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We report a general technique to study a given experimental time series with superstatistics. Crucial for the
applicability of the superstatistics concept is the existence of a parameter � that fluctuates on a large time scale
as compared to the other time scales of the complex system under consideration. The proposed method extracts
the main superstatistical parameters out of a given data set and examines the validity of the superstatistical
model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the
superstatistical approach is illustrated using real experimental data. We study two examples, velocity time
series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some
stock market indices.
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I. INTRODUCTION

Superstatistical techniques as introduced in �1� can be ap-
plied to large classes of nonequilibrium systems. The crucial
assumption of this approach is that the dynamics of the sys-
tem under study is a superposition of two dynamics with
well separated time scales. The standard example is a
Brownian particle moving through a slowly fluctuating envi-
ronment �e.g., there is a slowly fluctuating temperature 1 /��.
The fast dynamics is then determined by the change of the
velocity of the Brownian particle and the slow dynamics is
determined by the change of the temperature of the environ-
ment. It is well known that the stationary velocity distribu-
tion of a Brownian particle in a constant environment is a
Gaussian distribution with variance 1 /�. The theory of su-
perstatistics applies when the slow dynamics is so slow that
the velocity distribution of the particle has time to relax to a
Gaussian distribution between the changes of the environ-
ment. As such, after a long time, the stationary velocity dis-
tribution of the particle is just a superposition of Gaussian
distributions weighted with a function f���. This f��� is the
probability density to observe some value of �. Depending
on f���, different results for the stationary velocity distribu-
tion will occur. An important question is which types of dis-
tributions will occur in “typical” complex systems. In �2�, the
authors give some probabilistic arguments in favor of three
distributions, the lognormal distribution, the gamma distribu-
tion and the inverse gamma distribution. One can also derive
these distributions from a maximum entropy principle �3�.
The present paper will focus on techniques to extract the
distribution f��� and the relevant superstatistical parameters
out of real experimental data.

Recent applications of superstatistical methods include
hydrodynamic turbulence �2,4–6�, pattern forming systems
�7�, cosmic rays �8�, solar flares �9�, share-price fluctuations
�10–13�, random matrix theory �14,15�, random networks
�16�, multiplicative-noise stochastic processes �17�, wind ve-
locity fluctuations �18�, hydroclimatic fluctuations �19�, the

statistics of waiting times �20,21� and models of the meta-
static cascade in cancerous systems �22�. For the present pa-
per, we will concentrate on time series as generated by hy-
drodynamic turbulence and share-price fluctuations.

The outline of the paper is as follows. In the next section
we fix our notation. In Sec. III we discuss the techniques
proposed in �2� to extract superstatistical parameters out of a
given time series. We propose a modification to this method
in Sec. IV. In Sec. V we test our method using surrogate data
sets and show that our modification improves on the previ-
ously proposed method �2�. In Secs. VI and VII we apply the
superstatistical approach to real experimental data from hy-
drodynamic turbulence and finance. An alternative procedure
to study superstatistical time series is briefly examined in
Sec. VIII. The final section contains a discussion of our re-
sults.

II. NOTATION AND SUPERSTATISTICAL APPROACH

The starting point is a given discrete time series u con-
taining n data points. The different data points are denoted as
ui with i=1,2 , . . . ,n. The probability distribution of the ran-
dom variable u, extracted from the experimental data, is de-
noted as P�u�. The total time series is divided into N equal
slices of length �, with N= �n /�� where �x� means rounding
the value of x to the nearest lower integer. This implies that
the lth time slice contains the measurement points ui with
1+ �l−1��� i� l�. We then define local moments of order k
as follows:

�uk��,l =
1

�
�

j=1+�l−1��

l�

uj
k, with l = 1,2, . . . ,N . �1�

In the following, we will assume that the first momentum of
the total time series u:

�u�n,1 =
1

n
�
i=1

n

ui �2�

is equal to 0. If this is not the case we use the time series
u− �u�n,1 instead of u itself.

Now we want to analyze the distribution P�u� using su-
perstatistics. We assume that the time series u contains two
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different time scales � and T such that � /T�1. Remember
that we divided the time series u in different time slices of
length �. The time scale � determines how fast local equi-
librium is reached in these different slices. The time scale T
is the length of the slices. For every time slice, one can
extract a local probability distribution for the variables ui
with 1+ �l−1��� i� l� and �=T. When � /T�1, it is a
good approximation to assume that local equilibrium is
reached in a slice of length T. By this we mean that the local
distributions can be approximated by Gaussian distributions,

pT,l�u� =��T,l

2�
e−1/2�T,lu

2
, �3�

with �T,l=1 / �u2�T,l. Within this assumption, the distribution
P�u� is approximated by

P�u� 	 pT�u� ª
1

N
�
l=1

N

pT,l�u� , �4�

with N= �n /T�. In this way, one obtains N values for �T,l.
When N is large enough, one can replace expression �4� by

P�u� 	 pT�u� 	 pT,f�u� ª 

0

�

d�fT���� �

2�
e−1/2�u2

,

�5�

with fT��� being the probability density that the value of the
inverse variance in a randomly chosen time slice of length T
equals �. The obtained distribution fT��� depends on the
long time scale T, because T determines the length of the
time slices and as such the obtained values for the parameter
�. Therefore, the proper definition of T is of crucial impor-
tance and a major part of the present paper will focus on this
issue.

In �2�, a method was introduced to extract fT��� out of a
given experimental time series. The authors proposed to
check the validity of their approach a posteriori by compar-
ing the resulting distribution pT,f�u�, with the distribution
P�u� extracted from the experimental data. Notice that the
superstatistical approach includes two approximations. In the
first step, one assumes the existence of two time scales � and
T such that in every time slice local equilibrium is reached.
In the second step one assumes the existence of a distribution
fT��� replacing the summation in expression �4� by an inte-
gral. One would like to judge the validity of the first approxi-
mation before moving on to the second approximation.
Therefore, we propose an extension of the method intro-
duced in �2� to examine the quality of the first approxima-
tion. Afterward, the validity of the second approximation can
be checked by comparing the distributions pT�u� and pT,f�u�.
In the present paper we investigate the two steps of the su-
perstatistical approach separately. We will test our arguments
with surrogate data and with real experimental data sets.

III. ORIGINAL DEFINITION OF TIME SCALES

The correlation function of a time series u can be calcu-
lated as follows:

Cn,t�u� =
1

n − t
�
i=1

n−t

uiui+t. �6�

The superstatistical short time scale � of the time series is
defined by the exponential decay of Cn,t�u� �2�

Cn,��u� = e−1Cn,0�u� . �7�

In �2� a function 	� is introduced as

	� =
1

N
�
l=1

N

	�,l, with 	�,l =
�u4��,l

�u2��,l
2 . �8�

Notice that 	�,l is just the kurtosis of the lth time slice. The
superstatistical long time scale T is then defined by the con-
dition

	T = 3. �9�

To understand the meaning of this definition, remember that
the main assumption of superstatistics is the existence of two
well separated time scales. When this is true, one can ap-
proximate the distribution of the variables in the lth time
slice by a Gaussian distribution �in this paper we always
assume that local equilibrium is associated with Gaussian
behavior�. When the variables are indeed locally Gaussian
distributed with zero mean and variance 1 /��,l, the first four
local moments and 	�,l are simply

�u��,l = 0, �u2��,l =
1

��,l
, �u3��,l = 0,

�u4��,l =
3

��,l
2 , 	�,l = 3. �10�

The condition �9� implies that one is looking for a suitable
division of the total data set into time slices for which the
variables are locally Gaussian distributed �2�, with a variance
that fluctuates from slice to slice.

This definition will always result in a value for the long
time scale whenever the kurtosis of the complete time series
	n,1 is larger than 3 �2,23�. This can be seen by considering
two special cases. In the first case, � is so small that only one
value of u is observed in each time slice. This results in 	1
=	1,l=1 �with l=1,2 , . . . ,n�. In the second case, � is so
large that it includes the entire time series u. This results in
	n=	n,1
3. As a consequence, there exists a long time scale
1�T�n for which 	�=3 holds. With the definitions pro-
posed in �2�, one could formally use superstatistics to ana-
lyze the distribution of any time series whenever � /T�1 and
	n,1
3. But clearly not every time series that fulfills these
conditions contains time slices of which one can assume that
the variables are locally Gaussian distributed. Therefore, in
the next section we will derive an extra condition that should
hold before we assume that a time series at hand can be
described by superstatistics.

IV. EXTRA CONSTRAINT

Assume we found the value of � for which 	� equals 3.
This value is denoted as T. This means that the complete
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time series is divided in N= �n /T� time slices of length T. The
second and fourth momentum of these time slices are de-
noted as �u2�T,l and �u4�T,l, respectively. Then one can ex-
press the value of the function 	� for �=NT as follows:

	NT = � 1

N
�
j=1

N

�u2�T,j�−2
1

N
�
j=1

N

�u4�T,j . �11�

For large data series, the kurtosis of the complete data set
	n,1 is in good approximation equal to 	NT because N
= �n /T�	n /T. Formula �11� shows that the value of 	n,1 can
be calculated starting from the second and fourth momentum
of the time slices of length T. Now we assume that these time
slices contain variables that are approximately Gaussian dis-
tributed. We will determine the influence of the deviations
from this approximation to the value of 	n,1. Remember that
the moments of purely Gaussian distributed random vari-
ables are given by Eq. �10�. However, the variables of a time
series are never perfectly Gaussian distributed. We define �T,l
as the deviation of the fourth momentum from 3�u2�T,l

2 for the
time slices of length T

�T,l = �u4�T,l − 3�u2�T,l
2 . �12�

Then expression �11� can be rewritten as follows:

	NT = � 1

N
�
j=1

N

�u2�T,j�−2
1

N
�
j=1

N

�3�u2�T,j
2 + �T,j� . �13�

When the Gaussian approximation is reasonable in the time
slices of length T, the contribution of the term � j�T,j to the
value of 	NT will be small as compared to the contribution of
the term 3� j�u2�T,j

2 . Therefore, we expect the Gaussian ap-
proximation to hold when 


�1 with


 =
1

3

�
j=1

N

�T,j

�
j=1

N

�u2�T,j
2

. �14�

We showed that the value of the kurtosis of the complete
data set 	n,1 can be expressed as a function of the moments
of the times slices of length T only. The parameter 
 basi-
cally measures the contribution of the deviations from the
Gaussian approximation in these time slices to the value of
	n,1. More details about the derivation and the interpretation
of expression �14� can be found in Appendix A. In the next
section we will show that the extra constraint 


�1 resolves
some of the ambiguities of the original approach �2�.

V. SURROGATE DATA

The major problem of the definition �9� of the long time
scale T is that it will always give a value for T whenever the
kurtosis of the complete time series 	n,1 is larger than 3. For
example, a time series containing Gaussian distributed ran-
dom variables of constant variance with just one outliner can
have 	n,1
3 and � /T�1 without being superstatistical. Also
a time series containing q-Gaussian �24� distributed random

variables with constant variance can be wrongly classified as
being superstatistical. In this section we use surrogate time
series to illustrate that the extra constraint 


�1 is a useful
tool to decide whether a given time series is superstatistical.
We study three examples, �A� data constructed by numeri-
cally integrating a discretized Langevin equation, �B� time
series containing outliners and �C� data sets containing
q-Gaussian distributed random variables.

A. Langevin-like surrogate data

In order to construct realistic surrogate data sets, we nu-
merically iterate a discretized Langevin equation

ui = ui−1 − �ui−1 +�2�

�i
Li, �15�

where � is a constant, the Li correspond to Gaussian white
noise with variance 1 and �i are random variables with a
certain distribution. This is the dynamics of the example dis-
cussed in the introduction, a Brownian particle moving
through a slowly fluctuating environment. When �i=� is
chosen to be a constant, one ends up with the standard
Langevin equation. In this special case, it is known that the
stationary probability density of u is a Gaussian distribution
with inverse variance �. The relaxation time is 1 /�. We
study the more general case in which �i is a random variable
that is gamma distributed

fS��� =
�−�

����
��−1e−�/�, �16�

with � and � constants. However, in order to make the re-
sulting surrogate time series superstatistical, the time scale
TS of the fluctuating parameter �i must be larger than the
time scale �S=1 /� on which local equilibrium is reached. In
this way, the probability distribution of u will relax to a
Gaussian distribution before the next change of the value of
�i occurs. Therefore, we chose �S=10 and TS=500. In prac-
tice we keep the value of �i constant and iterate the Langevin
equation over TS=500 steps. Then we change the value of �i
and iterate the discrete Langevin equation again over TS
=500 steps. We repeat this procedure NS=500 times. The
result of this procedure is a time series with nS=TSNS
=250.000 data points. We construct two data sets, with dif-
ferent values of the parameters of the distribution �16�, �
=5,10 and �=10 / ��−1�. Then we apply the superstatistical
approach to these time series.

The resulting short time scales are �=9.52,9.21 for the
values of the parameter �=5,10 respectively. Figure 1 shows
	� as a function of � for the two surrogate data sets. The
black solid line and the red dashed-dotted line are obtained
for �=5,10, respectively. The constraint 	�=3 results in the
following values of the long time scale: T=409,521 for �
=5,10. The corresponding values of 


 are equal to 0.014
and 0.004, respectively. Because both inequalities � /T�1
and 


�1 hold, we conclude that the data series at hand can
be described within the superstatistical approach, and that
our method to extract the relevant time scales works very
well.
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We continue by extracting fT��� out of the time series and
compare the obtained distribution fT��� with the imposed
distribution fS���. The result of this calculation can be seen
in Fig. 2. We conclude that there is an excellent agreement
between fT��� and fS��� for both surrogate data sets. Finally,
we construct the distribution pT�u� and compare the obtained
distribution pT�u� with the original distribution P�u�, see Fig.
3. There is an excellent agreement between pT�u� and P�u�
for both surrogate data sets.

B. Outliners

To illustrate the influence of an outliner to the superstatis-
tical approach, we construct two surrogate data series. The
first time series contains nS=25.000 Gaussian distributed
random variables constructed by numerically iterating a dis-
cretized Langevin �15� with �=1 /5 and �i=�=1. Clearly,
the extracted value of the kurtosis for this time series is ap-
proximately equal to 3. The second surrogate data series is
constructed out of the first by replacing one of the elements
of the first time series by an outliner. As a consequence of

this, the kurtosis of the second time series will generally be
larger than 3 and is equal to 4.63 for our particular example.
Therefore, expression �9� would formally give a value for the
long time scale when applied to the second data series. This
can be seen in Fig. 4 that shows a plot of 	� as a function of
�, computed from the first �dashed line� and the second
�solid line� surrogate data set. For the first data set, 
	�

−3
 /3 is a monotonic decreasing function of �, while for the
second data set the function 
	�−3
 /3 reaches a single mini-
mum at T=�=150. We also computed the short time scale
for this surrogate data set, �=4.52. As a consequence, the
inequality � /T�1 holds. Finally we calculated the value of



 for the second surrogate data series and obtained 0.41.
Clearly, the inequality 


�1 does not hold in this case and
the data series at hand cannot be described with the super-
statistical approach. After removing the outliner, one is left
with a data series containing just Gaussian variables of con-
stant variance �equivalent to the surrogate data set we started
from� and no value for the long time scale can be found, see
Fig. 4. This example shows that one has to be careful when
using the superstatistical approach to study data series that
contain outliners. Apparently, our criterion 


�1 can help to
identify truly superstatistical dynamics.

C. q-Gaussian

We continue by constructing surrogate data sets contain-
ing q-Gaussian random variables of constant variance. This
means that the random variables are distributed according to
the following distribution:

P�u� =

�� 1

q − 1
�

�� 1

q − 1
−

1

2
��

�q − 1�b
2�

� �1 + �q − 1�
1

2
bu2�−1/�q−1�

, �17�

with b and q constants. In the limit q→1, the distribution
�17� approaches a Gaussian distribution with inverse vari-
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FIG. 1. �Color online� Extraction of the long time scale T from
the condition 	�=3 for two surrogate data sets �see expression �8�
for the definition of 	��. The difference between the two time series
is the width of the distribution of the fluctuating parameter �, see
Fig. 2.
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FIG. 2. �Color online� The solid line and the dashed-dotted line are representations of the distribution �16� with �=10 / ��−1� and �
=5,10 respectively. These distributions are used to construct two surrogate time series. Applying the superstatistical approach to these data
sets results in an approximation fT��� for the imposed distribution fS���. The extracted distributions fT��� are represented by ����� and
����� for the data sets with �=5,10, respectively.
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ance b. The kurtosis of the distribution �17� is 3�5−3q� / �7
−5q�. Clearly, the kurtosis is larger than 3 for q
1. There-
fore, expression �9� would formally give a value for the long
time scale when applied to data sets containing q-Gaussian
random variables with q
1. Our aim here is to identify this
time series as being not superstatistical, since there is no long
time scale on which the variance changes.

The kurtosis diverges in the limit q→7 /5. That is the
reason why the analysis presented in this section will be
restricted to data series containing q-Gaussian random vari-
ables with 1�q�7 /5. We use the generalized Box-Müller
method, proposed in �24�, to construct the surrogate data
series. The number of elements of every data set is nS
=25.000. The used values of q range from 1.05 to 1.35,
while the used values of b are 0.1,1,10. We calculate the
value of � for which the constraint 	�=3 holds and deter-
mine the corresponding value of 


. For every tuple �q ,b�,
we repeated these calculations 500 times �we constructed
500 different data sets� and averaged the value of 


 over

these different runs. The result of these calculations can be
seen in Fig. 5. This figure shows a plot of the value of 


 as
a function of the kurtosis of the used q-Gaussian distribution.
The figure contains three curves, for three different values of
b, 10 �����, 1 �+++�, and 0.1 �����. Clearly, the three
curves are almost indistinguishable. More importantly, the
curves are increasing functions of the kurtosis �determined
by q�. This shows that the extra constraint 


�1 will reject
the time series containing purely q-Gaussian distributed ran-
dom variables as being superstatistical when the value of the
kurtosis is large enough. When the value of the kurtosis is
close to 3, the value of 


 will also become small. However
notice that in these cases the corresponding q-Gaussian dis-
tribution is also better and better approximated by the Gauss-
ian distribution. This means that the assumption of local
equilibrium can be relaxed to global equilibrium. As a con-
sequence, there is no reason to the study these time series
within the superstatistical approach, because the usual equi-
librium statistical mechanics �i.e., Gaussians with constant
variance� can be used in very good approximation.

VI. TURBULENCE DATA

After testing our method with various types of surrogate
data, we now apply our superstatistical analysis to real ex-
perimental data. We use time series obtained in an experi-
ment performed by Lewis and Swinney �25�. They measured
a single velocity component v�t� as a function of time t in
turbulent Taylor-Couette flow for different Reynolds num-
bers Re. The stationary probability distribution P�u� of the
velocity difference u�t�ªv�t+��−v�t� at a given scale � is
well known to exhibit non-Gaussian behavior.

The turbulence data sets we used from Swinney’s experi-
ment are not scale invariant. Contrary to other turbulence
data there is no inertial range for these data and no scaling
exponents of velocity increments can be defined. But in �2� it
was shown that the existence of two effective time scales is
well supported by the data.

The values of the parameters for the data series used in
the present paper are Re=540.000, �=16 and n	2�107.
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P
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)

FIG. 3. �Color online� Plot of the observed distributions P�u� for
the surrogate data sets with �=5 ����� and �=10 �����. The
superstatistical approximations pT�u� are given by the solid line and
the dashed-dotted line. The dashed lines are Gaussians with the
same variance as P�u�.
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FIG. 4. Determination of the long time scale T from the condi-
tion 	�=3 for two surrogate data sets �see expression �8� for the
definition of 	��. The minimum of the solid line is reached for �
=150. The dashed line is a monotonic decreasing function of �.
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FIG. 5. Plot of the obtained value of the superstatistical param-
eter 


 as a function of the kurtosis of the used q-Gaussian surro-
gate data set. The solid line is a guide to the eyes.
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The two different time scales are extracted from the time
series as �	7.2 and T	186, in agreement with the results of
�2�. We also evaluated expression �14�. The result is 



=0.0205�1. Hence we assume that the experimentally mea-
sured time series is superstatistical. We also constructed the
distribution pT�u� which is an approximation for the real ex-
perimental distribution P�u�, see expression �4�. Figure 6
shows the excellent agreement between these two distribu-
tions.

As mentioned in Sec. II, the superstatistical modeling ap-
proach includes two approximations. Until now, we only dis-
cussed the first. After this approximation one ends up with N
values of the local inverse variance �T,l. This series of num-
bers can be treated as a set of random variables with a certain
distribution fT���. In the second step of the superstatistical
modeling process one tries to find the best fit to fT��� with
some well-known distributions such as, e.g., the lognormal
distribution, the gamma distribution or the inverse gamma
distribution, thus proceeding to an analytic model. Figure 7
shows our extracted distribution fT���. A good fit to the data
is obtained for a lognormal distribution,

fT��� =
1

��2�

1

�
e−�ln � − ��2/2�2

, �18�

with �=0.5222 and �=−1.561 �see also �3��. Finally we con-
struct pT,f�u� �see expression �5�� and compare this distribu-
tion with pT�u�. Figure 6 includes plots of both pT,f�u� and
pT�u�. To summarize, Fig. 7 shows the good fit of a lognor-
mal distribution to fT���, while Fig. 6 shows the excellent
agreement between pT,f�u� and pT�u�. Both figures validate
that lognormal superstatistics is indeed a good modeling ap-
proach to the data.

VII. ECONOMICAL DATA SERIES

In this section we study economical time series. The data
sets are the daily closing prices xi of the Dow Jones indus-
trial average index �DJI� and the S&P 500 index for the
period March 1950 to September 2008. This means that the
total number of data points is of the order n�15.000. In the
literature one usually studies the statistics of the log returns
Xiª ln�xi+� /xi� with �=1,2 , . . . of the closing prices instead
of the closing prices itself. We consider the normalized log
returns,

ui ª �Xi − �X�����X2� − �X�2�−1, �19�

which have been rescaled to have variance 1. An example of
a part of such data series with �=1 for the DJI index can be
seen in Fig. 8. This figure illustrates that sometimes outliners
�crashes of the stock markets� are present in the data.

In the first step of the superstatistical analysis, we calcu-
late �, T, and 


. Additionally, we also calculate for every set
the total kurtosis 	1,n. We performed these calculations for
the DJI index and the S&P 500 index for three different
values of �=1,2 ,4, see Table I. For every value of �, the
condition � /T�1 holds, while the condition 


�1 does not
hold. Notice also that the values of the total kurtosis strongly
deviate from 3. We illustrated in Sec. V B that outliners can
strongly influence the results of the superstatistical analysis.
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FIG. 6. Plot of the distribution P�u� ����� computed from a
data series of velocity differences measured in turbulent Taylor-
Couette flow. The superstatistical approximations pT�u� and pT,f�u�
are represented by the solid line and the dashed-dotted line,
respectively.
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FIG. 7. Plot of the extracted distribution fT��� ����� com-
puted from a data series containing the velocity differences mea-
sured in turbulent Taylor-Couette flow. The solid line shows a fit of
fT��� to a lognormal distribution, see expression �18�, with �
=0.5222 and �=−1.561.
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FIG. 8. Plot of the normalized log returns ui as a function of
time i for the DJI index with �=1. The plot shows just a small
section �150 data points� of the complete data series �approximately
15.000 data points�. Notice the outliner near i=9500 which corre-
sponds to the crash of the stock markets on October 19, 1987.
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Therefore, we continue by studying data sets in which the
data points with the largest values of 
ui
 are removed. In-
deed, it is well known in mathematical finance that large
jump events of prices play a special role and lead to modifi-
cations of the Black-Scholes theory �26�. These events are
often created by special circumstances of the market and are
not explainable by superstatistics. We repeated the calcula-
tion of �, T, and 


 for data sets excluding the outliners. In
practice we removed data points with 
ui

7 �approximately
0.05% of the data points�. The bottom part of Table I shows
the newly obtained values for �, T, 


, and the total kurtosis
	1,n when the outliners are removed. By comparing the val-
ues of the superstatistical parameters in Table I one observes
that � and T are hardly influenced by the outliners. However,
notice the large decrease of the values of 	1,n and 


, in
particular for the data sets with �=1,2. Removing approxi-
mately 0.05% of the data points results in a decrease of the
values of 	1,n and 


 by a factor of the order �5 and �100,
respectively. We conclude that both conditions � /T�1 and



�1 hold for the economical data sets with �=1,2 once the
outliners are removed. Therefore, we will focus our analysis
in the following part to these data sets.

After the calculation of T one can construct the distribu-
tions pT�u� and fT���. Figure 9 shows the original distribu-
tions P�u� of the normalized log returns together with the
result pT�u� of the superstatistical approach after the first
approximation. There is an excellent agreement between
P�u� and pT�u� for all four cases. One also ends up with N
	15.000 /T different values for the inverse variance �T,l. We
constructed a histogram with these values and tried to ap-
proximate this histogram with some well-known distribu-
tions, the gamma distribution �16�, the lognormal distribution
�18� and the inverse gamma distribution,

fT��� =
��

����
�−�−1e−�/�. �20�

These three distributions were motivated in �2�. The resulting
distributions are shown in Fig. 10. The values of the param-
eters � and � are listed in Table II. We also constructed the
distributions pT,f, see Fig. 9. By inspecting Figs. 9 and 10 we
conclude that certainly the inverse gamma distribution is not
a good candidate to represent fT���. However, it is much
harder to distinguish between the lognormal distribution and

the gamma distribution. Both distributions are a reasonably
good approximation for fT��� and result in good agreement
between pT,f�u� and pT�u�. We conclude that the data sets
under study can be described equally well by gamma super-
statistics and lognormal.

We also studied the effect of a random shuffling of the
data sets. A shuffling of the data keeps the kurtosis and the
distribution P�u� unchanged but destroys the correlations in
the time series. As a consequence, we expect a considerable
change in the values of �, T, and 


. We applied the shuffling
operation to the data of the DJI index and the S&P 500 index
for �=1,2 ,4, again with outliners removed. We shuffled ev-
ery data set 500 times and averaged the values of T and 



over these different runs. The result of these calculations can
be seen in Table III. As expected, the random shuffling op-
eration causes a decrease of the value of T and an increase of
the value of 


 �compare Tables I and III�. These observa-
tions confirm the fact that the original economical time series
is superstatistical whereas the shuffled one is not. Let us

TABLE I. The values of the superstatistical parameters extracted from data series containing the normal-
ized log returns ui of the DJI index and the S&P 500 index for three different values of �. The used data sets
are �top� unaltered ui, �bottom� largest values of 
ui
 removed.

�

S&P 500 DJI

� T 


 	1,n � T 


 	1,n

1 �1 17 1.11 35.6 �1 18 1.50 49.3

2 1.28 33 1.12 22.6 1.27 32 1.28 28.0

4 2.46 60 1.02 15.4 2.47 64 1.36 18.6

1 �1 17 0.02 6.6 �1 19 0.01 6.3

2 1.29 32 0.01 6.1 1.29 34 0.01 6.0

4 2.45 73 0.05 5.6 2.45 70 0.10 5.5
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FIG. 9. �Color online� Plot of the distributions P�u� for the DJI
index and the S&P 500 index for two different values of � �S&P
500 index with �=1 ����� and �=2 �����, DJI index with �
=1 ����� and �=2 ������. The superstatistical approxima-
tions pT�u� are represented by the solid lines. The figure also shows
the distributions pT,f for three different choices of fT���, the gamma
distribution �dotted lines�, the lognormal distribution �dashed-dotted
lines� and the inverse gamma distribution �dashed lines�. The values
of the corresponding parameters � and � are listed in Table II.
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connect this with the results obtained in Sec. V C. We previ-
ously provided evidence that the distribution P�u� of the eco-
nomical data sets can be approximated very well by pT,f�u�,
see expression V with fT��� being a gamma distribution. In
this case, the integral of expression V can be evaluated ana-
lytically as

pT,f�u� =
��� + 1

2 �
����

� �

�
2��2 + �u2�−�−1/2. �21�

This distribution is a q-Gaussian distribution, see expression
�17�, with

� =
1

q − 1
−

1

2
and � = b�q − 1� . �22�

In Sec. V C we studied the dependence of the value of 


 as
a function of the kurtosis for surrogate data sets containing
q-Gaussian random variables. Because the economical data
sets are in good approximation q-Gaussian distributed, it is
no surprise that the values of the kurtosis ��6� and 



��0.3� of Table III are of the same order of magnitude as the
values that can be read off the curve shown in Fig. 5. In other
words, the randomly shuffled log returns can be modeled in
good approximation with the q-Gaussian random variables
studied in Sec. V C.

Finally, we studied how our superstatistical techniques
were influenced by extreme events �outliners� such as stock

market crashes. We formally repeated our evaluation of the
distribution pT�u� for the data series including the outliners,
see Fig. 11. This figure still shows excellent agreement be-
tween the superstatistical approximation pT�u� and the origi-
nal distribution P�u� for small and intermediate values of u
but fails to reproduce the data in the region 
u

10. The
reason for that is quite clear: the basic assumption of super-
statistics, namely, local equilibrium, is violated during peri-
ods of very high market volatility. Again we approximated
the extracted fT��� with the three aforementioned distribu-
tions and construct the corresponding distributions pT,f�u�.
When outliners are included, as Fig. 11 shows, the best
agreement between pT�u� and pT,f is obtained for the gamma
distribution fT���. This analysis suggests that without elimi-
nating the outliners gamma superstatistics is best suited to
model realistic share-price dynamics.

VIII. ALTERNATIVE APPROACHES

The definition of a long superstatistical time scale T is not
unique and alternative approaches can be considered in prin-
ciple. In this section we introduce an alternative definition
for the long time scale and briefly repeat the study of the
time series examined in Secs. VI and VII, thus testing for the
robustness of our methods.

Since superstatistics is based on a superposition of Gauss-
ian distributions, one might consider a suitable weighting of

TABLE II. The values of the parameters � and �, used to construct the distributions shown in Figs. 9–11.
The letters G, L, and I stand for the gamma distribution �16�, the lognormal distribution �18�, and the inverse
gamma distribution �20�, respectively.

�

S&P 500 DJI

G L I G L I

1 � 2.02 0.78 1.74 2.05 0.84 1.28

� 1.05 0.56 2.45 0.96 0.51 1.64

2 � 2.04 0.80 1.54 2.10 0.77 1.47

� 0.98 0.49 2.01 0.88 0.44 1.83

(b)
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FIG. 10. �Color online� Plot of the extracted distributions fT��� for the DJI index and the S&P 500 index for two different values of
�=1,2 �S&P 500 index with �=1 ����� and �=2 �����, DJI index with �=1 ����� and �=2 ������. For all four distributions an
approximation to the data in terms of a gamma distribution �dotted lines�, a lognormal distribution �dashed-dotted lines� a inverse gamma
distribution �dashed lines� is also shown. The values of the corresponding parameters � and � are listed in Table II.
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relevant observables with local Gaussian statistics. An inter-
esting alternative approach is the comparison of the average
kurtosis 	� of the time series at hand with the expectation of
the kurtosis 	��� of a time series with length � averaged
over Gaussian statistics. In Appendix B we show that 	���
=3� / �2+��. The long time scale T can then be extracted
from the condition,

	T = 	�T� = 3
T

2 + T
. �23�

This definition for T coincides with expression �9� in the
limit T→�. As a consequence, it is no surprise that for the
turbulence data the resulting values of the long time scales
almost coincide: T=186 �	T=3� and T=170�	T=	�T��. We
also checked that there is no visible change of the distribu-
tions fT��� or pT�u� in Figs. 6 and 7 with this method.

For the economical time series the typical values of T are
smaller as compared to the turbulence data, and hence stron-
ger differences might arise in this case. Figure 12 shows the
average kurtosis 	� for time series containing the normalized
log returns �with outliners removed� of the S&P 500 index
for different values of �=1,2 ,3 ,4. As expected, the obtained
values of the long time scales are different for the two meth-
ods, T= / ;17;36;52�	T=	�T�� and T=17;32;52;73�	T=3�
for the time series with �=1,2 ,3 ,4, respectively. Here the
slash indicates that no solution is found, due to a lack of
intersection of the relevant curves in Fig. 12. Most impor-
tantly, however, we checked that again the corresponding
distributions fT��� or pT�u� obtained for the method are al-

most indistinguishable from Figs. 9 and 10. This shows that
our results are robust and that our main conclusions about
the time series at hand do not change.

In Sec. IV we derived a constraint 


�1 that should hold
if a given time series is superstatistical. For the alternative
rule, expressions �12� and �14� must be replaced by

�T,l = �u4�T,l − 3
T

2 + T
�u2�T,l

2 ,


 =
1

3

2 + T

T

�
j=1

N

�T,j

�
j=1

N

�u2�T,j
2

. �24�

With this expression for 
, we obtain 



= / ;0.03;0.003;0.06�	T=	�T�� for the time series with
�=1,2 ,3 ,4, respectively, whereas previously we had
with expressions �12� and �14� the values 



=0.02;0.01;0.03;0.05�	T=3�. All these numbers are small,
so our conclusions do not change and are robust, though it is
noticed that the new method apparently fails to provide an 

and T value for the case �=1. Further alternative definitions
can be given, and the methods can be extended to include
tests of statistical significance.

IX. DISCUSSION

In this paper we have presented a general technique to
study a given experimental time series with superstatistics.

TABLE III. The values of the superstatistical parameters extracted from data series containing the ran-
domly shuffled normalized log returns ui of the DJI index and the S&P 500 index for three different values
of � �with largest values of 
ui
 removed�.

S&P
500 DJI

� � T 


 	1,n � T 


 	1,n

1 �1 8 0.30 6.6 �1 9 0.32 6.3

2 �1 9 0.30 6.1 �1 10 0.32 6.0

4 �1 10 0.30 5.6 �1 11 0.30 5.5
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FIG. 11. �Color online� Same picture as Fig. 9 but with outliners included.
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The crucial assumption of superstatistical modeling is that
the dynamical description can be split into two levels that
have a large time scale separation. Then, the complete data
set can be divided into different time slices of length T for
which the variables are Gaussian distributed with a certain
fixed inverse variance �. However, the value of � varies
from slice to slice. If the number of time slices is large
enough one can construct a histogram with these values and
approximate this histogram with a known distribution. We
proposed a general procedure to introduce the different ap-
proximations of the superstatistical approach. Our method is
as follows

�i� Extract the short � time scale �7�, the long T time scale
�8,9� and the value of 
 �14� out of the time series at hand.

�ii� Check whether the following two inequalities � /T
�1 and 


�1 are satisfied. Then construct the distribution
pT�u� given by �4� which is a first approximation for the
original distribution P�u�.

�iii� Search for a good fit to the histogram of the values of
� with a known distribution f���. Then construct the distri-
bution pT,f�u� �5� which is a second approximation for P�u�.
Only when a good fit is obtained together with pT,f�u�
	 pT�u� one can conclude that the second approximation of
the superstatistical modeling approach is valid.

We tested this method with several surrogate data sets and
showed that our method is able to extract the correct infor-
mation out of a given data set. We then applied the proposed
techniques to two real experimental data series, velocity time
series measured in turbulent Taylor-Couette flow and time
series containing the normalized log returns of the closing
prices of some stock market indices. For the turbulence data
the inequalities � /T�1 and 


�1 were immediately seen to
hold, whereas for the share prices the outliners had to be
removed first in order to obtain a realistic superstatistical
model. We conclude that the superstatistical approach can be
successfully used to study both data sets.

Since the early work of Black and Scholes �27�, various
techniques borrowed from the field of the theoretical physics
were successfully used to study the evolution of stock mar-

kets prices and their derivatives. Some recent work in the
context of option pricing involves for example the use of
continuous-time random walks �28,29�, perturbation expan-
sions around the Black-Scholes formula �30� and the use of
path integrals �31�. Other authors focus on stochastic volatil-
ity and its extraction from a long sequence of data
�10,32,33�. Common in all these papers is the observation
that the volatility of the log returns ui of the stock market
prices is a stochastic variable with certain distribution. How-
ever the type of this distribution is still under debate. Often
the volatility is defined as the average of 
ui
 over a time slice
with certain length �. This results in N=n /� values for the
volatility, with n the total number of data points. Then one
constructs a histogram with these N values and searches for
the best fit to this distribution using some known distribu-
tion. Usually, one examines different values of � and ob-
serves that the result of the fitting procedure is not crucially
dependent on the arbitrary choice of �. Notice the differ-
ences with the method presented in this paper. The length of
our time slices coincides with long time scale T. Therefore,
in the context of superstatistics, the value of � is fixed by the
definition of T. We also use another measure for the volatil-
ity. Instead of studying the average of 
ui
 over a time slice
we study the inverse of the average of ui

2. The reason for this
is that in the second step of our method we need the distri-
bution of the latter variable to construct the distribution
pT,f�u�. Our careful analysis of the different approximations
of the superstatistical approach shows that for the hydrody-
namic turbulence data our techniques can be applied directly
whereas for the economical time series it is better to first
remove the outliners. When outliners are removed, our data
sets can be described equally well by gamma superstatistics
and lognormal superstatistics. When outliners are included,
gamma superstatistics seems to do the best job.

Our approach is inspired by the theory of statistical hy-
pothesis testing. In this context, the null hypothesis is the
assumption that the data series at hand can be described by
the superstatistical approach. Then one has to calculate the
values for �, T and 
. One accepts the null hypothesis when
T exists and � /T�1 and 


�1. An interesting topic for
future research is a statistical analysis of the threshold be-
havior of � /T and 


. Also other conjectures to falsify the
null hypothesis can be examined. Generally this work will
further help to understand the behavior of complex systems
with time scale separation, making direct contact with ex-
perimental measurements.
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APPENDIX A

The superstatistical long time scale T is defined as the
value of � for which 	� equals 3, see expression �8� for the
definition of 	�. Assume that we have found the value of the
long time scale. This means that the complete time series is
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FIG. 12. �Color online� Difference between the two definitions
of the long time scale T for time series containing the normalized
log returns �with outliners removed� of the S&P 500 index for four
different values of �. The average kurtosis 	� of these time series is
plotted for �=1 �����, �=2 �����, �=3 �����, �=4
�����. One definition fixes the value of T by 	T=3 �dashed line�,
while the other definition uses the equation 	T=3T / �2+T� �solid
line�.
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divided in N= �n /T� time slices of length T. The superstatis-
tical model assumption is valid when the variables within
these time slices are in good approximation Gaussian distrib-
uted with a certain variance �u2�T,l, with l=1, . . . ,N. We de-
fined �T,l as the deviation of the fourth momentum from
3�u2�T,l

2 in the lth time slice of length T, see expression �12�.
Continue by dividing the complete time series in �n /sT� time
slices of length �=sT with s=2, . . . ,N. We will show in this
appendix that the value of 	sT can be expressed as a function
of �u2�T,l and �T,l only. The contribution of �T,l to the value of
	sT is a measure for the deviations from the Gaussian distri-
bution in the time slices of length T.

First notice that the moments within the lth time slice of
length sT can be written as a sum of the moments within the
time slices of length T

�uk�sT,l =
1

sT
�

i=1+�l−1�sT

lsT

ui
k =

1

s
�
j=1

s

�uk�T,s�l−1�+j , �A1�

with l=1,2 , . . . �n /sT�. This gives for the fourth momentum
and 	sT,l

�u4�sT,l =
1

s
�
j=1

s

�u4�T,s�l−1�+j =
1

s
�
j=1

s ��T,s�l−1�+j +
3

�T,s�l−1�+j
2 � ,

	sT,l − 3

3
=

1

�u2�sT,l
2 �BsT,l + �sT,l� , �A2�

where

BsT,l =
1

s
�
j=1

s
1

�T,s�l−1�+j
2 − �1

s
�
j=1

s
1

�T,s�l−1�+j
�2

,

�sT,l =
1

3s
�
j=1

s

�T,s�l−1�+j . �A3�

To understand the meaning of BsT,l and �sT,l, we study an
example. Assume l=1 which means that we look for the first
time slice of length sT. This time slice contains the first s
time slices of length T, with corresponding values of the
inverse variance �T,1 , . . . ,�T,s, respectively. For this special
case, the expressions for BsT,l and �sT,l simplify to

BsT,1 =
1

s
�
j=1

s
1

�T,j
2 − �1

s
�
j=1

s
1

�T,j
�2

,

�sT,1 =
1

3s
�
j=1

s

�T,j . �A4�

BsT,l is the variance of 1 /�T,j calculated over s values of this
parameter. �sT,l is the average of �T,j over s values of this
parameter. BsT,l vanishes when the fluctuations of �T,j are
small. �sT,l vanishes when the Gaussian approximation for
the time slices of length T holds.

We continue by summing the expression �	sT,l−3� /3 over
all the time slices �n /sT�. This results in an expression for
�	sT−3� /3

	sT − 3

3
=

1

�n/sT� �
l=1

�n/sT�
1

�u2�sT,l
2 �BsT,l + �sT,l� . �A5�

Notice that this formula explains the difference in profound-
ness of the minimum between the two graphs of Fig. 1. For
both curves, the contribution of �l�sT,l is small compared to
the contribution of �lBsT,l and can be ignored �remember
these graphs are obtained for surrogate data, where we im-
posed Gaussian distributed random variables�. However, the
values of �lBsT,l are clearly different for the two graphs,
because of the difference in the imposed distribution fS���,
see Fig. 2. The narrower the distribution fS���, the smaller
the fluctuations of the parameter �T,j, the less profound the
minimum of the graph of 
	�−3
 /3.

The contribution of �sT,l to �	sT,l−3� /3 vanishes when
the Gaussian approximation in the time slices of length T
holds. So this term measures the deviations from pure Gauss-
ian behavior in these time slices. We propose to study the
difference between the exact value of �	sT−3� /3 with s
=2,3 , . . . and expression �A5� with �sT,l=0 for all l to decide
whether a given time series can be described within the su-
perstatistical approach. Clearly, this difference will show
fluctuations as a function of s. Therefore, it is reasonable to
evaluate this difference in the limit s→N= �n /T� in order to
quantify the influence of �sT,l to the exact value of �	sT
−3� /3. For the special case s=N, formula �A1� simplifies to

�uk�NT,1 =
1

N
�
j=1

N

�uk�T,j . �A6�

Then we obtain for 	NT,1 �or 	NT, because there is only one
time slice for this special case�

	NT = � 1

N
�
j=1

N

�u2�T,j�−2
1

N
�
j=1

N

�3�u2�T,j
2 + �T,j� . �A7�

Notice that for large data series, the kurtosis of the complete
data set 	n,1 is in good approximation equal to 	NT because
N= �n /T�	n /T. When the Gaussian approximation is reason-
able in the time slices of length T, the contribution of the
term � j�T,j to the value of 	NT will be small as compared to
the contribution of the term 3� j�u2�T,j

2 . Therefore, we expect
the Gaussian approximation to hold when 


�1 with


 =
1

3

�
j=1

N

�T,j

�
j=1

N

�u2�T,j
2

. �A8�

The value of 
 basically measures the contribution of the
deviations from the Gaussian approximation in the time
slices of length T to the value of the kurtosis of the complete
data set.

Finally we illustrate the physical interpretation of the for-
mulas we derived above by applying them to the real experi-
mental data that we already studied in Sec. VI. We repeated
the calculation of 
	�−3
 /3 as a function of � with formula
�8�. The result can be seen in Fig. 13 �solid line�. Then, we
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evaluated expression �A5� with �sT,l=0 for all l�+++�.
Clearly, the difference between the solid line and the curve
represented by �+++� is small. This shows that the contribu-
tion of the term �l�T,j / �u2�T,j

2 to the value of 	sT is small as
compared to the contribution of the term � jBT,j / �u2�T,j

2 .
Hence the Gaussian approximation in the time slices of
length T is reasonable because the term �l�T,j / �u2�T,j

2 mea-
sures the deviation from this approximation. The value of 



corresponds to the difference between the solid line and the
curve represented by �+++� in the limit s→N. For this ex-
ample we obtain 


=0.0205�1.

APPENDIX B

In this appendix we calculate the mathematical expecta-
tion of the kurtosis 	��� of a time series with length � av-
eraged over a Gaussian statistics

	��� = �� �

2�
��/2


−�

+�

dx1 . . . 

−�

+�

dx�

�

�
i=1

�

xi
4

��
i=1

�

xi
2�2exp�−

1

2
��

i=1

�

xi
2� . �B1�

To calculate these � integrals it is convenient to consider a
transformation to hyperspherical coordinates �34�

x1 = r cos �1

x2 = r sin �1 cos �2

]

x�−1 = r sin �1 . . . sin ��−2 cos ��−1

x� = r sin �1 . . . sin ��−2 sin ��−1

�B2�

with r� �0..��, �1 , . . . ,��−2� �0. . .��, and ��−1
� �0. . .2��. The Jacobian of this transformation is

r�−1 sin��1��−2 sin��2��−3 . . . sin���−2� . �B3�

With the use of the well-known formula for the volume of a
�-dimensional sphere with radius R,

��/2

���/2 + 1�
R�, �B4�

one can easily check that the expression for 	��� simplifies
to

	��� = 3
�

2 + �
. �B5�
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