2.334 and appears in Fig. 8(b) as a bifur-
cation diagram that is similar to the familiar period-doubling
bifurcation diagram for the logistic map [30,31]. Our simu-
lations resolve period-1, 2, 4, 8, and 16 attractors.

The outcome of the period-doubling cascade is a velocity-
1/5 narrowband chaotic attractor employing an infinite num-
ber of distinct 2:10 orbits as shown in Fig. 9(b) for R=2.33.
Each orbit begins and ends at a different contact angle, with
contact angles being restricted to a narrow range 0.449m
< 0<0.4947 near the electrode midpoint. This range is evi-
dent in Fig. 8(b) (at R=2.33). On this narrowband chaotic
attractor, the average velocity is commensurate with the
wave speed (0,/c=1/5) because the attractor employs only
2:10 orbits, each of which has velocity 1/5.

The relationship between successive contact angles gives
useful attractor information. We denote 6, as the contact
angle for the nth electrode contact, for n=1,2,3,..., and
consider return maps of 6,,; as a function of 6, after the
decay of transients. Figure 10(a) shows attractors for four
different values of R. The period-1 attractor is a single fixed
point (circle) that lies on the line 6,.,,= 6, (dashed), reflecting
that 2:10 orbits on this attractor are all identical, contacting
electrodes successively at the same angle [Fig. 9(a), solid
trace]. The two points on the period-2 attractor (squares) give
the two values of @ that are visited alternately by this attrac-
tor [Fig. 9(a), dashed trace]. The four points on the period-4
attractor (triangles) are visited once each per cycle. The solid
trace shows the continuous range of angles 0.4497 <6
< 0.494 7 that are visited by the narrowband chaotic attractor
[Fig. 9(b)]. All four attractors involve only 2:10 orbits and
have velocity 1/5.

Details of the velocity 1/9 plateau of Fig. 4 are shown in
Fig. 11, which shows a period-doubling cascade and a
period-4 attractor flanked by period-2 attractors.

VII. BROADBAND CHAOTIC ATTRACTORS

This section is devoted entirely to the study of the struc-
ture of one broadband attractor, at R=3.2, which turns out to

0.7 -

6/n

2.32

04t
2.26
() IR|

228 230 234 236

FIG. 8. (a) Velocity and contact-angle detail for the velocity 1/5 plateau of Fig. 7. (b) Contact angle detail near R=2.3 showing four
period-doubling cascades to chaos, the first for increasing R near R=2.28, the second for decreasing R near R=2.31, the third for increasing
R near R=2.31, and the fourth for decreasing R near R=2.34. Whereas only narrowband chaos is found between the first two cascades, a
window of broadband chaos occurs above R=2.32 between the third and fourth. The transition from periodicity to broadband chaos below

R=2.27 is abrupt.
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FIG. 9. (Color online) (a) Velocity-1/5 periodic attractors for
R=2.35 (solid) and 2.34 (dashed). These attractors are associated
with the fourth period-doubling cascade in Fig. 8(b) and involve
only 2:10 interelectrode orbits. (b) Velocity-1/5 narrowband chaotic
attractor for R=2.33 involving only 2:10 orbits. (c) Velocity-0.6836
broadband chaotic attractor for R=3.2 involving a variety of orbits.

be remarkably intricate. We have also studied (but do not
include here) similar broadband attractors for other values of
R. Most of the attractors in the partially trapped range R,
<R<R, of Fig. 7 appear to be broadband attractors, distin-
guished by widely scattered values of the contact angle and
by velocities that are incommensurate with the wave speed.
Transitions to such broadband attractors are abrupt, as seen
at R=R, in Fig. 7, at R=2.27 and R=2.56 in Fig. §, and at
R=1.93 in Fig. 11.

In contrast with the narrowband attractor of Figs. 9(b) and
10(a), which samples a narrow range of electrode contact
angles and involves a single interelectrode orbit ratio 2:10,
the broadband attractor at R=3.2 samples the entire range of
angles 0 < #<m and employs a variety of interelectrode or-
bit ratios, as seen in Figs. 9(c) and 10(b). These orbits, com-
bined in seemingly random ways, conspire to produce an
incommensurate average velocity of 0.6836. Two of these
orbits (2:2 and 4:4) are labeled in Fig. 10(b), from which it is
difficult to determine the small-angle structure of the attrac-
tor. For this reason, we henceforth employ return maps of the
extended contact angle

0.5

0.48

0,41 /T

0.46

0.44 -
0.44 0.46

(a) 0,/m

0.48 0.5
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0};+1 = 0n+l + mAi (26)

as a function of the previous contact angle 6,. For an inter-
electrode orbit with initial and final contact angles 6, and
6,41, the extended contact angle 6., adds 7 to the contact
angle 6,,; for each electrode traveled in the +x direction
during this orbit. The number of such electrodes is Ai, the
axial ion displacement measured in quarter wavelengths, as
before [see Eq. (22)]. For example, Ai=2 for a Ai:Aj=2:6
orbit, giving ), ,=6,,,+2.

Figure 12 is an extended return map for the R=3.2 attrac-
tor that contains the same information as Fig. 10(b), except
that Fig. 12(a) contains displacement information through
the extended contact angle 6, ,,. The extended format helps
to illuminate the small-angle details, revealing an infinite se-
quence of singular angles ¢, for k=1,2,..., o, that ap-
proaches a singular accumulation angle 6°=0.2737753041r.
This accumulation angle and each of these singular angles
correspond to a trapped orbit that travels indefinitely through
the channel without contacting any electrodes. Also shown in
Fig. 12 is an infinite sequence of step-transition angles 6
that approaches this accumulation angle from above. Figure
12(c) shows fine detail at the accumulation point that certi-
fies the robustness of our simulation code and the sharpness
of the accumulation point. Clearly, for this chaotic attractor,
the orbital behavior of an ion depends strongly on its angle
of contact 6, at the first electrode, which does not match the
angle of arrival 6,,; at the second electrode.

Distinct traces in Fig. 12 correspond to various interelec-
trode orbits that are sampled by the attractor, some of which
are labeled on the figure. The step-transition angles 6 mark
the boundaries between trapped 2k: 2k orbits, for k=1,2,...,
. The singular angles ¢ separate complexes of partially
trapped orbits that include the orbits (k—2):(k+2), also for
k=1,2,..., . These orbits are illustrated in Fig. 13: Ions
depart from an electrode of origin (electrode 0, closed half-
disk) and either return to this electrode or arrive at another
electrode (open half-disk), moving Ai electrodes to the right
in a time Aj measured in quarter periods for an orbit denoted

1

0,41 /T

FIG. 10. (Color online) (a) Contact angle return maps associated with the attractors of Figs. 9(a) and 9(b) including a period-1 attractor
(circle, R=2.35), a period-2 attractor (squares, R=2.34), a period-4 attractor (triangles, R=2.335), and a narrowband chaotic attractor (solid
trace, R=2.33). (b) Return map for the broadband chaotic attractor (solid trace, R=3.2) of Fig. 9(c).
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0/n

1.86 1.87

IRI

1.85 1.88

(b)

064 |

S o060

052 L

1.89 1.90
(c)

1.91 1.92

IR

FIG. 11. (a) Velocity (a) and contact-angle (b) detail for the velocity-1/9 plateau from Fig. 7, showing periodic attractors (at R=1.86, for
example) and narrowband chaotic attractors (at R=1.88, for example) associated with commensurate velocities 0,/c=1/9 and broadband
attractors (at R=1.94, for example) with incommensurate velocities. (b) The left side of the plateau features a period 2 attractor that
bifurcates, near R=1.86, to a period 4 attractor, and back again. (c) The right side of the plateau features a classic period-doubling cascade.

by Ai:Aj. An orbit beginning at the accumulation angle 6~ is
similar to the 6:6 orbit shown, but travels through the infinite
channel without contacting any electrodes. The partially
trapped orbits (k—2):(k+2) travel k—2 quarter wavelengths
axially with one lag cycle [see Eq. (22)] and include a retro-
grade —1:3 orbit for k=1 that moves one electrode to the
left, a localized 0:4 orbit for k=2 that returns to the same
electrode, and prograde orbits for k=3 that move k—2 elec-
trodes to the right.

The details of the #' and ¢ peaks of Fig. 12 are magnified
in Fig. 14(a), which shows sequences of step transitions as-
sociated with each peak. The sequences for both peaks in-
volve the same orbit ratios, 1:5, 2:6, 3:7, etc. Figure 13(c)
shows how orbits having the same orbit ratios but pertaining
to different peaks have fundamentally different trajectories.
After departing from electrode 0, the 1:5 orbit associated
with the #' peak [leftmost orbit in Fig. 13(c)] is attracted
successively to electrodes —2, —1, and 1, while the 1:5 orbit
associated with the #* peak [rightmost orbit in Fig. 13(c)],
owing to its larger angle of departure from electrode 0, is
attracted successively to electrodes 1, —1, and 1. Both of
these are distinct from the 1:5 orbit near ° that is labeled in
Fig. 12(a). This orbit is attracted successively to electrodes 1,

2, and 1 [Fig. 13(b)]. Thus, orbits with the same orbit ratios
that are associated with different segments on the return map
[the 1:5 segments associated with the §' and * peaks of Fig.
14(a), for example] take distinct paths to accomplish the
same net displacement in the same amount of time. Trajec-
tories that are associated with the same segment, such as
trajectories for different values of 6 within the 1:5 segment
near 6, have only minor incremental differences.

Each singular-angle ¢ harbors remarkable substructure.
For example, Fig. 14(b) magnifies the #' peak horizontally to
show how it splits into a doublet, 0~ and 6™, of separation
0'*—0'"=12X10*7=7.9 min of arc. This figure also
shows how a descending sequence of step transitions 0,1+
between the odd orbits —1:3, 1:5, 3:7, ... approaches o'+
from above, while an ascending sequence of step transitions
0,” between the even orbits 0:4,2:6,4:8,... approaches o'~
from below. Figure 14(c) magnifies the doublet '~ yet fur-
ther, revealing infinite ascending and descending sequences
of singular angles within the doublet.

Figure 15(a) shows the details of the ascending sequence
of singular angles #'** that leads to 6'*, for k=1,2,3,..., «.
Figure 15(a) is similar to Fig. 12. Both feature an accumula-
tion angle that is approached from below by a sequence of
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0,41 /T
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0.273770

(©)
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FIG. 12. (Color online) Extended contact-angle return map for a broadband chaotic attractor with R=3.2 [Figs. 9(c) and 10(b)] showing
the approach to a singular accumulation angle 6 via an ascending sequence of singular angles ¢ (labeled), with k=1,2,..., %, and the
approach to the same angle via a descending sequence of step-transition angles 6;. Frames (a)—(c) show increasing detail near 6. Gray

rectangles identify regions that are shown in greater detail elsewhere.

singular angles and is approached from above by a sequence
of step transitions.

Figure 15(b) magnifies the peak at #'*! of Fig. 15(a),
showing how this peak splits into a doublet, #'*!~ and '*!*,
of separation 8'*!*—'*1-=5.6x 10"87=0.036 s of arc, en-
closing a sequence of singular angles. Figure 15(b) is similar
to Fig. 14(c). Both feature a doublet that encloses an appar-
ently infinite sequence of singular angles and that is enclosed
by sequences of step transitions.

We now investigate the convergence of sequences that
populate the R=3.2 attractor. A log-linear plot of the
singular-angle margins A &= 6°— 6 vs. k (Fig. 16, circles A)
suggests geometric convergence of the singular angles 6 to
the accumulation angle as ¢ k— % according to

A — Aa*, (27)
where A and « are constants. Indeed, a linear fit to the nine
data points with the largest values of k (k=29 through k

=37, trace A of Fig. 16) yields the convergence factor

a=1.647 = 0.002 (28)

for the sequence. This fit incorporates uncertainties in A" of
1 X 107, which are smaller than the plotting symbols. The
value x*=0.79 of the fit merit function and the value Q
=0.998 of the goodness-of-fit parameter [32] confirm that the
fitted data obey Eq. (27). Thus we conclude that ¢ con-
verges geometrically to 6° as k—, though the value «
=1.647+0.002 was computed for finite k¥ and might there-
fore underestimate the asymptotic result for k— oo.

Fits to A# that include points with smaller values of k
have unacceptably large values of x?, indicating that the
small-k data depart significantly from the scaling law of Eq.
(27). Fits to fewer than nine large-k data points yield accept-
able values of x? and yield values of « that agree with Eq.
(28), but with larger uncertainties. Thus, the nine fit points

036205-10



SELF-SIMILAR NESTED SEQUENCES ON A CHAOTIC...

0 2 4 6
-1 1 3 5
(a)
0 2 4 6
0:4 1:5 3:7
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FIG. 13. (Color online) Interelectrode orbits that contribute to
the broadband chaotic attractor for R=3.2 [see Figs. 9(c) and 12].
The closed half-disk represents electrode 0, the electrode of origin.
(a) Trapped orbits associated with a descending sequence of step
transitions, showing three 2:2 orbits that depart from the electrode
of origin at the contact angles 6/ 7=0.8, 0.6, and 0.4, one 4:4 orbit
for 6/7r=0.3, and one 6:6 orbit for #/ 7=0.28. (b) Untrapped —1:3,
0:4, 1:5, 2:6, and 3:7 orbits that participate in an ascending se-
quence of singular angles, with 6/ 7=0.05, 0.1, 0.15, 0.2, and 0.22.
(c) Two 1:5 orbits, for §/7=0.0105 and 0.071, flanking the —1:3
orbit at 6/77=0.05 in Fig. 14(a). These 1:5 orbits are distinct from
each other and from the 1:5 orbit shown in (b).

represents the largest acceptable number of fitted points con-
sistent with Eq. (27).

Figure 16 includes the doublet separations A6t =@
-6 (circles B) and the level-2 singular-angle margins
A6 =7 — 91+ (circles C). Linear fits with a=1.647 (traces
B and C) evidently capture the k— o behavior of these data
and suggest geometric convergence according to Egs. (27)
and (28) for all sequences of singular angles.

Figure 16 also includes the margins A6, =6 — 6 (squares
D) associated with the step-transition sequence that culmi-
nates at ¢ and the margins A6, =6,*—6'* (squares E) asso-
ciated with the level-2 step-transition sequence that culmi-
nates at #'*. These step-transition data clearly differ in slope
from the singular-angle sequences (circles A, B, and C), sug-
gesting convergence as k— o with a difference convergence
factor than Eq. (27) according to

A6, — BB, (29)

where B and B are constants. Indeed, for A0k=02° -0°, a
linear fit to the six data points with the largest values of k
(k=10 through k=15, trace D) yields the convergence factor

B=2.7097 = 0.0004 (30)

for the sequence. The associated values x*>=0.31 and Q
=0.989 confirm that the fitted data obey Eq. (29) and that 6
converges geometrically to 6 as k— . A fit to A6, (trace E)
using the same value of S evidently captures the k— % be-
havior of A6 and suggests geometric convergence according

PHYSICAL REVIEW E 80, 036205 (2009)

to Egs. (27) and (28) for all sequences of step-transition
angles.

VIII. DISCUSSION

A two-dimensional model of wave electrophoresis driven
by a periodic array of synchronized electrodes yields a rich
spectrum of dynamical behavior. The phase relationships be-
tween the electrode potentials demand average velocities that
are commensurate with the wave speed (rational v,/c) and
mode locking of the lag and wave frequencies (rational )/ w)
for periodic and narrowband chaotic attractors, and incom-
mensurate velocities for broadband chaotic orbits.

The contact-angle return maps 6,,,=/(6,) in our 2D non-
autonomous system are true 1D iterated maps because the
time of departure from an electrode is prescribed by the ap-
plied external potential, and because the time of arrival and
the angle of contact at a second electrode are determined
uniquely by the contact angle at the first electrode. Conse-
quently, even our return maps for broadband chaotic attrac-
tors are single-valued functions. The Lorenz map, which
gives the heights of successive peaks in a 3D autonomous
chaotic attractor, has a tent shape of finite thickness and is
therefore not single valued [33]. Since our return maps are
single-valued functions, standard cobwebbing and fixed-
point techniques may be used to study our attractors [30,34].

The return maps of our broadband chaotic attractors pos-
sess fascinating self-similar structure, including infinite num-
bers of nested infinite sequences of singular angles charac-
terized for R=3.2 by the geometric convergence factor «
=1.647=0.002, and infinite numbers of nested infinite se-
quences of step-transition angles characterized for R=3.2 by
a different convergence factor B=2.7097£0.0004. Our
simulations of broadband attractors with other values of R
identify similar behavior, but with different convergence fac-
tors. We are not aware of other examples of a chaotic return
map with self-similar nested geometric sequences [Figs.
10(b), 12, and 14-16] in the literature.

Equation (27) implies that o may be estimated from a
triad of adjacent values of ¢ as k— % according to

A
g _ g

and that 8 may be estimated in a similar way using values of
¢;. Equation (31) is the well-known Feigenbaum result for
period-doubling cascades, which are characterized by the
convergence factors 0=4.669, the Feigenbaum constant, and
a=2.503, the reduction parameter [30,31]. Feigenbaum’s se-
quences refer to bifurcations between periodic attractors as
some control parameter is varied, while our sequences refer
to orbits that are sampled by a single broadband chaotic at-
tractor at a particular value of the control parameter (R
=3.2, for example).

Although measurement of contact angles might be im-
practical in a microfluidic environment, some details of or-
bits and velocities should be observable, and might help to
evaluate the theory as a tool for designing microfluidic sepa-
ration systems. Previous measurements of the velocity of a
fluorescein plug for I'=5.3 agree generally with trace C of

a —

(31)
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FIG. 14. (Color online) Small-angle details of Fig. 12(a) showing how the singular angle ' resolves into a doublet of closely spaced
accumulation angles #'~ and @'* that enclose ascending and descending sequences of singular angles. Shown also are sequences of
step-transition angles 0,1(: that approach these angles, for k=1,2,3,..., %.
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FIG. 15. (Color online) (a) Details of the ascending sequence of singular angles 6'** that approach the accumulation angle 6'* of Fig.
14(c), with k=1,2,3,..., «. This sequence is similar to the sequence #* that approaches 6”, as shown in Fig. 12. (b) Fine detail near '+,
which resolves into a doublet of closely spaced accumulation angles #'*!~ and #'*!* that enclose ascending and descending sequences of
singular angles similar to Fig. 14(c).
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AO%/m

FIG. 16. (Color online). Log-linear plot of singular-angle mar-
gins A =6"— 6 [circles A, see Fig. 12(a)], doublet separations
A = g — 6 [circles B, see Fig. 14(b)], and level-2 singular-angle
margins A = 67— 01+~ [circles C, see Fig. 15(a)] vs k, all of
which vanish geometrically as k— o0 according to Egs. (27) and
(28) (traces A, B, and C). Also shown are step-transition margins
AG=6; - 6" [squares D, see Fig. 12(b)] and the level-2 step-
transition margins Ag,=6,*—6'* [squares E, see Figs. 14(b) and
14(c)] vs k, both of which vanish geometrically as k— o according
to Egs. (29) and (30) (traces D and E).

Fig. 4 [9] but fail to resolve the finer details, including the
velocity plateaus. If molecular diffusion is responsible for
this failure, then measurements with small concentrations of
charged fluorescent beads or quantum dots should increase
the resolution of the velocity details. Using confocal fluores-
cence microscopy, my experimental collaborators, Lloyd
Carroll and Aaron Timperman, plan to use low concentra-
tions of semiconductor quantum dots and ultrasmall fluores-

PHYSICAL REVIEW E 80, 036205 (2009)

cent microspheres to image the 2D and 3D motions of par-
ticles with varying mobilities under the influence of the
traveling wave. These experiments, while challenging, are
possible, and will provide experimental determination of the
paths taken by particles as they move through the channel.
Such measurements could provide feedback needed to refine
and extend our models.

Traveling-wave electrophoresis holds promise for particle
separations. In contrast with stochastic resonance separations
[35], capillary electrophoresis and traveling-wave electro-
phoresis apply only to species of different mobilities. Capil-
lary electrophoresis [36] can be used to separate species
whose mobilities differ by much less than 1%. A complete
evaluation of the sensitivity of traveling-wave electrophore-
sis awaits the inclusion of molecular diffusion in the theory
and experiments involving multiple species, which are un-
derway. In contrast with capillary electrophoresis and sto-
chastic resonance, traveling-wave electrophoresis offers
separation thresholds R, and R; (Sec. V) that can be tuned to
particular species using Eq. (3) simply by varying the ampli-
tude or frequency of the electrode potentials. Figure 4 shows
that these thresholds are very sharp in many instances, indi-
cating promise for very sensitive separations.
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