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We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can
emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics
provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature
affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the
internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic
model. Besides proving our model realistic, this embedding may be used for routing with only local informa-
tion, which holds significant promise for improving the performance of internet routing.
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Many complex networks possess heterogeneous degree
distributions. This heterogeneity is often modeled by power
laws often truncated �1�. These networks also exhibit strong
clustering, i.e., high concentration of triangular subgraphs.
Our previous work �2� demonstrated that the clustering pe-
culiarities of complex networks and, in particular, their self-
similarity finds a natural geometric explanation in the exis-
tence of hidden metric spaces underlying the network and
abstracting the intrinsic similarities between its nodes. Here
we seek to provide a geometric interpretation of the first
property—network heterogeneity. We show that heteroge-
neous or scale-free degree distributions in complex networks
appear as a simple consequence of negative curvature of hid-
den spaces. That is, we argue that these spaces are hyper-
bolic.

The main metric property of hyperbolic geometry is the
exponential expansion of space �see Fig. 1, left�. For ex-
ample, in the hyperbolic plane, i.e., the two-dimensional
space of constant curvature −1, the length of a circle and the
area of a disk of radius R are 2� sinh R and 2��cosh R−1�,
both growing as �eR. The hyperbolic plane is thus metrically
equivalent to an e-ary tree, i.e., a tree with the average
branching factor equal to e. Indeed, in a b-ary tree the sur-
face of a sphere or the volume of a ball of radius R, mea-
sured as the number of nodes lying at or within R hops from
the root, grow as bR. Informally, hyperbolic spaces can there-
fore be thought of as “continuous versions” of trees.

To see why this exponential expansion of hidden space is
intrinsic to complex networks, observe that their topology
represents the structure of connections or interactions among
distinguishable heterogeneous elements abstracted as nodes.
This heterogeneity implies that nodes can be somehow clas-
sified, however broadly, into a taxonomy, i.e., nodes can be
split into large groups consisting of smaller subgroups,
which in turn consist of even smaller subsubgroups. The re-
lationships between such groups and subgroups can be ap-
proximated by treelike structures, sometimes called dendro-
grams, in which the distance between two nodes estimates
how similar they are �3�. Importantly, the node classification
hierarchy need not be strictly a tree. Approximate “treeness,”
which can be formally expressed solely in terms of the met-

ric structure of a space �4�, makes the space hyperbolic.
Let us see what network topologies emerge in the simplest

possible settings involving hidden hyperbolic metric spaces.
Let us form a network of N�1 nodes located in the hyper-
bolic plane H2. Since the number of nodes is finite, the area
that nodes occupy is bounded. Let R�1 be the radius of a

FIG. 1. �Color online� Left: artistic visualization of the Poincaré
disk model of the hyperbolic plane H2 by Levy based on Escher’s
Circle Limit III with the permission from the Geometry Center,
University of Minnesota. The exponential expansion of fish illus-
trates the exponential expansion of hyperbolic space. All fish are of
the same hyperbolic size but their Euclidean size exponentially de-
creases, while their number exponentially increases with the dis-
tance from the origin. Right: a modeled network with N=740

nodes, power-law exponent �=2.2, and average degree k̄�5 em-
bedded in the hyperbolic disk of curvature K=−1 and radius
R�15.5. The Euclidean distance between a node and the origin at
the disk center, shown as the cross, represents the true hyperbolic
distance between the two. But the Euclidean distance between any
two other nodes is not equal to the hyperbolic distance between
them as indicated by the peculiar shape of the shaded hyperbolic
disk centered at the circled node located at distance r=10.6 from the
origin. The hyperbolic radius of this disk is also R, and according to
the model, the circled node is connected to all the nodes lying in
this disk. The curves show the hyperbolically straight lines, i.e.,
geodesics, connecting the circled node and some nodes in its disk.
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disk within which nodes are uniformly distributed. In hyper-
bolic geometry, this means that nodes are given an angular
coordinate � randomly distributed in �0,2�� and a radial
coordinate r following the density ��r�=sinh r / �cosh R−1�
�er−R. Next, we have to specify the connection probability
p�x� that two nodes at hyperbolic distance x are connected.
We first consider the simplest case, the step function
p�x�=��R−x�, and justify this choice later. This p�x�
connects each pair of nodes if the hyperbolic distance be-
tween them is not larger than R.

The network is now formed, and we can compute the

average degree k̄�r� of nodes at distance r from the disk
center. These nodes are connected to all nodes in the inter-
section area of the two disks of the same radius R, one in
which all nodes reside, and the other centered at distance r
from the center of the first disk �see Fig. 1, right�. Since the

node distribution is uniform, k̄�r� is proportional to the
area of this intersection, which decreases exponentially

with r, k̄�r��e−r/2. Therefore, the inverse function is
logarithmic, r̄�k��−2 ln k, and the node degree distribution
in the network is approximately a power law,
P�k����r̄�k���r̄��k���k−3. If we generalize the space
curvature to K=−�2, �	0, and the node density to
��r��
e
�r−R�, where we can think of 
	0 as the logarithm
of the average branching factor in the underlying hierarchy,

then the average degree at radius r scales as k̄�r��e−�r/2 if


 /��1 /2 or k̄�r��e−
r otherwise so that the node degree
distribution becomes P�k��k−� with

� = �2
/� + 1 if 
/� � 1/2
2 otherwise.

	 �1�

To fix the average degree in the network, we have to choose
N=ce�R/2, where c is a constant. The result in Eq. �1� is
remarkable as it shows that heterogeneous degree distribu-
tions may emerge as a simple consequence of the exponen-
tial expansion of hyperbolic space.

However, our choice of the step-function connection
probability is not yet justified. To justify it and to show that
scale-free networks have effective hyperbolic geometries un-
derneath, we recall the S1 model introduced in �2�. In that
model, networks are constructed as follows. First, distribute
N nodes uniformly over the circle S1 of radius N / �2�� so
that the node density on the circle is fixed to 1. Second,
assign to all nodes an additional hidden variable � represent-
ing their expected degrees. To generate scale-free networks,
the variable � is power law distributed according to
����=�0

�−1��−1��−�, �� ��0 ,�, where �0 is the minimum
expected degree. Finally, let � and �� be the expected de-
grees of two nodes located at distance d=N�� / �2�� mea-
sured over the circle ��� is the angular distance between the
nodes�. We connect each pair of nodes with probability p̃���,
where �
d / ������ and constant � fixes the average degree
in the network.

The key point is that the connection probability p̃��� can
be any integrable function. As long as the distance over the
circle is rescaled as ��d / �����, any integrable p̃��� guaran-
tees that the expected degree of nodes with hidden variable �

is indeed �, k̄���=�, so that �, which is a model parameter,
is indeed the exponent of the degree distribution in generated
networks.

We now want to map the expected degree � of each node
to a radial position r within a disk of radius R, such that after
the mapping, the radial distribution of nodes is
��r��
e
�r−R�, i.e., as in the hyperbolic H2 model introduced
above. To have this ��r�, we must select the �→r mapping
according to

� = �0e��R−r�/2,
�

2
=




� − 1
, N = ce�R/2, c = ���0

2,

�2�

where � is fixed by the values of � and target 
. We see that

��r� and consequently k̄�r� scale with r as in the H2 model,
while the connection probability p̃��� becomes p̃�e��x−R�/2�,
where the effective distance

x = r + r� +
2

�
ln

��

2
�3�

is approximately equal to the hyperbolic distance between
the two nodes in the disk. Indeed, the true hyperbolic dis-
tance x between two points with polar coordinates �r ,�� and
�r� ,��� in the hyperbolic space H2 of curvature K=−�2 is
cosh �x=cosh �r cosh �r�−sinh �r sinh �r� cos ��, which

for sufficiently large �r, �r�, and ��	2�e−2�r+e−2�r� is
closely approximated by

x = r + r� +
2

�
ln sin

��

2
. �4�

Since the effective and true hyperbolic distances in Eqs. �3�
and �4� are approximately equal, the value of � in Eq. �2� is
indeed the square root of curvature of the hyperbolic disk, in
agreement with Eq. �1� in the H2 model. We also notice that
since the connection probability p̃��� in the S1 model can be
any integrable function, the connection probability p�x� in
the H2 model can be any function of the form
p�x�= p̃�e��x−R�/2�.

Given this freedom of choice of the connection probabil-
ity, let us consider the family of functions

p�x� =
1

1 + e��x−R�/�2T� �5�

parameterized by T	0. One motivation to focus on this fam-
ily is that it generates exponential random graphs in the sta-
tistical mechanics sense �5�. Equation �5� is nothing but the
grand canonical Fermi-Dirac distribution, and T is the system
temperature. From the physical perspective, graph edges are
noninteracting fermions with energies equal to their
hidden hyperbolic lengths, and R is the chemical potential

defined by the condition that k̄N /2, the number of edge fer-
mions, is fixed on average. At T→0 Eq. �5� converges to
p�x�=��R−x�, which a posteriori justifies our choice of the
step-function connection probability in the H2 model.

The dependence on temperature in the model is peculiar.
At zero temperature, the network is in the strongly degener-
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ate ground state. As we heat it up, particles explore higher-
energy states, i.e., edges connect longer distances, which af-
fects clustering. At T→0, clustering is maximized. It
monotonically decreases with T, and at T→1 we have a
phase transition with clustering going to zero and the net-
work losing its cold-state metric structure. In the cold regime
with T�1, the exponent of the degree distribution � depends
only on the ratio 
 /� via Eq. �1�. Therefore, we can set

=1 /2 without loss of generality so that �=1 /�+1 is fully
defined by curvature K	−1. In the hot regime with T	1,
clustering remains zero, the chemical potential is no longer
given by N=ce�R/2 but by N=ce�R/�2T�, and � also depends on
temperature, �=T /�+1. Therefore at T→ the graph en-
semble is identical to classical random graphs, as all fermi-
ons are uniformly distributed across all energies, i.e., all
pairs of nodes are connected with the same probability inde-
pendent of the hidden distance between them, and the net-
work loses its cold-state hierarchical structure. Combining
the cold and hot regimes,

� = �1/� + 1 if T � 1 and � � 1,

T/� + 1 if T 	 1 and � � T ,

2 otherwise.
 �6�

Finally, constant c fixing the average degree in the network is

c �� k̄
sin �T

2T
�1 − ��2 � �0

2sin �T

2k̄T
if T � 1

k̄��

2
�1/TT − 1

T3 �T − ��2 →
T→

k̄ if T 	 1. �7�

The H2 model can thus generate classical random graphs and
scale-free networks with any average degree power-law ex-
ponent �	2 and clustering. In Fig. 2, left, we see that the

curvature and temperature of the internet are approximately
K=−0.83 and T=0.6�0.1.

Equation �2� establishes a formal equivalence between the
S1 and H2 models we introduced in �2� and here. The two
models generate similar network topologies thanks to the
similarity between the effective and true hyperbolic distances
in Eqs. �3� and �4�. However, if we are to study other geo-
metric properties of these networks, such as their navigabil-
ity �7�, then it does matter a lot what distances, spherical d
native to S1 or hyperbolic x native to H2, we use to navigate
a network. The latter distances x are dominated by r+r�,
minus some small �-dependent corrections. This effect can
be observed in Fig. 1, right, where we show some hyperbolic
geodesics between nodes in a small modeled network. These
geodesics follow closely the radial directions between the
nodes and the origin, i.e., they follow the same pattern as the
shortest paths in the embedded network. Spherical distances
d are at the other extreme as their gradient lines lie in the
orthogonal tangential directions.

To demonstrate how such differences in distance calcula-
tions affect the efficiency of transport processes on networks,
we embed the real internet topology from �8� into H2 using
maximum-likelihood techniques. Specifically, we first
assign to nodes random angular coordinates, while their
radial coordinates are fixed by Eq. �2�. We then execute the
Metropolis-Hastings algorithm �9� by moving random nodes
to new locations with the same radial coordinate but with a
randomly chosen new angular coordinate. We accept each
move with probability min�1,La /Lb�, where Lb and
La are the likelihoods before and after the move, that the
network is produced by our H2 model with parameters
matching the internet in Fig. 2, left. Formally,
L=�i�jp�xij�aij�1− p�xij��1−aij, where �aij� is the internet ad-
jacency matrix and xij is the hyperbolic distance between
nodes i and j.

After this process has converged, we perform greedy rout-
ing as in �7� in the resulting embedding. We randomly select
a source and try to find a path to a random destination by
selecting the next node on the path as the current node’s
neighbor closest to the destination in H2. This process can be
unsuccessful as it can get stuck at intermediate nodes that
have no neighbors closer to the destination than themselves.
The percentage of successful greedy paths and their hop-
length averaged over 105 random source-destination pairs are
94.5% and 3.95, respectively. �The average length of shortest
paths is 3.46.� For comparison, the same numbers using the
S1 distances are 75.9% and 4.29. The reason for the excep-
tionally high ratio of successful paths in the H2 case is that
the shortest paths in the internet stay close to the hyperbolic
geodesics followed by greedy navigation between the corre-
sponding source and destination. In other words, the real
internet topology is remarkably congruent with underlying
hyperbolic geometry.

Even more striking in this regard is Fig. 2, right, where
we show the empirical connection probability for the links vs
their hyperbolic distances in the embedded internet, juxta-
posed with the theoretical connection probability in our H2

model. The similarity between the two provides empirical
evidence that our model reflects reality. If the real internet
were not congruent with our hyperbolic model, then no
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FIG. 2. �Color online� Networks in the H2 model vs the internet.
Left: the degree distribution P�k� and degree-dependent clustering

coefficient c̄�k� are shown for the skitter �k̄=6.29, C̄=0.46� and

border gateway protocol �BGP� �k̄=4.68, C̄=0.29� views of the
internet from �6� and for modeled networks with curvature

K=−0.83 and two values of temperature T, 0.47 �k̄=6.03, C̄=0.44�
and 0.71 �k̄=4.85, C̄=0.25�. Right: the empirical connection prob-
ability in the hyperbolically embedded internet, compared to Eq.
�5�.
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maximum-likelihood technique used for its embedding
would be able to make it such.

In summary we have shown that complex network topolo-
gies are congruent with hyperbolic geometries. We can start
with hyperbolic geometry and show that it naturally gives
rise to scale-free topology or we can start with the latter and
show that hyperbolic geometry is its effective geometry. In
this geometric approach, clustering and heterogeneous de-
gree distributions appear as simple consequences of the met-
ric and negative-curvature properties of hyperbolic spaces. In
our hyperbolic model, the space curvature controls the het-
erogeneity of the degree distribution, while clustering is a
function of temperature. Fermi-Dirac statistics provides a
physical interpretation of hidden distances as energies of the
corresponding link fermions. This analogy may contribute to
applications of the standard tools of statistical mechanics to
the analysis of complex networks �5�, which can be infor-
mally thought of as negatively curved containers of ultracold
fermions. The internet embedding, besides providing empiri-
cal evidence that our model is realistic, shows that the effi-
ciency of transport processes without global knowledge is
maximized if such processes use �effective� hyperbolic dis-
tances. If networks evolve to be efficient with respect to their
functions—and transport is one of such functions—then this
finding further supports our hyperbolic metric space ap-
proach.

The internet embedding may also prove practically useful
since routing in it is extremely efficient and requires only

local information about hyperbolic coordinates of node
neighbors. Global knowledge of the large-scale internet to-
pology is a major scalability bottleneck in internet routing
today �10�. Another potential application of our work is pro-
tein folding, where hidden spaces are protein conformation
energy profiles, and the protein folding process is greedy
routing toward the minimum-energy conformation �11�. Yet
another class of applications involves cases where to have a
right model for similarity distances is a key, such as recom-
mender systems used by companies such as Amazon or Net-
flix. Their efficiency depends on how accurately the similari-
ties between consumers are estimated. Our hyperbolic
explanation of the structure of complex networks is by no
means the only possible mechanism capable of generating
scale-free topologies with strong clustering. Therefore, the
question of special interest is whether our explanation is �im-
plicitly� equivalent to existing models, among which prefer-
ential attachment �12� appears to be most popular?
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