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Delocalization and spreading in a nonlinear Stark ladder
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We study the evolution of a wave packet in a nonlinear Stark ladder. In the absence of nonlinearity all
normal modes are spatially localized giving rise to an equidistant eigenvalue spectrum and Bloch oscillations.
Nonlinearity induces frequency shifts and mode-mode interactions and destroys localization. For large strength
of nonlinearity we observe single-site trapping as a transient, with subsequent explosive spreading, followed by
subdiffusion. For moderate nonlinearities an immediate subdiffusion takes place. Finally, for small nonlineari-
ties we find linear Stark localization as a transient, with subsequent subdiffusion. For single-mode excitations
and weak nonlinearities, stability intervals are predicted and observed upon variation in the dc bias strength,

which affects the short- and the long-time dynamics.
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The textbook solid-state problem of an electron in a peri-
odic potential with an additional electric field (see, e.g., [1])
leads to investigations of Bloch oscillations [2] and Landau-
Zener tunneling [3] in different physical systems. Optical
waves in photonic lattices [4,5] and ultracold atoms in opti-
cal lattices [6—8] are recent examples. If the well depth of the
periodic potential is large enough and the Landau-Zener tun-
neling is suppressed, the problem is discretized (Stark lad-
der) and the resulting eigenvalue problem is explicitly solved
in terms of the localized eigenmodes [9] of the system. Ad-
ditional nonlinear terms in the wave equations are generated,
e.g., by a nonlinear response of the medium (light) or by a
mean-field treatment of quantum many-body interactions
(Bose-Einstein condensates). These terms destroy the inte-
grability of the wave equations leading to decoherence and
deterioration of Bloch oscillations, which was observed on
time scales of a few oscillation periods [5,7]. The study of
hybrid discrete solitons in [10] showed that nonlinear Bloch
oscillations may destroy solitary excitations.

Single-site excitations were studied in [11] on rather short
time scales. In particular, three different ranges of nonlinear-
ity with different dynamics for one value of the dc bias have
been identified. Here, we present a detailed study and explain
the delocalization process induced by nonlinear terms when
starting from both single-site and single-mode excitations.
We obtain the complete map of dynamical regimes in the
parameter space of nonlinearity and the strength of the dc
bias. We find a surprisingly abrupt explosive dynamics of the
initially trapped excitations for strong nonlinearity. It can be
experimentally verified in systems dealing, e.g., with ultra-
cold atoms in optical lattices [8] and light propagation in
nonlinear waveguide networks [5]. We also demonstrate a
very peculiar dynamics for single-mode excitations and
small nonlinearities. Depending on the strength of the dc
bias, an initially excited mode might pump one of the neigh-
boring modes or keep its amplitude for rather long times.
These results can be observed experimentally for light propa-
gating in waveguide networks where initial states can be pre-
pared with well-defined phases [12].

We consider a discrete nonlinear Schrodinger equation
with a dc bias E,
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where the overdot denotes the time derivative, ¥, is a com-
plex amplitude of a wave at lattice site n, and S is the non-
linearity strength. Varying f is strictly equivalent to varying
the norm N'=3,|¥,|*. We choose N=1.

For B=0, Eq. (1) is reduced to an eigenvalue problem
using the ansatz W, (f)=exp(—i\t)A,. In the case of an infi-
nite lattice the eigenvalues \,=Ev (with v being an integer)
form an equidistant spectrum that extends over the whole
real axis—the Stark ladder. The corresponding eigenfunc-
tions or normal modes (NMs) obey the generalized transla-
tional invariance AS,T:EA,(;’) [2]. With J,,.(x)+J,_;(x)
=(2n/x)J,(x) for the Bessel function J,(x) of the first kind
[13], it follows that [9]

A0 =g (E). (2)

All NMs are spatially localized with an asymptotic decay
|A® | = (1/E)"/n!, giving rise to the well-known Bloch os-
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FIG. 1. (Color online) (a) Black solid line: localization volume
L of the eigenfunction AEIO) versus E. Insets: explicit form of the
eigenfunction across the chain for two values E=2 and E=0.2 (b,
blue; r, red); (b) The diagram of the three regimes of spreading in
the parameter space (B,E). Empty and filled circles: numerically
obtained thresholds which separate the three different regimes I-III
Lines connecting symbols guide the eye. Black dashed line: thresh-
old between II and IIT obtained from the dimer model (see text). In
the limit of £— < all lines merge to the asymptotic limit Sx<E.
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cillations with period Tz=27/E. In Fig. 1(a) we plot the
localization volume £=1/3,]A”* of an eigenstate, which
characterizes the spatial extent of the NM, as a function of E.
We find the asymptotic behavior of L£o«—[EIn E]™" for
E—0. Note that, for E=10, £ is already close to its
asymptotic value £=1 for E— . The eigenvalue spacing E
and the eigenvalue variation over a localization volume A
= EL determine the packet evolution in the presence of non-
linearity.

With

V()= 2 ¢, (A eV (3)

Eq. (1) transforms into NM space
iBy=B 2 Ly sy, o, bu eI (4)

V1.V, V3

where

- 0) 4(0) 4(0) 4(0

Iv,vl,vz,v3 = ; AE,-)I/\&-)V]AE,-)VZAE-)% (5)
are the overlap integrals between eigenfunctions (2). To char-
acterize the wave-packet dynamics we compute (i) the par-
ticipation number P=1/%,|¢,|* which measures the number
of strongest excited NMs, (ii) the second moment m,
=3 (v=-9)?¢,]> (¥=2,v|¢,|?) which quantifies the degree of
spreading of the wave packet, and (iii) the compactness in-
dex ¢=P?/m, which measures the degree of sparsity of the
wave packet.

First, we study a single-site initial excitation W, (0)=6,,.
In that case the amplitudes in NM space are ¢,(0)
=J,(2/E). The nonlinear frequency shift at site n=0 is 5= .
We expect three qualitatively different regimes of spreading:
(I) 65<E, (II) E<8<A, and (III) A< 6. In case (I) the non-
linear frequency shift is less than the spacing between ex-
cited modes. Therefore, no initial resonance overlap is ex-
pected, and the dynamics may evolve as the one for S=0 at
least for long times. In case (II) resonance overlap happens,
and the packet should evolve differently. For case (IIT) &
tunes the excited site out of resonance with the neighboring
NMs. Resonances with more distant NMs are possible, but
the overlap with these NMs is the weaker the further away
they are, see Eq. (2). Therefore, for long times the excited
site may evolve as an independent oscillator (trapping). The
diagram of the three regimes of spreading in the parameter
space (B,E) is shown in Fig. 1(b).

Let us start with case (IIT). For E=2 and B8>8.9, the
single-site excitation stays trapped up to times 7=10% without
significantly spreading into any other site of the lattice (vio-
let curve in Fig. 2). Slightly lowering 8 we observe that the
excitation is trapped up to a some time 7 which sensitively
depends on B and changes by many orders of magnitude,
e.g., between 10> and 107 in the narrow interval S
€ (8.05,8.9) for E=2 (Fig. 2). For times > T} an explosive
and spatially asymmetric spreading is observed on a time
scale of one Bloch period Tp. The packet spreads in the
direction of NMs with larger eigenvalues, which provide the
possibility of resonant energy transfer from the single-site
excitation due to its positive nonlinear frequency shift 6. For
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FIG. 2. (Color online) Single-site excitation for E=2. Second
moment 7, and participation number P versus time in log-log plots
for different values of B inside the interval where an explosive
delocalization of the trapped regime occurs: 8=8.15,8.25,8.5 (o,
orange; g, green; 1, red). B=8 (b, blue): intermediate regime. B
=8.9 (v, violet): trapped regime.

about ten Bloch periods T the packet shows Bloch oscilla-
tions, which then quickly decohere. Finally, the packet
spreads incoherently and subdiffusively (Figs. 2 and 3). The
explosion time T is not monotonously changing with 3 (cf.
Fig. 2), which indicates intermittency, i.e., the single-site ex-
citation can be closer or further away from some regular
structures in phase space. That distance may in turn control
the value of Ty. For E=2 and =8 the packet spreads from
scratch (blue curve in Fig. 2). Such dynamics can be experi-
mentally verified in systems dealing, e.g., with ultracold at-
oms in optical lattices [8] and light propagation in nonlinear
waveguide networks [5].

In regime II the nonlinearity is not strong enough to trap a
single-site excitation, but the excited NMs are resonantly in-
teracting. Therefore, the packet expands subdiffusively from
the very beginning (green curve in Fig. 4). Since the eigen-
modes of the linear system are spatially localized, the inco-
herent way of subdiffusive spreading resembles the one ob-
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FIG. 3. (Color online) |¥,(1)|? as a function of time (in logarith-
mic scale) and lattice site for E=2, 8=8.15 (upper graph) and E
=0.2, B=5.2 (lower graph). The zooms into the explosion region
are plotted on a linear time scale. Bloch oscillations are observed
right after the explosion time 7.
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FIG. 4. (Color online) Single-site excitation for E=2. m, and P
versus time (log-log plots) for (i) 8=2.1 (b, blue): weak nonlinear
regime; (ii) B=4 (g, green): intermediate regime; and (iii) B8=9 (r,
red): trapped regime. Orange dashed line: m,~ "3, Inset: ¢ for

B=4.

served in disordered nonlinear systems without [14—16] and
with [17] a dc bias. The second moment m, appears to grow
without bounds according to m, ~t*. We fitted the exponent
a for 20 different runs for E=2 and B=4. Each run was
obtained as follows. We integrated the equations up to #=107.
The obtained distribution was transformed to NM space. The
phases of all NMs were randomized, but the amplitudes were
kept constant. Finally, we performed an inverse transforma-
tion to real space and continued the integration up to 108, As
a result we obtained the average exponent a=0.38 =0.015.
Let us reconsider Eq. (4) and keep only resonant terms
v+ v, —v,—13=0. The resulting resonant normal form equa-
tions read

i¢v = ﬁ 2 IV,VI,VZ,(V+V1—V2)¢>ZI ¢V2¢V+V1—V2' (6)

V1,1

If at least two neighboring NMs are excited, the resonant
normal form (6) will have a connectivity similar to the origi-
nal lattice equations, which allows spreading over the whole
lattice. Excluding the possibility of integrability of Eq. (6),
we expect this spreading to happen indeed, as observed in
the numerical runs. Following [14,15], we conclude that all
NMs are in resonance with their neighborhood. If the wave
packet is in a state of equipartition at any time, it follows that
a=0.5 [14,15]. In such an assumed equipartitioned state the
compactness index {=3 [15]. However, the compactness in-
dex { decreases in time way beyond the equipartition thresh-
old (inset in Fig. 4) and therefore the assumption of equipar-
titioned wave packets is incorrect. This is the reason for the
discrepancy between the expected (0.5) and the observed
(0.38) values of the exponent a. Note that the onset of sub-
diffusive spreading was also observed in Refs. [11,18] for
two runs on rather short scales up to ¢= 10°, which makes it
impossible to estimate the exponent.

In regime I the nonlinear frequency shift §<<E. No strong
initial resonance overlap between NMs is expected. In that
case the dynamics may (at least for long times) evolve as in
the linear case. Eventually, the subdiffusive spreading takes
place after some waiting time 7 (Fig. 4). Note that the cross-
over from localization to spreading around time 7 is not ac-
companied by a rapid redistribution of the energy between
many neighboring sites as in the case of trapping with large
nonlinearities. Therefore, the onset of subdiffusion is simply
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related to the fact that weakly chaotic dynamics is character-
ized by a small momentary diffusion rate, and the corre-
sponding diffusion process is observed only after times
larger than 7.

In Fig. 1(b) we plot the boundaries between the three
regimes in the parameter space (3, E). These boundaries are
determined as follows. Keeping the value of E fixed and
varying S8, we integrate the equations up to t=10° starting
from the single-site excitation. Then we calculate m, and P
of the final wave packet. Being in regime I, these values are
quite close to those for the linear case. For a critical value of
B they start to grow indicating that we enter regime II. Fi-
nally, at a second and larger value of B the values of m, and
P drop down again, signaling the entering of regime III.

The border between regimes II and III can be accounted
for by using a dimer model. Since the trapped state corre-
sponds to only a single site being excited, we consider a
dimer model where only one further lattice site (to the right)
is added, in order to model the asymmetric energy transfer
during the explosion. The resulting equations read

iWo=—W,+ BV Wy, iV =-Wo+EV, +BW¥ [V,
which are solved using elliptic functions [19]. The dimer
model is integrable, and the analytical computation of the
initial condition |\Ifn(0)|2:5n,0 crossing a separatrix in the
phase space of the dimer yields a relation between B and E.
The transition to the trapped state at some critical nonlinear-
ity B(E) is accompanied by the divergence of the period of
oscillations, and above the threshold the energy is mostly
concentrated on one site. The final equation to be solved
numerically reads

- BE+B*BE*- 1)+ BEQR0-3E*) + (E*+4)*=0. (7)

As seen from Fig. 1(b) it fits very well with the boundary
between regimes II and III obtained from the evaluation of
the full set of equations. In particular, Eq. (7) correctly pre-
dicts that B(E—0)—4 and B(E—)—E. Note that two
critical nonlinearity values for self-trapping at £=0.5,5 were
found in [11], which agree reasonably with our data in
Fig. 1(b).

We use the SBAB, symplectic integrator [20] to integrate
Eq. (1) numerically. In order to ensure that our results are not
generated by inaccurate computations, we performed differ-
ent tests. In particular, we varied the time steps of our
scheme by orders of magnitude. We also varied the size of
the system to exclude finite-size effects in the evolution of
the wave packets (finally, N was chosen to be from 500 to
1000). We found no visible change in the spreading charac-
teristics. The narrow interval of nonlinearity with an explo-
sive behavior remains also unchanged [21]. It is worth noting
that the issue about numerical accuracy is discussed in de-
tails in the context of nonlinear disordered system in [15].
There we gave even more evidence that the round-off errors
with double (or even single) precision are not affecting the
results.

A single-mode excitation ¢,(1=0)=4,, also exhibits the
three different regimes of spreading. However, for small val-
ues of nonlinearity 8 an intriguing feature of the short-time
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dynamics follows. Indeed, consider the resonant normal form
(6). For a single-mode excitation, it follows strictly that no
other NM is going to be excited. Therefore, it is an exact
solution of Eq. (6),

do(t) =exp(=iBly00t)- (8)

However, the full set of equations (4) will excite other NMs
as well. These small perturbations may stay small or start to
grow, depending on the stability of solution (8) of Egs. (6).
The linear equations for small perturbations with v+ (0 read

id’v = B[I—V, V,O,O¢3¢iv + 2IV,V,0,0¢V:| )

l¢iv == B[I—V,V,O,O 32¢V + 211},1},0,0(15:;] - (9)

Note that only pairs of NMs with *=v are coupled. With
¢, ~exp(=iPly 00t +y,t), one gets

[
Y= 18 VIEV,V,O,O = (21,00 10000 (10)

Thus, if 2, 0> (21,00~ 0,0,00)% it follows that , is real,
the corresponding perturbations will grow exponentially fast
in time, and the original single-mode excitation is unstable.
Since the overlap integrals depend on the dc bias E, we ex-
pect transitions from stability to instability upon varying E.
Indeed, a numerical evaluation of that condition yields that
the single-mode excitation is stable in the limits 1.134<FE
<1.23,1.314<E<1.917, and E>2.314; otherwise, it is un-
stable. In the instability window 1.917<E<2.314 (1.23
<E<1.314) the modes v==*1 (v==*2) become unstable
whereas the other modes remain stable. This behavior is con-
firmed by numerical simulations presented in Fig. 5 on short
time scales. After sufficient exponential growth, the ampli-
tude of the unstable mode saturates due to nonlinear correc-
tions. Due to recurrences the energy eventually comes back
to the initially excited mode after possible long times. We
also find a correlation between the short-time stability prop-
erties of a single-mode excitation and the long-time evolu-
tion of the wave packet. If the single-mode excitation is
launched in a stability window, the wave packet is practically
not spreading up to =108 (inset in Fig. 5). However, a small
change in the dc bias value E can tune the system into an
instability window. As a result, the wave packet shows sub-
diffusive spreading on the accessible time scales, starting
with £~ 10° (inset in Fig. 5).

PHYSICAL REVIEW E 80, 036201 (2009)

T
—
©
=
o
.

0.8

_ 0.6

T s ST N

%

0.2

Q'

| L
0 500 1000 0 1000 2000 3000 4000

FIG. 5. (Color online) Amplitudes of the excited, »=0, and
neighboring modes, v=1 and v=2, versus time for 8=0.4. (a)
E=1.6, v=0 (b, blue) and E=2, v=0,1,2 (o, orange; r, red; g,
green). (b) E=1.18, v=0 (b, blue) and E=1.26, v=0,1,2 (o, or-
ange; r, red; g, green). Inset: long time evolution. m, versus time in
log-log plots: E=1.18,1.26 (b, blue; o, orange).

These results can be observed experimentally for light
propagating in waveguide networks [5]. Related instabilities
of nonlinear Wannier-Stark states were briefly mentioned
in [10].

In conclusion, we have investigated various regimes of
wave-packet spreading for the nonlinear Stark ladder. For
large nonlinearities there is a long-lived trapped regime with
an explosive transition to Bloch oscillations, followed by a
subdiffusive spreading at large time scales. For intermediate
nonlinearities we find subdiffusion from scratch. For small
nonlinearities the system is showing localization as a tran-
sient, with a subsequent subdiffusive spreading. For single-
mode excitations additional stability and instability intervals
with respect to the dc bias strength exist. For weak nonlin-
earity this leads to an additional sensitive dependence of the
transient localization times on the value of the dc bias. In all
cases, we observe that nonlinearity destroys integrability, in-
troduces chaos, and ultimately leads to a destruction of lo-
calization, which was a hallmark of the linear system due to
phase coherence and destructive and constructive wave inter-
ference.
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