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Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent
rapid increase in the number of modeling methodologies being used to describe cell populations has raised a
number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level
model be identified in a given context? Additionally, how can the many phenomenological assumptions used in
the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to
address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to
interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem.
Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number
density for which a nonlinear “fast” diffusion equation is derived. Excellent agreement is demonstrated be-
tween the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate
that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the
limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be
directly related to cell production. This assumption is frequently made in the literature but our derivation places
limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a
different discrete cell-based model and it is shown how the different diffusion coefficients can be understood

in terms of the underlying assumptions about cell behavior in the respective discrete models.
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I. INTRODUCTION

The mathematical modeling of cell populations can be,
broadly speaking, split into two categories: continuum and
discrete models. Discrete models treat cells as individual en-
tities and hence provide a natural framework within which to
make use of an increasing amount of experimental data
available at the cellular and subcellular scales. There are now
many different types of discrete cell-level models used to
describe cell populations, e.g., cellular automata [1-3], cel-
lular Potts models [4,5], cell-vertex [6] and off-lattice cell-
based models [7-10].

Often, however, observed behavior occurs at the con-
tinuum rather than cellular scale. Therefore, at the scale of
observation it is often satisfactory to treat a cell population
as a continuum—an average over individual cells. This is
one of the reasons why there is a strong historical usage of
continuum models that describe cell populations [11-16].

Continuum and discrete models address the model build-
ing problem from different perspectives and depending on
the question being asked, one or the other (or both) may be
the appropriate model framework to choose for a particular
problem. The two modeling paradigms have complimentary
strengths and weaknesses: continuum models are suitable for
describing large populations of cells, while discrete models
are often computationally intractable in this regime; discrete
models can be related to subcellular mechanisms and data,
while continuum models are often derived making assump-
tions that are difficult to directly relate to individual cell
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behavior; and continuum model solutions can be expressed
in terms of model parameters, while discrete models typi-
cally require many computationally intensive simulations to
develop insight into system-level behavior. However, by de-
riving continuum models directly from their discrete coun-
terparts, many of the above-mentioned problems of using
discrete models can be overcome.

Discrete, off-lattice, cell-based models have been used to
model epithelial cell motion in intestinal crypts (e.g., [9,17])
and tumor monolayer and spheroid growth (e.g.,
[7,10,18,19]). Perhaps the simplest assumption that captures
the fundamental properties of cell elasticity and adhesion is
that a pair of neighboring cells is connected via a linear
spring (e.g., [9,17]), hence cells seek to maintain a fixed
distance (the resting spring length) between one another. In
this paper we consider the case of a one-dimensional (1D)
off-lattice cell-based model in which cells interact via linear
springs and show that in the continuum limit, and after mak-
ing a suitable coordinate transformation, cell number density,
q(r,7), evolves according to

dg d | k dq
—=—(—2—), (1)
ar  Jdr\nq” or

where k is the spring constant, # is the cell viscosity, 7 is
time, and r is the spatial coordinate. We define the nonlinear
diffusion coefficient D(q)=k/ ng°.

The nonlinear diffusion coefficient corresponds to a case
of “fast” diffusion and has been considered previously as a
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model for macroscopic diffusion [20,21]. However, the deri-
vation in this paper explicitly relates the phenomenon of
macroscopic diffusion to parameters and processes at the mi-
croscale. The form of our derived diffusion coefficient is in
contrast with mean-field derived models where a constant
diffusion coefficient is typically related to stochastic features
of the cell dynamics. For example, Newman [22] has shown
that an advection-diffusion equation for cell density can be
derived from a subcellular element model using mean-field
approximations. The diffusion coefficient scales with the
noise strength in the discrete dynamics while the advection
term is dependent on an intercellular potential.

The nonlinear diffusion coefficient derived in this paper
bears significant resemblance to that obtained by Lushnikov
et al. [23], who coarse grained an on-lattice cellular Potts
model in order to derive a partial differential equation (PDE)
for cell number density. Their work follows from an initial
study by Turner et al. [24] who, considering a population of
noninteracting cells, derived a macroscopic diffusion coeffi-
cient in terms of microscale parameters. The differing forms
for the diffusion coefficients allow one to differentiate be-
tween the underlying cell-based models and to determine
which cell-based models are most suited to a particular mod-
eling problem.

The layout of the rest of this paper is as follows: in Sec. I
we present details of the one-dimensional cell-based model
and derive a linear diffusion equation in the continuum limit.
In Sec. III we consider a coordinate transformation and sub-
sequently derive the nonlinear diffusion equation presented
in Eq. (1). In Sec. IV we compare simulations of the cell-
based model with numerical solutions of the nonlinear diffu-
sion equation. In Sec. V we consider applications of the de-
rived nonlinear diffusion model; in Sec. V A we introduce
the process of cell division and show excellent agreement
between continuum and discrete models. In Sec. VB we
demonstrate how using the adiabatic approximation the non-
linear diffusion model yields an approximation commonly
made in the modeling of cell populations. In Sec. VC we
analyze the derived diffusion coefficient and compare results
with those from Alber and co-workers [5,23]. In Sec. VI we
summarize the main results in this paper and discuss future
directions.

II. MICROSCOPIC CELL MOTION

Newton’s second law of motion can be defined for the ith
cell in a population to be

dzri int Visc
mi s = 2 Fl 4+ F (2)
JFi

where m; is the mass of the ith cell, r; is its spatial position,
Ff’-” is the interaction force between a pair of neighboring
cells, FIV"“ is the viscous force acting on the ith cell, and the
sum is taken over neighboring cells. Note that in this paper
we consider unit length to be a cell diameter [0(107°) m]
while time is measured in hours.

A number of assumptions can be made that simplify Eq.
(2). First, we consider a one-dimensional chain with N cells,
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FIG. 1. A schematic of a one-dimensional cell-based model. A
one-dimensional chain of cells with cell positions, r;(¢), and cell
labeling indices, i, is depicted. In this schematic, the springs are in
equilibrium hence the distance between cells is the resting spring
length a. Note that cell labeling indices increase with distance from
r1(1). Here Ai denotes the distance between cells along the indexing
coordinate.

as illustrated in Fig. 1, where it is assumed that the first cell
is fixed (r;=0) while the Nth cell is attached only to the
(N-1)st cell. Each interior cell in the one-dimensional chain
has two neighbors. Second, we model the interaction force as
being linear, hence using Hooke’s law (as in Meineke et al.
[9]), the force, F;', exerted on the ith cell by the jth cell is

F'=—k(r;—r]-a)——L. (3)
! |1'i—1'j|

Third, the viscous force, which is generated by a combina-
tion of cell-cell, cell-medium and cell-matrix interactions, is
modeled by assuming that the drag on the ith cell is indepen-
dent of the springs and is proportional to its velocity [9,25],
with the constant of proportionality (the cell viscosity coef-
ficient) given by 7. Fourth, as cells typically move in rela-
tively dissipative environments, motion can be approximated
as being overdamped [9,10,18], hence m;d’r;/dt> ~ 0. There-
fore, Eq. (2) can be approximated as being a first-order equa-
tion of the form

dri(1) = afriy (1) = 2r0) + ripy (1)],

i=2,...
dt

’N_17

(4)

where a=%. a will take different values in different tissues
and in Sec. VI we describe how it could be measured experi-
mentally. We note that in the case of epithelial cells in an
intestinal crypt, it has been estimated, based on analysis of
numerical simulations, by Meineke et al. [9] to be 36 hr!.

The equation of motion for the Nth cell is

d
rst(f) = alry (1) = ry(0) +al, )

and the first cell (i=1) is pinned at the origin, hence
r()=0. (6)

Equation (4) is of a similar form to a standard model for
polymer chain dynamics developed by Rouse [26]. For long
chains with large N, the continuum approximation of this
model is

ie[1,N], (7)

see, for example, [27,28], where r is now a continuous func-
tion of i such that
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r(i,t) = ri(1). (8)

This approach can be justified by noting that the right-hand
side of Eq. (4) looks like the discretization of the second
derivative of r with respect to i,

a[ri—Ai(t) —2r(1) + 14041 ]

A2 ’ ©

in the special case where Ai=1. The 1/Ai* term in the de-

nominator arises as the drag coefficient scales linearly with

Ai, the number of springs being averaged over, while the

effective spring constant scales with t so that « scales like

1/Ad?. Similarly, the resting spring length a scales with Ai.
The boundary condition at i=1 is simply

r(1)=0, (10)

and by introducing an image cell at position i=N+1 such
that r(N+1)=r(N)+a, the motion of the Nth cell is captured.
In the continuum limit this leads to the boundary condition

ar
- =a. (11)
It | iy

Together with the initial condition

r(i,0) = ro(i) (12)

and boundary conditions (10) and (11), the solution of the
linear Eq. (7), found using separation of variables, is in ex-
cellent agreement with simulation results from the discrete
cell-based model (results not presented).

III. MACROSCOPIC MOTION

In order that Eq. (4) can be interpreted as a diffusion
equation, we require that the number of cells is large enough
to define a number density, ¢(r,1), of cells per unit length, so
that the variable i may be interpreted as

i(r,r) = frq(r',t)dr'. (13)
0

In a coordinate system where the length scale of the problem
is the resting spring length, we therefore expect ¢(r,7) to be
an O(1) quantity for biologically relevant problems. Equa-
tion (7) can be reformulated such that cell number density is
the dependent variable by making a coordinate transforma-
tion from the old independent variables i and ¢ to the new
independent variables r (the dependent variable in the old
coordinate system) and 7 (time). The Jacobian of the coordi-
nate transformation is

ar ar Ji Ji
Ji ot | ar ot
t 1 - T r , (14)
T aT ot ot
ai|, dt|; ar|,. dt|,

and upon letting =7 we can read off the relationships
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ar 1
—| =71 (15)
ai |, ﬁ
or| ,
and
c?_i
ar aT
—| == L. 16
i (16)
ar |,
Upon rearrangement, Eq. (7) can be written as
J ad|(a
s a—.(—r.) , (17)
ot di\ di
which becomes
1 di 1 a1
——=a——| —|. (18)

S giar  dior| ai
ar ar ar

Differentiating through on the right-hand side using the chain
rule and cancelling terms yields

di 9\ 9 (i
—=al—| —|—. (19)
aT dr/) dr\dr

We now differentiate both sides of Eq. (19) with respect to r

and, swapping the order of the derivatives on the left-hand
side, obtain

d ( di d|(ai\?a(ai
—\—)=a—||\—| —|—]| (20)
arT\dr dri\dr/ Jdr\odr

Finally, noting that differentiation of Eq. (13) with respect to

r yields
di(r,7)

=200 21
q(r,7) o 21)
Eq. (20) can be rewritten as
17 J 17
A —(%—q). (22)
Jdr  Jdr\q- dr
Defining D(q):q%, the evolution equation for g(r, 7) is
dqg 0 aq
—=—|D(g)— |, 23
aT &r[ (q)&r} @3)

which is of the form presented in Eq. (1).

Boundary condition (10) can be reformulated by introduc-
ing an image cell at i=0 such that r(0)=-r(2). Upon treating
the cell at i=1 as an interior cell, the condition on the image
cell ensures that the cell at i=1 remains stationary as the net
force on it is zero (its neighbors are equidistant from it). This
condition implies that r is a linearly increasing function of i

at i=1 and therefore that
Pr
— =0. 24
7 (24)

Upon substitution for % and % we obtain
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%

=0, 25
ar| . (25)

which is simply a no-flux condition, as expected, for the cell
number density at the origin. In the old coordinate system
both the boundaries i=1 and i=N were fixed as N, the total
cell number, was constant. However, in the new coordinate
system, the spatial position of the Nth cell varies in time,
hence we have a moving boundary problem. Invoking con-
servation of cell number, it is straightforward to show that
the moving boundary, S(7), must move with the local cell
velocity

ds  Dl(g) dq

= . (26)
dr q ar r=S(7)
Using Eq. (15) to substitute for ‘;—: in Eq. (11) gives
1
qlS().7]= ", (27)

which can be understood as a cell at the boundary, S(7),
experiencing a force only from cells in the interior, i.e., for
r>S8(7), the cell number density is effectively the equilib-
rium cell number density. The initial cell number density is
defined to be

q0(r) =q(r,0), (28)

which for the purposes of comparing continuum and discrete
models will be determined by the initial conditions in a given
simulation. Equations (23)—(28) constitute a system of closed
equations which we solve numerically after defining the ef-
fective cell velocity field

D(q) d
o) =~ 2%, 9)
q OJr
which after differentiation with respect to r yields
d D(g)| #q 3(dq)\
somali)
Jar q LJdrr g\odr

Given the effective velocity field v(r,7), Eq. (23) can be

rewritten using the material derivative, 1D)_1;’ such that

D J J Jv
_q:_q+v_61:_ —. (31)
Dt Tt ar ar
However, Eq. (31) describes how the solution ¢(r, 7) changes
at a point r which moves with a velocity

—=vu(r,7, (32)

hence the evolution of the moving boundary, S(7), defined by
Eq. (26), is captured by Eq. (32). Numerical solutions of Egs.
(29)—(32) were computed using the method of lines with a
central difference stencil used to approximate the spatial de-
rivative in Eq. (30). The resulting set of nonlinear ordinary
differential equations was solved using the MATLAB solver
“ODE45” on a regularly discretized initial domain [0, S,] with
Ny,q nodes.
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We note that coordinate transformations are typically
made in order to simplify the mathematical description of a
problem rather than to make it more complex. However, in
this section we have made a coordinate transformation that
maps a linear diffusion equation defined on a fixed domain
onto a nonlinear diffusion equation defined on a varying do-
main. This step can be justified by noting that in the new
coordinate system, the cell-based model is described in terms
of a cell number density, which is standard in the cell popu-
lation modeling literature (e.g., [15]).

IV. COMPARISON OF CELL-BASED AND CONTINUUM
MODELS

In order to compare numerical solutions of the one-
dimensional continuum and cell-based models, we now con-
sider an illustrative example in which the initial cell density
distribution is Gaussian and given by

n 2
Gor) = —2— =W 0=r=300, (33)

\2mo
where =100, ©=160.5, and the initial number of cells, n,
was 700. In Fig. 2 cell number density (left column) and
velocity (right column) are plotted against radial coordinate
at a sequence of times. The bars depict data from a simula-
tion of the cell-based model while the solid lines denote
numerical solutions of Egs. (23)-(28). The peak in the initial
distribution at r=u=160.5 induces an initial negative veloc-
ity for r<<u and a positive velocity for »> u. In the region
r<pu, the zero flux boundary condition at =0 results in the
cell number density initially increasing, while for r> u, cells
extend outward and the boundary condition at r=S(7) is sat-
isfied. Note that v(r, 7)=0 corresponds to i‘f:O. The system
eventually equilibrates such that g(r,7)= for all r<S(7)
(results not shown). In Fig. 3 a plot of S(7) against time
verifies that the one-dimensional continuum model (solid
line) accurately describes the relaxation toward equilibrium
of the moving boundary. The total cell number, n(7), is con-
stant in time (results not shown).

In the following section we consider applications of the
derived continuum model. In Sec. V A we will consider a
simple model for the process of cell division in the discrete
model and demonstrate that the nonlinear diffusion coeffi-
cient together with an appropriately chosen source term can
adequately describe the resulting cell population dynamics;
in Sec. V B examine the limit of stiff springs and demon-
strate that a phenomenological assumption made in many
continuum models is retrieved; and in Sec. V C contrast the
diffusion coefficient arising from the cell-based model with
that obtained by Alber and co-workers [5,23], who consid-
ered a cellular Potts model.

V. APPLICATIONS
A. Proliferating cell population

A valid question to ask is whether the nonlinear diffusion
model is robust to the inclusion of more realistic biological
effects such as cell proliferation. We now begin to address
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FIG. 2. (Color online) Continuum (solid lines) and one-dimensional cell-based models (bars) are compared as an initially Gaussian
distributed cell population relaxes to equilibrium. Cell number density, g(r, 7), (left column) and velocity, v(r, 7), (right column) are plotted
against r at a sequence of times (hour). Numerical solutions of Eqs. (23)—(28) (lines) were computed with Ny,,=100, a=15 hr’l, S,

=300, and ny=700.

this question by considering cell-based model simulations in
which cells undergo cell division and compare simulation
results with the nonlinear diffusion model in which a source
term has been included.

We consider a simple model for cell division in which
each cell in the simulation divides when its age reaches T.
We initially assign the age of the ith cell by randomly draw-
ing from the range [a;,T¢]. By choosing a,=0, there is no
initial age heterogeneity within the cell population. Alterna-
tively, by choosing a;=T-—1 (say), all the cells in the cell-
based model will divide within the first hour of the simula-
tion and then there will be no further division for 7.—1

hours. We consider this latter case to be the case where cells
divide synchronously. Upon cell division in the 1D simula-
tions, the mother and daughter cells are placed a distance of
0.1 cell diameters on either side of the dividing mother cell.
We note that the process of cell growth is not captured ex-
plicitly in the discrete simulations but rather through the re-
laxation from post-cell birth compression.

One of the advantages of developing the model with cell
number density as the dependent variable is that it is rela-
tively easy to introduce a cell production term into the gov-
erning equation. Defining f(q, 7) to be a generic source term,
Eq. (23) takes the form
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FIG. 3. (Color online) A plot of S(7) against time (hour) for the
simulation shown in Fig. 2. The solution from the one-dimensional
continuum model (solid line) is compared with that from the one-
dimensional cell-based model (dashed line).

J aq
= ﬁ—r{mcpﬂ +flg. 7). (34)

For the simple rules of cell division in the discrete model we
let

In2
Tc—a

f(q’T)=H(TmOd TC_al) q, (35)

where H(-) is a Heaviside function. Note that cell prolifera-
tion occurs over a time period T-—a, and that the strength of
the source is chosen such that total cell number has doubled
every T hours, i.e., every cell (with cell cycle period T) has
divided once. The function f(q, 7) therefore captures the pro-
cess of tissue growth via an increase in cell number density
resulting in compressed springs, which upon relaxation mim-
ics tissue growth.

A comparison of results from continuum and discrete
models when a;=0 is presented in Fig. 4. In the left and right
columns, cell number density and velocity, respectively, are
plotted against r. The time scale over which diffusion acts is
much greater than that over which division occurs, hence
within the population interior, the cell number density in-
creases steadily as time evolves.

However, the boundary condition at r=S(7) defines
q[S(T),T]Zi hence %’f is large near r=5(7). As the velocity
(right column) is a function of %‘f, a large velocity is ob-
served close to the boundary r=S(7). Note that if the spring
constant, k, was chosen to be large enough, instead of cell
division causing an increase in cell number density in the
interior, the moving boundary S(7) would extend at a fast
enough rate to maintain g(r,7) ~ :7 We elaborate further on
this point in Sec. V B.

In Fig. 5(a), the moving boundary calculated using the
numerical solution of Eq. (26) (solid line) is compared with
the position of the outermost cell from the one-dimensional
cell-based simulation (dashed line). Clearly the continuum
model is capturing gross behavior in the cell-based model. In
Fig. 5(b), total cell number is compared with data from the
simulation of a one-dimensional cell-based model.

PHYSICAL REVIEW E 80, 031912 (2009)

We again observe excellent agreement between con-
tinuum and discrete models. Similar agreement to that pre-
sented in Fig. 4 is observed when a; # 0. In Figs. 6(a) and
6(b), S(7) and n(7), respectively, are plotted against time for
the case of synchronized division occurring over a period of
1 h (a;=11 and T-=12). We note that when cell production
is periodic, the cell number increases in a stepwise manner
but that as a result of the compressibility of the cells, the
moving boundary extends over a longer time scale.

To summarize, we have considered a toy model of cell
division in order to demonstrate that the nonlinear diffusion
model is a robust description of cell motion when the process
of cell proliferation is included. This result suggests that the
nonlinear diffusion model provides a framework in which to
construct more realistic models of cell proliferation (e.g.,
models in which cell proliferation depends on extracellular
factors such as nutrient concentration or cellular compres-
sion).

B. Limit of incompressible cells

A common assumption made in the tumor modeling lit-
erature (e.g., [14,16]) is that the density of cellular material is
constant (i.e., ¢ =¢,) and hence that

CI()V 'U=f7 (36)

where f is the net cell production rate. This equation can be
written in integral form by taking a volume integral of Eq.
(36) yielding

ds
q0—=f fdv, (37)
T Q

where it has been assumed that a no-flux condition holds at
the origin. We will now show how Eq. (37) can be retrieved
from the nonlinear diffusion model.

We nondimensionalize Eq. (34) as follows:

, (38)

where 7, L, and Q are undetermined length, time, and cell
number density scales, respectively, and T is the time scale
over which cell division occurs. Upon substitution in Eq.
(34) and dropping the hatted notation,

dqg aT a(la_q

T
— ;(ﬁ) +fT—C (39)

g1 L2Q%ar
Choosing the time scale to be the cell production time

scale, T=T., and the cell number density scale to be the
equilibrium value, Q=i,

dq aTcd® 9 ( 1 aq>
—=———( 5|+ f(g.D. 40
(97_ L2 ar q2 &r f(q T) ( )

The diffusive length scale, Lp, is defined to be
Lp=VaTca?, (41)

hence Eq. (40) can be written as
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FIG. 4. (Color online) Continuum (solid lines) and discrete (bars) models are compared in the case of a continuously growing cell
population (a;=0). Cell number density, g(r, 7), (left column) and velocity, v(r, 7), (right column) are plotted against r at a sequence of times
(hour). Tnitial conditions are go(r)=1 and S;=399. Tc=12, Ny,,=500, a=15 hr™!, and n,=400.

1 dq

;xﬁ)fﬂ%ﬁ-

ar L% or

oq Lo
q D ( (42)
In the limit where Lp>L, corresponding to very stiff

springs, the solution to leading order is given by

1
q(r,m) ~—,
a

(43)
which corresponds to all springs having resting spring
length. An ordinary differential equation for the evolution of
total cell number, n(7), can be found upon integration of Eq.
(42) over the spatial domain [0,S(7)] to be

S(7) S(7)

= dV =
dr dr 0 1 0

dn _ d

fav. (44)

Using the leading order approximation determined in Eq.
(43) we therefore obtain

1as 57

= dv,
adr J, f

(45)

as required.
The key point to note from this analysis is that we had to
assume that L, > L. However, if it is assumed that the source
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FIG. 5. (Color online) Continuum and discrete models are compared in the case of a continuously growing cell population (a;=0). The
position of the moving boundary, S(7), and cell number, n(7), are plotted against time (hour).

term, f(q, 7), is independent of time, as ¢ is constant to low-
est order, Eq. (45) states that the moving boundary, S(7),
evolves according to

LI

dr (46)

hence the length scale of the problem is an exponentially
increasing function of time. Therefore for any finite value of
a, the assumption that Lp>L will eventually break down;
diffusion will not be able to homogenize the spatial distribu-
tion of cells over a time scale 7~ and the cell number density
will exhibit a spatially varying profile.

In this section an assumption made in many continuum
models of tumor growth has been retrieved from the nonlin-
ear diffusion model. The key point to note is that limits of
validity have been placed on this assumption which are di-
rectly related to behavior at the cellular scale.

C. Model classification

Our understanding of the nonlinear diffusion coefficient,
D(q), can be enhanced by considering the limits of large and
small g. As ¢g—0, D(q) —c°. In the cell-based model this
corresponds to the springs connecting cells being extended, a
large restoring force drawing cells together and therefore a
large diffusion coefficient. Conversely, as g— %, D—0. In

420
S
405
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(@) T

the cell-based model, the internal springs are densely packed
and far from equilibrium. As there is no space for them to
equilibrate, they remain compressed until cells at the bound-
ary have extended outward, freeing up space for the internal
cells to equilibrate. From this simple analysis it is clear that
the behavior of the discrete model can be adequately de-
scribed by consideration of the corresponding nonlinear dif-
fusion coefficient.

Lushnikov et al. [23] have considered a cellular Potts
model in which cell volume is constrained and cells interact
via a hard-core potential. The discrete model is solved using
a classical Monte Carlo algorithm. They derive the following
nonlinear diffusion coefficient in the macroscopic limit:

(47)

490

where C is a constant and ¢ is a limiting cell number density
(go=1/Ly in [23] where L is the average cell length).

As ¢g—0, D,— C. In this limit cell densities are low and
cells behave like random walkers in the cellular Potts model,
hence the constant diffusion coefficient. This behavior is in
contrast to the low density behavior derived in the spring-
based model.

6000
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FIG. 6. (Color online) Continuum (solid lines) and one-dimensional cell-based model (crosses) results are compared for the case of a
periodically growing cell population. Moving boundary, S(7), and total cell number, n(7), are plotted against time (hour). Parameters as in

Fig. 4.
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In the model of Lushnikov et al. [23] the cell number
density g=gq, represents the limiting packing density which
occurs as a result of the hard-core nature of the cell’s inter-
action potential. As g— qg, D, — 0. Again, this behavior is
in contrast to the diffusion coefficient derived in this paper
where D—0 as g becomes large.

An interesting point to note when contrasting the different
diffusion models is that Lushnikov and co-workers have con-
sidered the stochastic cellular Potts model and made scaling
and other assumptions in order to finally obtain a nonlinear
diffusion coefficient. In contrast, we have considered a de-
terministic set of equations of motion and used cell indices to
define a cell number density and its spatiotemporal evolu-
tion. The disparity between diffusion coefficients is merely a
reflection of the underlying behavior of the discrete models.
In particular, the model derived in this paper assumes that
cells are always in contact with each other and hence could
be used to describe cell populations in epithelial sheets while
the Lushnikov et al. [23] model is perhaps more appropriate
for mesenchymal movement.

The process of deriving macroscopic diffusion coeffi-
cients permits the classification of cell behavior. By consid-
ering the diffusion coefficients in appropriate limits, the dif-
ferences between cell-level models can be clearly
understood. This clarification could allow one to determine
which cell-level model may be the appropriate model for a
given problem.

VI. SUMMARY AND DISCUSSION

In this paper we have derived a nonlinear diffusion equa-
tion which describes the spatiotemporal evolution of cell
number density in a one-dimensional cell-based model. It has
been shown that the diffusion coefficient is proportional to
the spring constant and inversely proportional to the viscos-
ity coefficient. While these results are intuitively reasonable,
the derivation allows cell-based parameters to be directly re-
lated to the macroscale population behavior. The diffusion
coefficient has an inverse quadratic dependence on cell num-
ber density leading to deviation from standard Fickian be-
havior.

Comparisons of solutions of the cell-based and continuum
models have shown excellent agreement. Initially, we de-
rived a continuum equation in which cell position along an
indexed chain was the dependent variable and used an ana-
Iytic solution to confirm that the diffusion equation was a
valid approximation to the cell-based simulations. In order to
derive a more biologically intuitive continuum model, we
made a coordinate transformation such that cell number den-
sity was the dependent variable, therefore putting the cell-
based model in a framework which readily allows compari-
son with other models in the literature.

The derivation of continuum models from their discrete
counterparts readily permits the classification of discrete
model behaviors. This classification then allows one to
choose which discrete model may be an appropriate model to
choose for a given biological problem. In order to illustrate
this point we compared the diffusion coefficient derived in
this paper with that derived by Lushnikov et al. [23]. The
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comparison allows distinction to be drawn between discrete
model behavior. Moreover, the underlying on- and off-lattice
approaches considered by Lushnikov er al. [23] and in this
paper, respectively, yield reaction diffusion equations for cell
number density, raising the possibility that there are corre-
sponding reaction diffusion equations for other comparable
discrete models. The diffusion coefficients can be understood
purely in terms of the respective underlying interaction rules
and a distinction between on- and off-lattice does not appear
to be important at the continuum level of description.

To demonstrate that the continuum framework derived
here was robust to the inclusion of more realistic biological
details, we considered a simple rule for cell division in the
cell-based model. By choosing an appropriate source term in
the continuum framework we were then able to demonstrate
excellent agreement between the continuum and discrete
models. In order that the nonlinear diffusion model can be
used to model more realistic cell proliferation, it must be
investigated how more detailed models of cell division at the
cellular scale can be represented in a continuum framework.

As a result of transforming coordinates and describing the
model in terms of cell number density, we have shown that in
the limit of stiff springs, the model takes a similar form to
that considered by Ward and King [16]. However, an inter-
esting caveat of taking the limit is that the length scale over
which diffusion acts must be much greater than that of the
cell population, otherwise diffusion cannot act fast enough to
make the population spatially homogeneous. While in the
limit of stiff springs the model derived in this paper is quali-
tatively equivalent to that considered by Ward and King [16],
the merit of deriving the model from first principles lies in
the fact that we have defined limits in which the incompress-
ibility assumption is acceptable. Moreover, the limits are de-
fined in terms of parameters which are measurable at the
cellular scale.

There are a number of questions yet to be answered about
the form of the nonlinear diffusion coefficients. For example,
one area of further investigation is whether or not the mod-
eling methodology described in this paper can be applied to
cell-based models in which the model parameters are nonho-
mogeneous. Moreover, dimensional arguments suggest that
an analogous nonlinear diffusion model in 2D would be of
the form D(q):f. However, in higher spatial dimensions
there will not be such a natural cell ordering as in the one-
dimensional case, hence further approximations may be nec-
essary to define a cell number density directly from the equa-
tions of motion. In order that the nonlinear diffusion model
can be used as a realistic model of cell population evolution,
it is necessary that corresponding models are derived in
higher spatial dimensions. This topic will be explored in a
future publication.

We finish by discussing how this “toy” model could be
used to describe real tissues. In particular, one extension that
we will explore in a future publication is that of intestinal
crypts, which are test-tube-like indentations in the intestinal
wall. Previously, these systems have been simulated [9,17]
using cell-based models in which cells interact via a linear
force law in a cylindrical geometry. The continuum frame-
work developed in this paper will allow us to much more
efficiently understand model behavior in different regions of
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parameter space, as compared with a simulation-only ap-
proach. Moreover, a nondimensional analysis of the con-
tinuum model (similar to that presented in Sec. V B) will
allow us to predict what regions of parameter space permit
biologically realistic solutions.

The continuum model derived in this paper could be used
to investigate the validity of considering a linear force law as
a model for cell-cell interactions by, for example, measuring
how an initially compressed epithelial cell population relaxes
to an equilibrium configuration (see Fig. 7 for a schematic
illustration). Choosing the spatial dimensions of the experi-
ment such that boundary effects can be neglected over the
time scale of interest, a symmetry argument suggests that the
1D model derived in this study could describe relaxation
along the axis of compression. By tracking the boundary of
the cell population using imaging analysis, the experimental
results could be compared with simulation results such as
those presented in Fig. 3, in order to (a) validate the choice
of model and (b) experimentally determine the parameter «
for a given cell line.
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