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Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in
vitro and in vivo referred to as dynamic instability. We propose a general mathematical model that accounts for
the growth, catastrophe, rescue, and nucleation processes in the polymerization of microtubules from tubulin
dimers. Our model is an extension of various mathematical models developed earlier formulated in order to
capture and unify the various aspects of tubulin polymerization. While attempting to use a minimal number of
adjustable parameters, the proposed model covers a broad range of behaviors and has predictive features
discussed in the paper. We have analyzed the range of resultant dynamical behavior of the microtubules by
changing each of the parameter values at a time and observing the emergence of various dynamical regimes
that agree well with the previously reported experimental data and behavior.
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I. INTRODUCTION

Microtubules are protein polymers made of � /� tubulin
heterodimers that form an essential part of the cytoskeleton
of all eukaryotic cells. Besides giving structural stability and
rigidity to a cell, microtubules play key roles in many physi-
ological processes such as intracellular vesicle transport and
chromosome separation during mitosis. An individual micro-
tubule is a hollow cylinder of 25 nm diameter built usually
from 13 protofilaments �1�. While the stable subunits of mi-
crotubules are actually heterodimers composed of � and �
monomers, we will refer to them for simplicity as monomers.
These monomers exist in two different energetic states,
namely, bound to a molecule of guanosine triphosphate
�GTP� or guanosine diphosphate �GDP�, respectively. Only
the GTP bound monomers are assembly competent meaning
they are able to polymerize into microtubules. After the GTP
monomers have been added to the growing microtubule,
GTP bound to � tubulin is rapidly hydrolyzed �dephospho-
rylated� to form a bound GDP subunit. It has been hypoth-
esized since the early 1980s that the so-called GTP cap on
the tip of the growing microtubule gives rise to the stability
of the microtubule �2�. Once the GTP cap is lost, the micro-
tubule will switch to a “collapsing” state referred to as a
catastrophe which is characterized by rapid depolymerization
of the microtubule into its free subunits. However, there is
also a possibility that at some point in time a catastrophically
shrinking microtubule acquires a new GTP cap and thereby
returns to the growing population, a situation that is referred

to in the literature as a rescue event. We refer the reader to
the papers �1,3–9� and the references therein for more infor-
mation about this phenomenon known in the literature as
dynamical instability. The process of microtubule polymer-
ization dynamics both in vitro and in vivo has been exhaus-
tively reviewed by Desai and Mitchison �10�. It should be
stressed that under the conditions of high concentration of
tubulin a completely different process has been observed,
namely, a transition to a regime with damped oscillations of
the tubulin mass polymerized into microtubules. This occurs
for free tubulin concentrations exceeding a critical value,
which depends on the experimental conditions and which
corresponds to saturable polymerization kinetics �11,12�. Dy-
namic instability of microtubules has been observed in vivo
and in vitro �2� and highlights both the nonequilibrium nature
of the physical problem involved and the stochastic nature of
the individual microtubule growth process. Interestingly, en-
sembles of microtubules show collective oscillations under
suitable conditions first reported by Carlier et al. �11� and
further studied by Mandelkow et al. �12–14� who showed
that above a critical value of the free tubulin concentration,
the amount of polymerized tubulin undergoes smooth oscil-
lations which are damped out as the biochemical energy
source in the form of GTP molecules is gradually depleted.
Sept et al. �9� modeled the assembly dynamics from a chemi-
cal reaction-kinetics standpoint and found good agreement
with the experimental data. While this model captures the
main features of the process, it is still very empirical and
incomplete. Nonetheless, to introduce the main features of
the underlying biochemical processes we have described
them in Appendix B. These processes involve
polymerization/depolymerization, nucleation, and catastro-
phe events. When at least one autocatalytic reaction is added
to the system, the dynamics changes significantly. Sept et al.
�9�, for example, considered an induced catastrophe event
described by and incorporated into their model to reproduce
oscillations observed in vitro. We will show in our paper that
oscillations can be reproduced by including growth and
nucleation in the model as the only nonlinear reactions.
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Deterministic mathematical models of polymer growth
largely fall into two classes depending on whether the length
of the polymer is discrete or continuous. The latter approxi-
mation is based on the assumption that the typical length of
a polymer is much larger than the gain in length by adding a
single monomer unit. Partial differential equation models of
this type have been used, for example, in �1,7,9,14–17� for
the case of microtubule dynamics and in �18� to study the
dynamics of prion proliferation.

II. MATHEMATICAL MODEL

In this paper, we propose a mathematical model for the
concomitant processes of microtubule growth, nucleation,
catastrophic shrinking, and rescue. Roughly speaking, micro-
tubules of length x grow at a velocity �p�t�, where � is a
constant and p�t� is the concentration of free GTP tubulin.
The model will therefore have the form of a nonlinear trans-
port equation. This is essentially also the approach taken in
some of the earlier works in this area �1,6,7,19�. Our inten-
tion is to develop a generalized model that accounts for the
wealth of observed behavior including nucleation, growth to
saturation, and synchronized oscillations, in addition to ca-
tastrophes and rescues. Moreover, we have explicitly in-
cluded the presence of a GTP cap and a measure of the
microtubule’s age. While striving for completeness in the
mathematical description we have also attempted to intro-
duce a minimal number of model parameters. Our model
contains seven empirical parameters, most of which can be
determined from experimental data.

Let Y = ��x ,y��R2 :x�y�0� be the state space for mi-
crotubules with a GTP cap. For �x ,y��Y, let u�x ,y , t� denote
the population density of microtubules of total length x that
have a GTP cap and whose GDP domain has length y. This
implies that

�u�· , · ,t��dydx = �
0

� �
0

x

u�x,y,t�dydx

is the total number of microtubules in a reference volume.
We assume that the GDP domain forms a connected set and
that the remainder of the microtubule is the GTP domain of
length x−y; we will return to this assumption in Sec. IV
below. If the microtubule has no GTP cap then it will un-
dergo catastrophic depolymerization. In order to keep track
of this process, let v�x , t� denote the density of microtubules
of length x without a GTP domain, again in the sense of a
concentration. In addition, we introduce the concentrations
of free GTP monomers p and free GDP monomers q. Cata-
strophic depolymerization of microtubules results in the re-
lease of GDP monomers which are then biochemically con-
verted into GTP monomers in a reaction sometimes referred
to as “pumping” since it involves a biochemical energy input
from the solution. The new GTP monomers then become
available for further microtubule growth, rescue, and nucle-
ation. Figure 1 provides a schematic depiction of the tubulin
cycle. The equation for u is given by

�

�t
u�x,y,t� + ��p�t� − ��

�

�x
u�x,y,t� + �

�

�y
u�x,y,t� = 0.

�1�

The new monomers are added at rate �p�t� and result in an
increase in the overall lengths of the microtubules. The con-
stant ��0 is the progression rate of the GDP zone �i.e., the
speed of hydrolysis within the microtubule�. The rate � can
be positive if occasionally a GTP bound monomer is lost
from the microtubule. Notice that both factors �p−� and �
have the dimension LT−1. The characteristic curves for Eq.
�1� are given by

dx

dt
= �p�t� − �,

dy

dt
= � .

In view of the second of these equations, the variable y can
also be interpreted as the “age” of the microtubule, since
hydrolysis is assumed to start immediately upon nucleation.
The boundary condition on �1= ��x ,y��R�0

2 :y=0� incorpo-
rates the nucleation of microtubules without a GDP domain.
Let 	�x� be the length distribution of such freshly nucleated
microtubules without a GDP domain. This can be a uniform
distribution on some interval �x− ,x+� or a �narrow� Gaussian
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FIG. 1. �Color� Schematic representation of the tubulin cycle
�top� and our model presented in this paper �bottom�. In the case
R�t�=�p�t�−�−��0, the system is in a phase of growth �dashed
arrows, left panel�. If R�t�
0, the system is in a phase of shrinking
�dashed arrows, right panel�. The recycling of free monomers is
identical in both cases and only depicted in the left panel.
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distribution centered at some point x0. Let L�=	0
�x	�x�dx be

the average length of freshly nucleated microtubules. The
nucleation reaction is generally assumed to be a nonlinear
reaction although the exact number of monomers n that need
to come together is a matter of discussion �4,20,21�. With the
rate of nucleation ��0, the boundary condition on �1 is

�u�x,0,t� =
�

L�
pn�t�	�x� . �2�

Thus, �1 is part of the inflow boundary of the domain Y at all
times. The boundary �2= ��x ,y��R�0

2 :x=y� may be part of
the inflow boundary, respectively, of the outflow boundary,
depending on whether the growth of the entire microtubule is
faster than the progression of the GDP domain. Precisely, let
R�t�=�p�t�−�−�. If R�t��0, then we say that the system is
in a growth phase. This allows microtubules without a GTP
cap to be rescued. The boundary condition on �2 is then
given by

R�t�u�x,x,t� = �v�x,t�, if R�t� � 0, �3�

where ��0 is the propensity of shrinking microtubules to be
rescued �it has the dimension T−1�. If, on the other hand,
R�t�
0, then we say that the system is in a state of shrinking
and �2 is part of the outflow boundary of the domain Y.
Microtubules reaching the boundary �2 are transferred to the
population of microtubules without a GTP cap v�x , t�. It will
be helpful later to write Eq. �1� in divergence form. Let

b�t� = 
�p�t� − �

�
� , �1��

then Eq. �1� can be written as

ut + � · �b�t�u� = 0.

Microtubules without a GTP cap are shrinking at a rate

�0 �which represents the loss of length per unit time�. This
population has a source or a loss term, again depending on
the sign of the function R. The equation for v is

�

�t
v�x,t� − 


�

�x
v�x,t� = �− R�t�u�x,x,t� , if R�t� 
 0

− �v�x,t� , if R�t� � 0

 .

�4�

If R�t�
0 the system is in a state of shrinking and microtu-
bules that lose their GTP cap obviously enter the population
of microtubules without a GTP cap. If the system is in a state
of growth then microtubules without a GTP cap are rescued
and re-enter the class u through boundary condition �3� on
�2.

GDP-bound monomers are gained by catastrophes �there
are no intermediate depolymerization products� and are con-
verted to GTP-bound monomers by biochemical pumping.
The gain is proportional to the number of microtubules with-
out a GDP domain. Hence,

d

dt
q = 
�

0

�

v�x,t�dx − �q . �5�

The constant ��0 denotes the rate of the �first order� pump-
ing reaction. We assume that there is always enough GTP

available in the solution to ensure a constant rate of pump-
ing, but in the future we may also include free GTP as a
variable in the model. Recall that q and p are concentrations
of “lengths” of microtubules stored in free GDP or GTP-
bound tubulin monomers, respectively. In order to obtain the
concentrations of molecules, one can calculate q̃=�−1q,
where � is length gained by adding a single monomer. Fly-
vbjerg et al. �6,7� used a simple conversion where �
=8 nm /13=0.6 nm, since 8 nm is the length of a single
tubulin heterodimer and 13 is the number of protofilaments
in a microtubule.

The population of free GTP-bound tubulin monomers is
replenished by the conversion of GDP monomers while
losses occur due to growth and nucleation of microtubules.
Therefore,

d

dt
p = − ��p − ���

0

� �
0

x

u�x,y,t�dydx + �q − �pn. �6�

The last term in Eq. �6� indicates that n individual monomers
combine during nucleation. The set of initial conditions is

u�x,y,0� = u0�x,y�, v�x,0� = v0�x�, p�0� = p0, q�0� = q0.

We calculate the total length �u�xdydx of GDP- and GTP-
bound tubulin found in microtubules with a GTP cap by
integrating with the weight xdydx,

�u�· , · ,t��xdydx = �
0

� �
0

x

u�x,y,t�xdydx .

The total length of GDP-bound tubulin in collapsing micro-
tubules is given by a similar expression,

�v�· ,t��xdx = �
0

�

v�x,t�xdx .

The model �Eqs. �1�–�6�� conserves the total length of bound
and free tubulin �u�xdydx+ �v�xdx+q+ p, i.e.,

d

dt
��u�t��xdydx + �v�t��xdx + q�t� + p�t�� = 0. �7�

See Appendix A for details. It is also possible to calculate the
total length of GDP-bound tubulin found in microtubules
with a GTP cap as

�bound-GDP�t� = �
0

� �
0

x

u�x,y,t�ydydx , �8�

and so the complementary quantity, the total length of GTP-
bound tubulin, is

�bound-GTP�t� = �
0

� �
0

x

u�x,y,t��x − y�dydx .

III. PARAMETRIZATION AND NUMERICAL
RESULTS

The parameters of our model are the following, each
given with their physical dimensionality:

CONTINUOUS MODEL FOR MICROTUBULE DYNAMICS… PHYSICAL REVIEW E 80, 031904 �2009�

031904-3



�i� �, the growth rate of microtubules such that �p�t� has
dimension LT−1;

�ii� �, rate of loss of a GTP-bound monomer �LT−1�;
�iii� �, progression rate of the GDP zone �LT−1�;
�iv� 
, depolymerization rate of microtubules without a

GTP cap �LT−1�;
�v� �, rate of the pumping reaction that converts GDP-

bound monomers into GTP-bound monomers �T−1�;
�vi� �, rescue propensity for microtubules undergoing a

catastrophe �T−1�;
�vii� �, rate of nucleation ��p�−�n−1�T−1�;
�viii� n, the order of the nucleation reaction;
�ix� 	, distribution of lengths of freshly nucleated micro-

tubules;
�x� L�, average length of freshly nucleated microtubules

�L�.
The dimensions of � and � require some discussion.

From Eq. �6� we see that ��p�= ���=LT−1 and therefore
���= �p�−1LT−1. Hence, we are only able to use sources that
report the growth rate as dependent on the concentration of
free GTP-bound tubulin. Equation �6� implies further that
���= �p�−�n−1�T−1. We collect in Table I a set of representative
numerical values for the parameters that have been published
in the literature.

We have implemented our model numerically using MAT-
LAB; the codes will be available from the authors upon re-
quest. To simulate the system of Eqs. �1�–�6�, we discretize Y
into 500�500 cells where each cell has a dimension of
200 nm�200 nm. We use an upwind scheme with adaptive
time step for the partial differential equations and the explicit
Euler method for the ordinary differential equations �30�.
Since the amount of free GTP-tubulin p�t� changes over
time, so does the growth velocity of the microtubules and
hence an adaptive choice of the time step is necessary to
guarantee the Courant-Friedrichs-Lewy condition �30�. We
continuously keep track of the total amount of tubulin in all
its forms to guarantee that our numerical solution satisfies
conservation law �7�. Using the length of a single unit as
stated above, we can convert a concentration of tubulin as
follows:

1 �M � 3.76 � 1014�m

L
¬ C.

For consistency and comparison we choose most of the
parameters from only two experimental sources �21,26�.
Walker et al. �26� provided experimental estimates of the
polymerization rate �, the loss rate of GDP monomers �, and
the depolymerization rate 
. The values �summed on both
plus and minus ends� are

� = 2.5 �m min−1 �M−1 � 1.33 � 10−15 L min−1
=
�

C
� ,

� = 2.4 �m min−1, 
 = 50 �m min−1.

These authors also estimate the rescue and catastrophe rates
as 10 min−1 and 0.36 min−1 at 10 �M tubulin concentra-
tion, respectively. The latter are used to fine tune the other
parameters of our model, i.e., � , � and �. We note that the
integral on the boundary �2 in Eq. �A1� can serve as a defi-
nition of the catastrophe, respectively, rescue frequency, de-
pending on the sign of R. Therefore, we define the time-
average rescue and catastrophe rates from our model as
follows:

kcat = −
1

T
�

0

T �
�2

u�x,x,t�dxR�t�dt, if R�t� 
 0,

kres =
1

T
�

0

T �
�2

u�x,x,t�dxR�t�dt, if R�t� � 0, �9�

where T is the total simulation time. For the nucleation re-
action we assume that n=2 and �=5.9�10−3 �M−1 min−1

��21�, Table I�.
As one initial distribution of microtubules with a GTP cap

we choose

u0�x,y� = c exp
−
�x − 10�2

52 −
�y − 5�2

2.52 � , �10�

where the constant c is chosen such that �u0�xdydx�5 �M;
this is half the concentration of the total bound tubulin. The
initial concentration of free GTP-bound tubulin is p0

�5 �M. The remaining two initial data are chosen to be 0.
In the first modeling scenario we set the parameters as

�=�=�=0 �no conversion of GDP monomers, no rescue,
and no nucleation�; see Fig. 2. We plot the time evolution of
microtubules in u �total amount of tubulin bound in micro-
tubules with a GTP cap, solid red curve� and v �total amount
of tubulin bound in microtubules without a GTP cap, blue
curve� pools, and GTP and GDP tubulin dimers in p �green
curve� and q �black curve� pools, respectively. After an initial
period of growth, microtubules enter the depolymerization
phase due to low concentration of the GTP tubulin �green
curve�. This is because the GDP-GTP conversion process of
monomers is turned off ��=0�. As a result, the total length of
microtubules decreases. Due to lack of nucleation and rescue
��=0=��, this leads to complete depolymerization of all mi-
crotubules in the system, as expected. The dashed red curve
in Fig. 2 represents the length of GDP-bound tubulin within
microtubules with a GTP cap �see Eq. �8��.

In agreement with experimental observation �13�, a solu-
tion showing damped oscillations can be found by introduc-

TABLE I. Experimental and/or computational estimates for pa-
rameters published in the literature, some of which are used in the
model. kres and kcat are rescue and catastrophe rates that can be used
to fine tune �, �, and �.

Parameter Value Reference

� 0.5–11.5 �m min−1 �M−1 �22–26�
� 1.6–35 �m min−1 �1,22–28�
� 0.25 �m min−1 �7�

 44–50 �m min−1 �26�
n 1–12 �4,9,20,21�
� 5.9�103 M−1 min−1 �21�
� 3–120 min−1 �4,9�
kres 2–10 min−1 �26,29�
kcat 0.1–1 min−1 �26,29�
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ing recycling of GDP tubulin, and nucleation and rescue pro-
cesses. Using the parameters �=1 min−1, �=5.9
�10−3 �M−1 min−1, and �=0.136 min−1, the result is
shown in Fig. 3. From now on we refer to this parameter set
along with �=2.5 �m min−1 �M−1, �=2.4 �m min−1, and

=50 �m min−1 as the “standard” and make all changes
with respect to these values. In Fig. 3, kinks in the curves
indicate rescue events that occur when microtubules without
a GTP cap acquire a GTP cap under favorable growth con-
ditions. Setting the rescue rate � to zero results in very simi-
lar curves without the discontinuities �not shown�. The re-
sulting rescue and catastrophe rates are kres=6.7899 min−1

and kcat=0.1392 min−1 which are within experimentally ob-
served ranges �see Table I�. Another interesting observation
in Fig. 3 is that the GDP zone �of the entire population�

follows quite closely the total length. This means that on
average, microtubules maintain their GTP cap. Figure 4 de-
picts the time evolution of the population density u for the
set of parameters described in Fig. 3. As shown, the micro-
tubules continue to grow and shrink in time. Another inter-
esting initial distribution of microtubules with a GTP cap is
u0�x ,y�=0 and p0�10 �M. In this scenario the influence of
nucleation can be studied; see Fig. 5. As shown, microtu-
bules are nucleating, polymerizing, and then growing while
the GDP-bound portion is also progressing.

We have tested numerically the influence of the individual
parameters on the behavior of our model. Using the initial
datum from Eq. �10�, we have varied one parameter at a
time. In order to unify the picture somewhat, we arrange
several growth curves in two-dimensional slices of the pa-
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FIG. 2. �Color� Time evolution of microtubules for the parameter set �=2.5 �m min−1 �M−1, �=2.4 �m min−1, �=5.4 �m min−1,

=50 �m min−1, and �=�=�=0. Shown are the total amounts of tubulin in each of its forms, namely, bound in microtubules with a GTP
cap �u�xdydx �solid red curve�, bound in microtubules without a GTP cap �v�xdx �blue curve�, and tubulin monomers bound to GTP p �green
curve� and bound to GDP q �black curve�. All quantities are in units of �mL−1 of tubulin. The total length of microtubules is decreasing at
later times due to complete depolymerization of microtubules without a GTP cap and lack of nucleation. The red dashed curve represents the
amount of bound GDP tubulin in microtubules with a GTP cap. The inset plot shows the conservation of the total amount of tubulin
confirming Eq. �7�.
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FIG. 3. �Color� Same as Fig. 2 but for the parameter set �=5.9�10−4 �M−1 min−1, �=1 min−1, and �=0.136 min−1. The arrows
indicate rescue events; the conservation of the total amount of tubulin is shown in the inset plot. The resulting catastrophe and rescue rates
are kcat=0.1394 min−1 and kres=6.7899 min−1 �see Eq. �9��. The parameters � , � , �, and 
 used in Fig. 2 and � , �, and � used here are
referred to as to the “standard” parameter set from now on.
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rameter space. In the following, we state variation in the
relevant parameter as a multiple of the standard value, which
is denoted by an asterisk. A decreased rate of monomer ad-
dition ��0.3�� results in no growth of microtubules during
10 min �Fig. 6, left column�. An increase in the loss rate of
GTP-bound monomers to 6�� results in the formation of
much shorter microtubules with a very short GTP cap �Fig.
7�. A reduced rate of GTP hydrolysis allows the formation of
large GTP domains and delays the onset of the oscillation
phase �Fig. 8, bottom row�. On the other hand, large values
of � are able to suppress microtubule formation completely
�Fig. 8, top row�. It is worth noting that in Fig. 3 we observe
a crossover from a regime dominated by low-level microtu-
bule assembly to saturation kinetics followed by a polymer-
ization “overshoot” with damped oscillations. The latter is a

characteristic feature found experimentally by Marx et al.
�12� almost 20 years ago.

Changes in the depolymerization rate of microtubules
without a GTP cap 
 lead to interesting behavior. Strong
oscillations and a prolonged existence of microtubules with-
out a GTP cap are seen �Fig. 9� when 
 is small and rescue
events are more pronounced due to a longer survival of mi-
crotubules without a GTP cap. A very important role is
played by the rate � at which GDP monomers are recycled to
GTP monomers. Even a very small value such as 0.1�� suf-
fices to induce oscillations, although their period is much
longer �Fig. 6, bottom row�. On the other hand, a large value
such as 10�� results in a quick dampening of the oscillations
�Fig. 6, top row�. Finally, the parameter � influences the time
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FIG. 4. Time evolution of the population density u for the set of parameters used in Fig. 3. Plotted are equidensity contours beginning
from a Gaussian profile. Note the change in direction of the center as time progresses due to the activation of the rescue process.
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FIG. 5. �Color� Shown are again the total amounts of tubulin in each of its forms ��u�xdydx, solid red curve; �v�xdx, blue curve; p, green
curve; and q, black curve�. Parameters are the same as in Fig. 3 but with initial conditions �u0�xdydx=0 and p0=10 �M.
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scale for the nucleation process but does not change the gen-
eral behavior drastically �not shown�.

In addition to these variations in parameters we also var-
ied one initial datum, namely, the concentration of free GTP
tubulin p0. Now using the standard parameter set again, we
see that a high concentration of p0�10 �M and u0�x ,y� as
in Eq. �10� results in a longer persistence of oscillations �Fig.
10�. Our model provides results regarding the nature of the
oscillatory kinetics for microtubule assembly which is con-
sistent with the original experimental observations reported
by Carlier et al. �11�, specifically the data shown in their Fig.
1 where the amplitude of oscillations and their persistence
diminish as the concentration of free tubulin decreases from
150 to 50 �M. The actual values of the tubulin concentra-
tion used in the experiment may not be directly comparable
to our values due to the specific experimental conditions un-
der which the measurements were made.

IV. DISCUSSION

The dynamical behavior of microtubules has attracted
many investigators over the past few decades to examine the
microtubule behavior in regard to many biophysical aspects
�1,3,4,6–9�. In this paper, we have proposed a mathematical
model that includes all processes taking place during micro-
tubule polymerization/depolymerization, namely: growth,
nucleation, catastrophic shrinkage, and rescue events. Our
model contains the amounts of free tubulin in both its ener-
getic forms �GTP and GDP bound� as dependent variables.
This results in a nonlinear transport equation whose math-
ematical analysis will pose a serious challenge. Nevertheless,
we think this will give valuable insight into the role of the
GTP cap in maintaining microtubule stability. The earlier
paper by Houchmandzadeh and Vallade �17� contained ex-
pressions for free GTP and GDP tubulin; it did not contain a
growth velocity for microtubules that was dependent on the
amount of free GTP tubulin. GTP monomers continue to be
lost, even beyond the point when they have become com-
pletely depleted ��17�, Eq. �9��. This results in possibly nega-
tive concentrations of GTP monomers avoided in our treat-
ment.

A crucial assumption of our model is that the microtu-
bules consist of two separated and connected domains, a
GTP domain where the growth occurs and a “trailing” GDP
domain. Only very recently, a paper by Dimitrov et al. �31�
provided experimental evidence for the presence of a GTP
cap in microtubules in vivo. The authors of �31� suggest fur-
ther that remnants of GTP tubulin left in the GDP domain
play a role during rescue events and that growth resumes
after such remnants have been exposed during a catastrophic
depolymerization. This is clearly an exciting new develop-
ment. Nevertheless, the remnants are likely to be very short
�say, one layer of GTP tubulin�. It should be clarified that our
model describes a large population of growing and shrinking
microtubules where stochastic events in an individual micro-
tubule have been averaged out.

We should also point out that our model does not contain
a diffusion term of the type div�D�u� on the right-hand side
of Eq. �1�. Such a term has been a prominent feature of
earlier models �6,7� although it is not contained in other
models �19�. The role of “length diffusion” in a mathematical
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FIG. 7. �Color� An increase in the loss rate of GTP monomers �
to 6�� does not prevent formation of microtubules entirely but re-
duces drastically their average length. Notice also the extremely
short GTP cap. All other parameters are the same as in Fig. 3.
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FIG. 8. �Color online� As in Fig. 6, but now � and � are varied
simultaneously.
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FIG. 6. �Color online� The behavior at several points in param-
eter space when � and � are varied simultaneously. Each subfigure
shows only the amount of tubulin in microtubules with a GTP cap
�solid red curves� and the length of the trailing GDP subdomain
�dashed red curves�. Parameters are varied with respect to the val-
ues ��=2.5 �m min−1 �M−1 and ��=1 min−1. The time axis cov-
ers 10 min in each case.
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model for linear polymer accretion has been investigated
from a mathematical point of view �32,33�. Collet et al. �32�
and Laurençot and Mischler �33� discussed convergence of
the solutions of the discrete Becker-Döring system to solu-
tions of the continuous Lifshitz-Slyozov equation under cer-
tain scaling assumptions. The “standard” version of the
Lifshitz-Slyozov equation in �32,33� does not contain a dif-
fusion term implying that a population highly concentrated at
a certain length initially does not disperse later on.

We have performed numerical simulations using mainly
parameters from only two experimental sources, namely,
�21,26�. Already with a few choices and variations in param-
eters, we are able to reproduce commonly seen dynamical
behaviors such as complete depolymerization in case of lack-
ing recycling of GDP monomers �see Fig. 2� and damped
oscillations in a growing population �Fig. 3�. The parameters
that have not yet been determined experimentally are—to the
best of our knowledge—the rescue rate � and the pumping
rate �, although the order of magnitude of � has been esti-
mated by theoretical arguments �4,9�. By varying these pa-
rameters in simulations we can predict their influence on the
growth behavior and suggest experimental scenarios to look
for. While outside of the scope of the present paper, we want
to point out that microtubule polymerization and depolymer-
ization is the target of many cancer chemotherapy drugs. The
precise mechanism by which some drugs �such as vinblastine
and taxol� suppress dynamic instability is a topic for future
modeling and experimental research.

Some important points that we plan to address in the fu-
ture are �34� as follows:

�i� The GTP zone is generally believed to be short, a few
helical rings or 40 nm at most �35�. This would imply that
hydrolysis, under typical conditions, proceeds at roughly the
same speed as the growth of the microtubules which in turn
is dependent on the concentration of unpolymerized GTP-
bound tubulin. Is hydrolysis of polymerized GTP-bound tu-
bulin a catalyzed reaction?

�ii� It is an open question whether the model developed in
this paper can be adopted to describe situations correspond-
ing to in vivo conditions such as the presence of microtubule
associated proteins during the polymerization process and

the existence of discrete microtubule organizing centers.
Some recent papers emphasize their role �36,37� in realistic
representations of cellular processes.
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APPENDIX A: BALANCES FOR TUBULIN AND
MICROTUBULES

We integrate Eq. �1� over the domain Y and apply the
divergence theorem for weighted integrals

�
�

�� · b�w���d� = �
��

�b · n�w���d���� − �
�

�w · bd� ,

where n is the outer normal vector. With w�x ,y�=x and n
= � 0

−1 � on �1 and n= � −1
1 � on �2 this gives, interchanging the

order of integration and differentiation,

d

dt
�u�t��xdydx = �

�1

�u�x,0,t�xdx − �
�2

�− ��p�t� − ��

+ ��u�x,x,t�xdx + �
Y

��p�t� − ��u�x,y,t�dydx

= �pn�t�
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FIG. 9. �Color� A decrease in the depolymerization rate of col-
lapsing microtubules to 0.2
� results in irregular oscillations and
longer presence of microtubules without a GTP cap. All other pa-
rameters are the same as in Fig. 3.
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FIG. 10. �Color� Reverting to the standard parameter set �see
Fig. 3� and using the initial condition p0�10 �M gives oscillations
that persist for longer times.
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+ �R�t��
0

�

u�x,x,t�xdx , if R�t� 
 0

��
0

�

v�x,t�xdx , if R�t� � 0�
+ ��p�t� − ���

0

� �
0

x

u�x,y,t�dydx .

Likewise, we integrate Eq. �4� with weight xdx. Again, after
integration by parts, we have

d

dt
�v�t��xdx = − �R�t��

0

�

u�x,x,t�xdx , if R�t� 
 0

��
0

�

v�x,t�xdx , if R�t� � 0�
− 
�

0

�

v�x,t�dx .

Adding these two results and Eqs. �5� and �6� yields Eq. �7�.
If the weight x is removed then we obtain the total num-

ber of microtubules with or without a GTP cap. For micro-
tubules with a GTP cap we obtain

d

dt
�u�t��dydx = �

�1

�u�x,0,t�dx + ��p�t� − �

− ���
�2

u�x,x,t�dx = �pn�t��
�1

	�x�dx

+ R�t��
�2

u�x,x,t�dx , �A1�

that is, such microtubules are gained through nucleation and
lost or gained �depending on the sign of R�t�� through ex-
change with the population without a GTP cap. For the latter
we have

d

dt
�v�t��dx = − 
v�0,t� − R�t��

�2

u�x,x,t�dx ,

i.e., microtubules without a GTP cap are lost by complete
depolymerization and gained or lost through exchange with

the population with a GTP cap. Taken together

d

dt
��u�t��dydx + �v�t��dx� = �pn�t��

�1

	�x�dx − 
v�0,t� ,

that is, only nucleation and complete depolymerization
change the total number of microtubules.

APPENDIX B: BIOCHEMISTRY OF TUBULIN
POLYMERIZATION

The principal elements in the model of Sept et al. �9� can
be summarized by the equations that follow. For simplicity,
the microtubule is considered as a linear polymer rather than
an object of 13 protofilaments. We shall denote a microtu-
bule of n subunits by MTn. Note that in solution, the free
tubulin subunits may be bound to either GTP or GDP at their
exchangeable nucleotide site and we denote them as TGTP
and TGDP, respectively. Note that only tubulin bound to GTP
is able to polymerize.

The reaction set involved in the process consists of addi-
tion, nucleation, and catastrophic collapse given by

MTn + TGTP � MTn+1,

nTGTP→
kn

MTn, and

MTn→
kc

nTGDP.

For simplicity, it is assumed here that all collapses are com-
plete and the number of dimers, n�, required for nucleation is
an adjustable parameter not available directly from experi-
ment. These equations can also be supplemented by the re-
activation of tubulin, to make it assembly competent, which
will occur when the concentration of GTP is high,

TGDP + GTP→
kr

TGTP + GDP.

The free-energy change associated with this reaction is less
than the free-energy change of GTP hydrolysis in solution
and the difference is attributed to a structural change in the
tubulin dimer. It is this conformational change which pre-
sumably makes assembly possible.
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