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A combination of analytical calculations and Monte Carlo simulations is used to find the ground state
structures in monodisperse ferrofluid monolayers. Taking into account the magnetic dipole-dipole interaction
between all particles in the system we observe different topological structures that are likely to exist at low
temperatures. The most energetically favored structures we find are rings, embedded rings, and rings side by
side, and we are able to derive analytical expressions for the total energy of these structures. A detailed analysis
of embedded rings and rings side by side shows that the interring interactions are negligible. We furthermore
find that a single ideal ring is the ground state structure for a ferrofluid monolayer. We compared our theoretical
predictions to the results of simulated annealing data and found them to be in excellent agreement.
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I. INTRODUCTION

Since their synthesis in 1964 �1� suspensions of magnetic
nanoparticles �diameters of the magnetic core: �10–50 nm�
in nonmagnetic carrier liquids have been called magnetic
fluids �ferrofluids, ferrocolloids�, and their investigation has
become an independent branch of science.

Particles in ferrofluids are made of Fe, Co, Ni, and their
oxides. The size of the magnetic particle is smaller than the
critical size of the monodomain state for the latter ferromag-
netic and antiferromagnetic materials. So, each particle is
homogeneously magnetized and possesses a magnetic mo-
ment proportional to the particle volume and the saturation
magnetization of the bulk material. For nonelectrolyte carrier
liquids a steric coating of magnetic cores is used to prevent
the coagulation, with an oleic acid �commonly� taken as a
stabilizer �2�. Strong response to an external magnetic field,
represented by ferrocolloids in combination with a liquid
state, gives rise to numerous applications of magnetic fluids
in engineering and natural science. Functionalized magnetic
fluids are used as an effective drug carrier tool and can be
used also in cancer treatment �e.g., hyperthermia� �3,4�.

Despite the active research carried out in the field of clus-
ter formation in magnetic fluids �see, for instance, �5–29��
their complex microstructure remains a stumbling block for
both experimentalists and theorists. The nanosized clusters in
opaque carriers are difficult to be seen; the long range char-
acter of the magnetic interactions and the essential polydis-
persity of particles in ferrofluids make their analytical de-
scription challenging. Thin films and monolayers recently
became a more successful experimental scenario to assert the
existence of the aggregation process �30–33�. In the experi-
ments of Philipse and co-workers �32,33�, images obtained
by cryogenic transmission electron microscopy gave ample
evidence of the existence of chainlike and ringlike structures
in ferrofluid monolayers, where all particles are trapped in
one plane but their magnetic moments are free to fluctuate in
three dimensions �quasi-two-dimensional �q2D� monolay-
ers�. Also the theoretical and simulation analysis of cluster
formation in ferrofluid monolayers is now available �34�.
However, monolayer studies gave rise to numerous questions

about the influence the geometry has on the interparticle in-
teractions and on the entropy. In order to understand the
peculiarities brought by the q2D geometry better, we present
a study of ground state structures in ferrofluid monolayers.
This question was addressed several times in literature in the
works �35–39�, for instance, but neither consistent approach
nor detailed analysis of the possible ground state structures
was presented.

One of the reasons for lacking a complete picture of
ground state structures is that, on the one hand, for complex
energy landscapes like the ones dictated by dipolar interac-
tions it is very difficult to get precise ground state structures
via simulations and, on the other hand, the analytical treat-
ment of many-body problems also seems to be impossible.
The aim of the present study is to develop an approach which
avoids this complexity but still provides reliable and well-
founded results. The main idea which served as a starting
point for this paper was the following:

�1� We used simulated annealing in a system of ferropar-
ticles in a monolayer moderately slow, but we repeated the
simulation sufficiently many times in order to see if some
structural motives dominate.

�2� We analyzed the most frequent structures and classi-
fied them.

�3� For some classified topologies we constructed analyti-
cal expressions for the energy and minimized them in order
to fulfill the main goal of this paper, i.e., to find the topology
of the ferroparticle structure in a monolayer at T=0 K with
the lowest energy.

The structure of this paper is the following. In Sec. II we
describe our used methods to perform computer experiments
and present the simulation results. For the structures found in
the simulations we construct analytic expressions of the en-
ergy in Sec. III. Section IV is dedicated to the discussion of
the most probable ground state structures. In Sec. IV, we
perform a comparison of the analytical results to the predic-
tions of our simulations. The discussions and main results are
summarized in Sec. V.

II. SIMULATION DETAILS

Simulations of physical systems at low temperature �es-
pecially when approaching the ground state� pose a serious

PHYSICAL REVIEW E 80, 031404 �2009�

1539-3755/2009/80�3�/031404�13� ©2009 The American Physical Society031404-1

http://dx.doi.org/10.1103/PhysRevE.80.031404


problem for any simulation method due to the slow relax-
ation times encountered and the possible rugged or nonu-
nique ground state structure of many complex systems. We
aimed neither at running extra long simulations nor at reach-
ing a global ground state. We describe in the following the
idea behind our computer investigations and provide a brief
scheme of the employed simulation technique.

Two interactions were used to model the system of mono-
disperse ferroparticles in a monolayer. The magnetic dipole-
dipole interaction between particle magnetic moments mi
and m j has the following form:

Udd�ij� = −
�0

4�
�3

�mi · rij��m j · rij�
r5 −

�mi · m j�
r3 � ,

rij = ri − r j , �1�

where rij =ri−r j is the displacement vector of two particles i
and j, rij =r and �0=4��10−7 H /m is the vacuum mag-
netic permeability. The pair potential in Eq. �1� is anisotropic
and favors head-to-tail positions of two magnetic moments.
The modulus of the particle magnetic moment is determined
by the bulk magnetization M0 of the material and the volume
of the magnetic material, namely, m= �mi�=�M0�dm�3 /6,
where dm is the diameter of the magnetic core.

The steric repulsion can be described in terms of a stan-
dard Weeks-Chandler-Andersen potential �40�,

UWCA�ij� = 	4��
dm

rij
�12

− 
dm

rij
�6� + � , rij � dc

0, rij � dc.
� �2�

The potential is cut off at the minimum, yielding a radius
dc= �dm�21/6. In principle one could also use a hard sphere
potential to describe the ground state structures, but we ex-
pect no serious differences in the structures.

The simulations employed a standard Metropolis algo-
rithm �41�, and we used a dimensionless distance and energy,
respectively, normalized to the units of the particle magnetic
diameter dm and the Lennard-Jones energy parameter �. As a
result, the following three dimensionless variables were used

in simulations: the reduced particle diameter dm
˜=1; the re-

duced temperature T̃=kT /�, where k is a Boltzmann con-
stant; and finally, to make the dipolar interaction dimension-
less, we introduce the factor m2 /�, m= �dm�3M0� /6 taking
into account that dm=1, and in this case the magnetic mo-
ments are simply unit vectors.

The probability for the Metropolis algorithm to accept a
new configuration is

exp�− ��Ũdd + ŨWCA�/T̃� .

Each computer experiment was organized as follows: first
the system was equilibrated �until energies stayed within 5%
of the average, the averaging was performed every 100 steps,
the number of steps depends on the number of particles and
temperature and in this case had an upper value of 2 000 000

accepted iterations� at some initial temperature T̃ and then
we decreased it by the value 	T. The system was again
equilibrated, and we tried another quench to a lower tem-

perature until value m2 /kT=64 was reached. The shifts for
coordinates were chosen as random numbers �with uniform
distribution�; the vectors of magnetic moments were rotated
around a randomly chosen vector in three dimensions for a
random angle.

The runs were started from T̃=1 and m2 /kT=4. For this
set of parameters the system of 16 ferroparticles was in a
nonaggregated state. The number of steps for the preliminary
equilibration was 100 000; the averaging of the energy was
performed over the last 1000 steps. For different values of
the temperature step 	T the final cluster structures varied
significantly.

Thus, in the system of 16 ferroparticles we observed
�i� for 	T=0.6T̃ short chains,
�ii� for 	T=0.1T̃ several long chains, and
�iii� for 	T=0.01T̃ a single ring.
When the number of particles was doubled �32 particles�,

we observed besides a chain and a ring also two embedded
rings, and even two rings side by side were found for the
lowest value of 	T. However, a further increase in the par-
ticle number �up to 1000� did not lead to any new cluster
structures. It is worth mentioning that embedded rings were
also observed in the work of Morimoto and coauthors �37�.
In this work they concluded that for high coupling constants
and large number of particles embedded rings were the most
probable structures. Below, we will investigate the question
of different structure probabilities and suggest what we think
is the real ground state for different numbers of particles.

The first result of this simple computer experiment was a
list of cluster structures �general shapes� that were likely to
be candidates for the ground state. They are presented in
Figs. 1�a�–1�d�: simulation snapshots of chains �Fig. 1�a��, a
ring �Fig. 1�b��, embedded rings �Fig. 1�c��, and rings side by
side �Fig. 1�d��.

In order to choose the ground state structure one needs to
have precise values of energies for all the candidates. Al-

FIG. 1. �Color online� The deviation Dm�T� of magnetic mo-
ments from the in-plain directions as a function of m2 /kT for the
structures depicted in the legend, where we present simulation snap-
shots of the structures most often observed. �a� chains; �b� a single
ring; �c� embedded rings; and �d� rings side by side.
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though the first results reduced the number of probable
ground state structures from a very large number to a list of
4 only, the direct calculations were still overloaded by the
particle and magnetic moment degrees of freedom. For ex-
ample, from the results of our simulated annealing neither
the alignment of moments nor the exact equations for the
particle positions could be extracted.

Analyzing every of four general shapes we furthermore
discovered that the minimum energy corresponded to the
“ideal” structures. Thus, the lowest energy for a chain was
reached for a rigid rodlike chain, and as for the rings, the
lowest value of the energy could be achieved if rings were
based on regular polygons, i.e., the centers of particles in a
ring were in the vertices of regular polygons. Embedded
rings and, what is a bit more surprising, rings side by side
also seemed to preserve the “regularity” of basic polygons.
For the latter configuration an additional series of simulation
experiments was performed. The deviation of two rings side
by side from the ideal structures was analyzed in terms of
particle positions in the simulations. One can compute the
distance between two opposite particles along the horizontal
and vertical ring diameters �for an ideal ring these distances
are equal to the ring diameter�. In general, their ratio shows
the deformation of the ring. In our simulations, it turned out
that the latter ratio �between the maximum horizontal and
vertical distances� in any of two rings side by side goes to
unity when the temperature decreases. To estimate the fluc-
tuations, the mean square deviation of particle positions from
the radius of the ideal ring has been calculated. The value
obtained is less than 1%. We also observed that with decreas-
ing temperature the moments tend to stay within the mono-
layer plane. This can be seen in Figs. 1�a�–1�d�, where, be-
sides the snapshots of the structures, the simulation data for
the value Dm�T�,

Dm�T� =
 �
i=1

N

�mz
i�2

�
i=1

N

��mx
i �2 + �my

i �2 + �mz
i�2�

, �3�

are plotted as a function of m2 /kT. Here, mx
i , my

i , and mz
i are

x, y, and z components of ith particle magnetic moment.
Therefore, the magnetic moments have significantly smaller
z components than their x and y ones, and the z component
monotonously decreases to zero with decreasing temperature
�Dm�T� goes to zero when m2 /kT is larger than 10�. The
simulation error bars are also plotted in the figures and do
not exceed 1% for low temperatures.

This allowed us to fix the coordinates of the particles and
reduce the simulation expenses significantly. On this level
the number of particles in the system was varied between
N=4–100 with a step equal to 1, N=200–3000 with a step
equal to 100, and N=4000–30 000 with a step equal to 1000.
Only the rotation of moments was performed in these runs.
To summarize, the simulation results provided us with a re-
stricted number of structures corresponding to local minima
in the energy landscape, and with high probability one of
them corresponds to the ground state. Additionally, the spa-
tial configurations are well defined which made it feasible to

compute the energy of the candidates analytically and to
compare the total energy of the structures to the results of the
simulations done for fixed particle positions.

III. ANALYTICAL EXPRESSIONS FOR THE ENERGIES

In this section we calculate total energies of different ideal
structures. For notations see Figs. 2�a�–2�d�. The particle
magnetic moment is denoted by m and is fixed within the
plain of monolayer. The system under study is monodisperse.

A. Chain

There is no need to prove that the ferroparticle chain has
the minimal energy if all particles are aligned along one line
together with all magnetic moments. In the ferroparticle
chain of N beads there are N−1 interactions between the
nearest neighbors with energy −2m2 /d3, N−2 interactions of
the particles separated by two diameters with energy
−2m2 /8d3, there are N−3 particles separated by three diam-
eters, with the interaction energy −2m2 /27d3, and so on. The
general expression for the chain total energy UCH�N� has the
following form:

UCH�N� = − 2
m2

d3 �
k=1

N
N − k

k3 . �4�

For large values of N the expression in Eq. �4� can be
simplified, thus, leading to the following asymptotic behav-
ior:

UCH
as �N� = − 2

m2

d3 
N
�3� −
�2

6
� . �5�

Here, 
�3��1.202 is the Riemann zeta function. This expres-
sion is very close to the one obtained in �18� �see Eq. �4�,
page 3050�, however, the authors there had to introduce
some fitting parameter, which in fact is nothing but the value
of Riemann function accurately obtained above. The range of

FIG. 2. �Color online� Ideal structures with notations used in the
calculations. Notations are explained in the text of corresponding
sections. The particle magnetic moment is denoted by m. The sys-
tem under study is monodisperse. �a� a chain; �b� an ideal ring; �c�
embedded rings; and �d� rings side by side.
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validity of this approximation can be analyzed in Fig. 3,
where the percentage deviation of Eq. �4� from the one given
by Eq. �5� is plotted as a function of N �the total number of
particles per chain� with solid line. Namely, the following
ratio is plotted:

Pca�N� =
UCH

as �N�
UCH�N�

100. �6�

The precision of 5% is reached already for the chain made of
four particles. In other words, the asymptotic formula can
safely be used to describe the energy of a chain even if the
latter is relatively short. The peculiarity of Eq. �5� is that it
has the same functional form as the expression for the chain
energy within the approximation of the nearest-neighbor in-
teraction, namely,

UCH
nn �N� = − 2

m2

d3 �N − 1� . �7�

Both expressions consist of the product of the nearest-
neighbor interaction −2m2 /d3 and the linear N-dependent
part. It is important to compare the usually adopted in litera-
ture approximation of the nearest neighbors to the total en-
ergy of a chain at 0 K. The expression has the form

Pcn�N� =
UCH

nn �N�
UCH�N�

100. �8�

The result �Pcn�N�� is presented in Fig. 3 by dashed line. It
shows the percentage deviation of the chain energy with ev-
ery interaction taken into account from the chain energy cal-
culated for the nearest neighbors only as a function of the
total number of particles. It is seen that this deviation satu-
rates and does not exceed 15% even for very long chains.
The average chain length observed for commercial ferroflu-
ids has an order of three to five particles �42�. In this length
region the difference is less than 5%, which fairly validates
the approximation.

B. Ideal ring

In this section we study an ideal single ring �a ring based
on a regular polygon� with the radius R �from now on, we

use the dimensionless radius related to the particle diameter
d�. The number of particles in a ring is larger than 2, N�3.
All magnetic moments are aligned in the plane of the layer.
This assumption is based on the simulation results, where the
magnetic moments were shown to fluctuate predominantly
within the monolayer plane. As the first step on the way to
find a ground state structure, we will try to pinpoint the con-
figuration of dipoles which provides the minimal total energy
for the ideal ring. For that the following model was used.

The distance ak between the centers of particle separated
by k polygon sides can be written as

ak
2 = 2R2 − 2R2 cos
2�k

N
�, k = 1, . . . ,N .

Taking into account that �i, as it is shown in Fig. 2�b�, is
the angle at the ith vertex between the polygon side and the
ith particle magnetic moment, i=1, . . . ,N, the angle between
ith magnetic moment and the vector which connects ith and
�k+ i�th particles can be written as

�i +
�k − 1��

N

and the angle between �i+k�th magnetic moment and the
vector which connects ith and �k+ i�th particles has a form

�k + 1��
N

− �i+k.

Finally, the angle between ith and �i+k�th moments is

�i − �i+k +
2k�

N
.

Magnetic dipole-dipole interaction between ith and �i+k�th
particles, thus, can be presented as follows:

Udd�i,i + k� =
m2

d3ak
3�cos
�i − �i+k +

2k�

N
�

− 3 cos
�i +
�k − 1��

N
�cos
 �k + 1��

N
− �i+k�� .

�9�

To calculate the total ring energy at 0 K, we have to allow
for every pair interaction. For this purpose, it is convenient
to present the interactions in an inductive form:

�i� For N=3 there are N pair interactions; particles in the
pairs are separated by one polygon side, we call them “one
side pair interactions;”

�ii� For N=4 there are N one side pair interactions and
N /2 two side pair interactions;

�iii� For N=5 there are N one side pair interactions, N two
side pair interactions, etc.

The general expression for the total ideal ring energy is
different for odd and even N.

For odd N it can be written as

2 4 6 8 10 12 14 16 18 20
75

80

85

90

95

100

N (number of particles)

P
ca

(N
),

P
cn

(N
)

(%
)

FIG. 3. The percentage deviation of the precise and asymptotic
�expression �6�, solid line� and precise and nearest-neighbor �ex-
pression �8�, dashed line� expressions for the chain energy as func-
tions of N �the total number of particles per chain�.
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UR
G =

m2

d3 �
i=1

N

�
k=1

�N−1�/2 � 1

ak
3�cos
�i − �i+k +

2�k

N
�

− 3 cos
�i +
�k − 1��

N
�cos
 �k + 1��

N
− �i+k��� ,

�10�

where N+ i= i.
For even N the energy is

UR
G =

m2

d3 �
i=1

N

�
k=1

N/2−1 � 1

ak
3�cos
�i − �i+k +

2�k

N
�

− 3 cos
�i +
�k − 1��

N
�cos
 �k + 1��

N
− �i+k���

+ �
i=1

N/2 � 1

8R3�cos��i − �i+N/2 + ��

− 3 cos
�i +
�N/2 − 1��

n
�

�cos
 �N/2 + 1��
N

− �i+N/2��� , �11�

where N+ i= i.
After having minimized this energy with respect to �i, we

obtain the following minimum values: �i=
�
N +�l, l�Z.

These values of angles mean that ferroparticle magnetic mo-
ments are aligned tangentially to the circle which an ideal
ring is based on.

Having in mind that particles are in a close contact, the
expression for the ideal ring energy in the ground state can
be written as

UR�N� = −
m2

d3 N sin3
�

N
�

�	 �
k=1

��N−1�/2� cos
�k

n
�2

+ 1

sin
�k

N
�3 +

1

2
mod�N + 1,2�� .

�12�

Here, � · � stays for the integer part of the ratio in brackets and
mod�N+1,2� denotes the residue of division. In the same
manner we did it for a chain, the asymptotic behavior of the
ring energy for large values of N can be calculated. It has the
following simple form:

UR
as�N� = − 2

m2

d3 N
�3� . �13�

The deviation of Eq. �12� from the asymptote �Eq. �13�� is
presented in Fig. 4 �solid line�. This expression has the form

Pra�N� =
UR�N�
UR

as�N�
100. �14�

It is seen that the percentage deviation is higher than that for
chains �Fig. 3, solid line�, but it still becomes smaller than
5% for rings larger than ten particles. Analogously to the
asymptotic chain energy presented in Eq. �5�, the asymptotic
ring energy has the form of a doublet energy −2m2 /d3 mul-
tiplied by the linear function of N. The angle between neigh-
boring magnetic moments is �as calculated above� 2� /N, in
the limit of large N and it goes to zero, and the ring becomes
locally straight. This expression is close to the formula ob-
tained by Jund and coauthors �18� �expression �5�, page
3050�, however, similar to the case of chain energy, it allows
us to avoid the usage of fitting parameter. Here, it is also
possible to compare the error of the nearest-neighbor ap-
proximation given by the following formula,

UR
nn�N� =

m2

d3 N�cos
2�

N
� − 3 cos2
�

N
�� , �15�

to the total ring energy from Eq. �12�. The comparison is
presented in Fig. 4, where the following ration is plotted in
dashed line:

Prn�N� =
UR

nn�N�
UR�N�

100. �16�

The discrepancy between two energies behaves similar to the
one observed for chains �see Fig. 3, dashed line� and satu-
rates at the value of around 16%. It is also seen that unlike
the chain energy, the nearest-neighbor approximation for
ideal rings gives an error larger than 10% even for the small-
est rings.

C. Embedded rings

The next structures observed in simulations were two em-
bedded rings. Analyzing simulation results, we found that
both rings are based on regular polygons �similar to a single
ring� with the common center, and the magnetic moments are
aligned tangentially, however, the direction of the moments
in two rings could be both parallel and antiparallel. In order
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FIG. 4. The percentage deviation of the precise and asymptotic
�expression �14�, solid line� and precise and nearest-neighbor �ex-
pression �16�, dashed line� expressions for the ideal ring energy as
functions of N �the total number of particles per chain�.
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to analyze the energy of embedded rings, the analytic expres-
sion as a function of ring sizes and the mutual orientation of
moments is built below.

The notations adopted in the section are reflected in Fig.
2�c�: n is the number of particles in an outer ring, k denotes
the number of particles in an inner ring, and R1 and R2 are
the radii of the inner and outer rings, correspondingly. The
angle 
� �0, . . . ,2� /n� shows the initial shift of the inner
ring from the outer one, � is the angle between the polygon
side and particle magnetic moment in the inner ring, and,
finally, � is the angle analogous to � in the outer ring.

The magnetic dipole-dipole interaction between every
pair of particles has to be calculated. In order to do that, the
functional form of the Udd�i , j� for arbitrary particles i and j
is needed. The energy of a single ring is known from Sec.
III B, so, the attention will be focused on the interring inter-
action. Let us introduce a new function li,

li = �
2�i − 1��
k

− 
�/
2�

n
�� ,

where � · � denotes an integer part of the value enclosed in
square brackets. The value of the function li gives the num-
ber of particles from the outer ring which fit into the angle
between the first and the ith particle of the inner ring. Thus,
the angle between ith particle of the inner ring and the clos-
est particle of the outer ring is given by 
i,


i = −
2�i − 1��

k
+ 
 +

2��li + 1�
n

, i � 1,

with 
1=
. The number of outer ring particles which belong
to the “right” semiplane, restricted by the line based on the
displacement vector of the inner ring ith particle �see Fig.
2�c��, can be calculated as follows:

pi = ��� − 
i�/
2�

n
�� + 1.

Here, the square brackets �as above� denote an integer part of
the enclosed number. The distance between the inner ring ith
particle and the outer ring jth particle is

Rj = �R1
2 + R2

2 − 2R1R2 cos�2�j − 1��
n

+ 
i��1/2

.

The angle between the magnetic moment of the inner ring ith
particle and the displacement vector connecting the inner
ring ith particle with outer ring jth particle can be presented
in the following conditional form:

� +
�

2
−

�

k
+ arccos
Rj

2 + R1
2 − R2

2

2RjR1
� if i = 1, . . . ,pi,

� +
�

2
−

�

k
− arccos
Rj

2 + R1
2 − R2

2

2RjR1
� if i = pi + 1, . . . ,k .

The analogous conditional form can be written for the angle
between the jth magnetic moment �outer ring� and the ij
displacement vector,

− � −
�

2
+

�2j − 1��
n

+ arccos
Rj
2 + R1

2 − R2
2

2RjR1
� + 
i

if i = 1, . . . ,pi,

− � −
�

2
+

�2j − 1��
n

− arccos
Rj
2 + R1

2 − R2
2

2RjR1
� + 
i

if i = pi + 1, . . . ,k .

The only angle which still has to be defined is the angle
between magnetic moments of the inner ring ith particle and
outer ring jth particle. Its value also depends on the particle
i position,

� + � −
�

k
−

�2j − 1��
n

+ � − 
i if i = 1, . . . ,pi,

− � − � +
�

k
+

�2j − 1��
n

− � + 
i if i = pi + 1, . . . ,k .

Finally, to obtain the total interring magnetic dipole-
dipole interaction, we have to sum up all pair interactions,

UER
ir,G =

m2

d3 �
i=1

k ��
j=1

pi 1

Rj
3�− cos�� + � −

�

k
−

�2j − 1��
n

− 
i�
+ 3 sin
Aj −

�

k
+ ��sin�Aj +

�2j − 1��
n

− � + 
i��
+ �

j=pi+1

n
1

Rj
3�− cos�� + � −

�

k
−

�2j − 1��
n

− 
i�
+ 3 sin
− Aj −

�

k
+ ��

�sin�− Aj +
�2j − 1��

n
− � + 
i��� , �17�

where Aj =arccos��Rj
2+R1

2−R2
2� /2RjR1�.

In case of antiparallel orientation of moments in the rings,
Eq. �17� can be simplified,

UER
ir =

m2

2d3�
i=1

k

�
j=1

n
1

Rj
3�cos
 �2j − 2��

n
+ 
i�

− 3 cos
2Aj + sgn�pi − j�� �2j − 2�
n

� + 
i��� .

�18�

Here, sgn� · � is a regular sign function, only it is equal to 1,
when the argument is equal to 0. In the case of parallel
orientation of the moments in the rings, the interring interac-
tion has the same form as in Eq. �18� but has an opposite
sign.
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D. Rings side by side

The last structure observed in computer simulations was
composed of two rings side by side. In this case, we can also
use the energy of single rings so that only the interring in-
teraction has to be calculated. The notations are shown in
Fig. 2�d�. There are n particles in the left ring, which radius
is R1, and the right ring with radius R2 contains k particles.
There are two mutual shifts of the rings: 
1 is the initial angle
between the displacement vector of the first particle in the
left ring and the line, connecting the ring centers, and the
analogous angle for the right ring is denoted by 
2. Similarly
to Sec. III C, every particle pair magnetic dipole-dipole in-
teraction has to be calculated. Let � and � be the angles
between magnetic moment and the polygon side in the left
and right rings, respectively. The number of particles in the
left ring that are situated above the line which connects ring
centers is denoted via p1= ���−
1� / � 2�

n ��+1 and the corre-
sponding value in the right ring is p2= ���−
2� / � 2�

k ��+1. In
both expressions square brackets denote an integer part of
the enclosed number. It is easy to calculate the angles be-
tween ith particle displacement vector in the left ring �jth
particle displacement vector in the right ring� and the line
which connects ring centers. They are


1i = 	
2�i − 1��

n
+ 
1 if i � p1

2� − 
2�i − 1��
n

+ 
1� if i � p1
�

and


2j = 	
2�j − 1��

k
+ 
2 if j � p2

2� − 
2�j − 1��
k

+ 
2� if j � p2.�
The distance between ring centers is a, the distance from

the left ring center to the ith particle is l1i, and the corre-
sponding distance calculated for the right ring is l2j. They
can be expressed as follows:

l1i = �R1
2 + a2 − 2R1a cos 
1i�1/2,

l2j = �R2
2 + a2 − 2R1a cos 
2j�1/2.

The angle between a and l1i has the form

�i = arccos
 l1i
2 + a2 − R1

2

2l1ia
� .

These calculations allow us to write down the distance be-
tween arbitrary particles i and j from the left and the right
rings, respectively,

Rij
2 = �R2

2 + l1i
2 − 2R2l1i cos�
2j − �i� if �i � p1 and j � p2� or �i � p1 and j � p2�

R2
2 + l1i

2 − 2R2l1i cos�
2j + �i� if �i � p1 and j � p2� or �i � p1 and j � p2� .
�

The first condition means that particles i and j are in the same semiplane with respect to the line which connects ring centers;
the second expression holds true if the particles are in the different semiplanes with respect to the latter line. The angle between
Rij and the radius of the left ring is �ij, and the analogous angle calculated for the right ring is �ij. The angle between the
magnetic moment of particle i of the left ring and the vector which connects this particle with particle j in the right ring has
a complicated conditional form and is given below:

Mij
1 =

3�

2
− �ij −

�

n
+ �

�i� if particles belong to the same semiplane with respect to the line connecting ring centers and, in addition, if particles lie
above this line, the angle between the line and l2j has to be larger than 
1, but if particles lie below the center-center line, the
angle between this line and i− j vector �l2j� should be smaller than 
1.

�ii� if particles lie in different semiplanes with respect to center-center line and, in addition, if the particle in the left ring is
situated below the center-center line, the difference between � and the sum of 
1i with the angle between a and l2j has to be
positive; this sum has to be negative otherwise.

Via A1 the angle between a and l2j is denoted. The above listed conditions can be formalized mathematically,
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Mij
1 =

⎩
⎪
⎨
⎪
⎧

3�

2
− �ij −

�

n
+ � if 
1i − A1 � 0 and i � p1 and j � p2

3�

2
− �ij −

�

n
+ � if � − 
1i − A1 � 0 and i � p1 and j � p2

3�

2
− �ij −

�

n
+ � if � − 
1i − A1 � 0 and i � p1 and j � p2

3�

2
− �ij −

�

n
+ � if 
1i − A1 � 0 and i � p1 and j � p2

−
�

2
+ �ij −

�

n
+ � if 
1i − A1 � 0 and i � p1 and j � p2

−
�

2
+ �ij −

�

n
+ � if � − 
1i − A1 � 0 and i � p1 and j � p2

−
�

2
+ �ij −

�

n
+ � if � − 
1i − A1 � 0 and i � p1 and j � p2

−
�

2
+ �ij −

�

n
+ � if 
1i − A1 � 0 and i � p1 and j � p2. ⎭

⎪
⎬
⎪
⎫

Introducing A2 as the angle between a and l1i, the expression for Mij
2 �which stands for the angle between the magnetic

moment of jth particle of the right ring and i− j vector� can be obtained in the following conditional form:

Mij
2 =

⎩
⎪
⎨
⎪
⎧

3�

2
− �ij +

�

k
− � if 
2j − A2 � 0 and i � p1 and j � p2

3�

2
− �ij +

�

k
− � if � − 
2j − A2 � 0 and i � p1 and j � p2

3�

2
− �ij +

�

k
− � if � − 
2j − A2 � 0 and i � p1 and j � p2

3�

2
− �ij +

�

k
− � if 
2j − A2 � 0 and i � p1 and j � p2

−
�

2
+ �ij +

�

k
− � if 
2j − A2 � 0 and i � p1 and j � p2

−
�

2
+ �ij +

�

k
− � if � − 
2j − A2 � 0 and i � p1 and j � p2

−
�

2
+ �ij +

�

k
− � if � − 
2j − A2 � 0 and i � p1 and j � p2

−
�

2
+ �ij +

�

k
− � if 
2j − A2 � 0 and i � p1 and j � p2. ⎭

⎪
⎬
⎪
⎫

The values of � and � in case of ideal rings, whose mag-
netic moments are aligned tangentially to the circles on
which the ideal rings are based, can be written as �=� /n
and �=� /k. In this case, magnetic moments of the closest
particles �see Fig. 2�d�, particle filled with gray� are antipar-
allel. By adding � to one of the angles �� or ��, the orien-

tation of magnetic moments in two rings side by side might
be switched to the parallel one, and the interring interaction
energy changes the sign.

Using the notations listed above, the angle between mag-
netic moments of ith and jth particles is the sum Mij =Mij

1

+Mij
2 .
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Finally, the interring energy can be calculated as

USR
G =

m2

d3 �
j=1

k ��
i=1

n
1

Rij
3 �cos Mij − 3 cos Mij

1 cos Mij
2 �� .

�19�

Having obtained the complete set of energies, we proceed
with comparing them and studying the peculiarities of differ-
ent structures.

IV. COMPARISON OF DIFFERENT GROUND STATE
STRUCTURES

In the previous sections we identified structures that might
fulfill the ground state of a ferroparticle monolayer. They
were a chain, a single ring, two embedded rings, and two
rings side by side. We also calculated analytically the mini-
mum energies of these structures. The final steps of this
study are to compare the energies and to make a profound
conclusion on the ground state structure. In this section,
when the values of energies are provided in Joules, the ref-
erence model ferrofluid is composed of 10 nm magnetite
particles with the saturation magnetization of the bulk equal
to 480 kA/m.

The comparison starts with Fig. 5, where the energies �in
Joules� of a rigid rodlike chain �solid line� and of an ideal
ring �dashed line� are plotted as functions of particle number
N. Up to four particles, the chain is energetically preferable
to a ring, then, the curves intersect, the ring becomes more
advantageous, and the energies keep decreasing linearly with
N, preserving a constant difference. The value of this differ-
ence, namely, 3m2�2 /d3, can be found easily from Eqs. �5�
and �13�. Open symbols in this figure correspond to the re-
sults of simulations and are indistinguishable from the theo-
retical results: circles are obtained for a chain; rhombuses
represent a ring. At this stage �for systems larger than four
particles�, the chain is to be excluded from consideration as a
candidate for the ground state topology.

In Fig. 6 we present the relative energy of two embedded
rings as a function of k /N �the number of particles in an

inner ring divided by the number of particles in both rings�.
As a zero level in this plot we take the energy of a single ring
made of N particles and normalize embedded ring energy by
its value for k=3. Here, four different curves are plotted and
compared to the results of simulations: solid line �theory�
and circles �simulations� describe embedded rings with the
total number of particles N=25; dashed line �theory� and
rhombuses show the energy for N=36; N=49 is given by
theoretical dashed-dotted line and simulation squares; and to
plot the energy for N=100 we use dotted line �theory� and
triangles �simulations�. All curves �together with symbols�
show the same universal behavior. Starting obviously from
zero, they grow rapidly to create a very high potential barrier
for k=3 and then go to zero up to k /N�0.42, where we
observe a sharp jump. This ratio goes to 1/2 �with growing
N� and corresponds to the close contact of inner and outer
rings, meaning that the barrier is caused by the steric repul-
sion simply. However, the energy keeps decreasing when the
rings approach the close contact. Let us investigate the inter-
ring interaction in detail. We have shown that the mutual
orientation of moments changes the sign of the interring en-
ergy from minus �antiparallel orientation� to plus �parallel
orientation�. The point is this flip does not affect the total
energy strongly, as the interring interaction energy value is
approximately 100 times smaller than the sum of interaction
energies inside both rings. Thus, for example, for embedded
rings made of 18 particles with 6 particles in the inner ring
�which is the most advantageous configuration for the em-
bedded rings of 18 particles�, for antiparallel alignment of
moments the total reduced �i.e., divided by 2m2 /d3� energy
of two embedded rings is −40.45; within this energy the
interring energy contribution has the value of −0.39. In case
of parallel orientation of magnetic moments in embedded
rings, these reduced energies are correspondingly −39.68 and
0.39. Besides being small, the interring interaction depends
strongly on the ratio of particles in the inner and outer rings.
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FIG. 5. Energy of the structure �in Joules, for 10 nm particles
made of magnetite�. Theoretical curves: solid line—chain energy;
dashed line—ring energy. Simulation data: circles and rhombuses
for a chain and a ring, respectively.
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FIG. 6. The relative energy of two embedded rings as a function
of k /N. As a zero level the energy of a single ring made of N
particles is taken. The energy is normalized by its value for k=3.
Solid line �theory� and circles �simulations� describe embedded
rings with the total number of particles N=25; dashed line �theory�
and rhombuses show the energy for N=36; N=49 is given by the-
oretical dashed-dotted line and simulation squares; and to plot the
energy for N=100 we use dotted line �theory� and triangles
�simulations�.
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Thus, it is different from zero for particular ratios only. We
plot the reduced interring interaction for different N �total
number of particles in both rings� in Fig. 7. All curves are
plotted versus the number of particles in an inner ring �k�.
We present theoretical curves only to avoid the overloading
of the picture; simulation data for this plot agree with our
theory. Solid line corresponds to N=20, dashed line depicts
the interring interaction for the system with N=25, and
dashed-dotted and dotted lines describe the latter interaction
for embedded rings composed of N=36 and N=49 particles,
respectively. This sawlike shape can be explained in terms of
symmetry compensation of pair interactions. When the sym-
metry is broken, we observe a nonzero interaction. It is
worth saying that when N goes to infinity, plots in Figs. 6
and 7 do not give an irrefragable answer to the main question
of the comparison, namely, we cannot conclude whether the
energies of embedded rings coincide �become lower� with
�than� the energy of a single ideal ring. To clarify this point,
we evaluated analytically the limit,

lim
N→�

�UR�N� − �UR�n� + UR�k� + UER
ir �� = − lim

N→�
UER

ir ,

�20�

where n+k=N. The inequality UER
ir �0 if holds true for any

N, means that a single ring has the energy lower than the one
of two embedded rings. It is not needed, though, to construct
the estimate for the complete expression of UER

ir because the
interaction of the inner ring �radius R1� particles with the
particles from outer ring �radius R2� is symmetric. So, with-
out loss of generality, we can take into account the interac-
tion between one randomly chosen particle from the inner
ring with every particle from the outer ring. One can notice
that the sum from Eq. �18� has the following property: except
for the first term which is negative, the sum of terms with
indices j and n+2− j for j�2 is positive. Thus, it is suffi-
cient to find at least one combination of such terms which
compensates the negative contribution of the first one. The
sufficient condition will vary slightly for odd and even n

�number of particles in an outer ring, here, we used the no-
tations adopted in Sec. III C�,

sin�Aj� � 1 −
Rj

3

2�R2 − R1�3 if n is odd,

sin�Aj� � 1 −
Rj

3

2�R2 − R1�3 +
Rj

3

2�R2 + R1�3 if n is even.

�21�

Both conditions can be fulfilled if, for example, the term
with index j=2 is taken. It means that the energy of embed-
ded rings is always higher than the energy of a single ring,
but the point is, that once the embedded rings are formed in
simulations, they have to overcome a very high energy bar-
rier to become a single ring, so very long simulations are
needed to rich the single ring structure.

To verify finally the ground state structure of a monodis-
perse ferrofluid monolayer, we have to analyze the last struc-
ture, namely, two rings situated side by side. It is obvious
that two rings try to be as close as possible to each other. In
this case they guarantee the optimum for the dipolar interac-
tions between particles in different rings by means of reduc-
ing the distance. In Fig. 8, we plot the energy �in Joules� of
two rings side by side versus the number of particles in the
left ring. Solid line �theory� and circles �simulations� corre-
spond to N=20; dashed line �theory� and rhombuses �simu-
lations� depict the energy of the rings side by side for the
system with N=30; and dashed-dotted �theory� with squares
�simulations� and dotted �theory� with triangles �simulations�
lines describe the latter total energy for N=40 and N=50
particles, respectively. It is clearly seen that rings side by
side try to make the number of particles in the right and left
rings equal. The detailed analysis of the interring interaction
is provided in Table I with configurations of neighboring
particles given in Fig. 9.

In Table I the reduced energy is presented for N=20 and
n=10 �number of particles in the left ring�. The top line in
Table I contains numbers of configurations given in Fig. 9.
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FIG. 7. Reduced interring interaction energy for different N ver-
sus the number of particles in an inner ring �k�. Solid line corre-
sponds to N=20, dashed line depicts the interring interaction for the
system with N=25, and dashed-dotted and dotted lines describe the
latter interaction for embedded rings composed by N=36 and N
=49 particles, respectively. Only the theoretical data are presented.
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FIG. 8. The energy �in Joules, for 10 nm particles made of
magnetite� of two rings side by side versus the number of particles
in the left ring. Solid line �theory� and circles �simulations� corre-
spond to N=20; dashed line �theory� and rhombuses �simulations�
depict the energy of the rings side by side for the system with N
=30; and dashed-dotted �theory� with squares �simulations� and dot-
ted �theory� with triangles �simulations� lines describe the latter
total energy for N=40 and N=50 particles, respectively.
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The lowest possible energy of rings side by side corresponds
to the antiparallel orientation of moments �II, third column,
Table I� when the closest particles are side by side. Even for
this configuration the total energy �second line, Table I� is
approximately 200 times lower than the interring interaction
�third line, Table I�. So, similarly to the case of the embedded
rings, the interring interaction of two rings side by side is
extremely weak, but it is never zero. The latter fact can be
shown analogously to the case of embedded rings; we do not
provide this proof here.

To make the picture complete, we plot the energies of the
most advantageous structures from each class divided by the
energy of an ideal ring as a function of the total number of
particles N in Fig. 10. The energy ratio for an ideal rodlike
chain is plotted with solid line �theory� and circles �simula-
tions�. The value of unity for an ideal ring is depicted by
dashed line. Squares together with dashed-dotted line show
the energy ratio for embedded rings at close contact with
antiparallel orientation of magnetic moments. The energy ra-
tio for two rings side by side in configuration II �see Fig. 9
and Table I� is presented with theoretical dotted line, and
triangles represent simulation data. Thus, the single ring is
the ground state structure in a ferrofluid monolayer. How-
ever, both embedded rings and rings side by side provide
very close but anyway local minima of the energy. As for the
chains, they appear to be a ground state structure for systems
composed of three and less particles �see Fig. 5�.

V. CONCLUSION

By means of Monte Carlo simulations, taking into ac-
count the magnetic dipole-dipole interaction between all par-
ticles in the system, we found different topological structures
which are likely to exist at low temperatures in monolayers:
chains, rings, embedded rings, and rings side by side. Our
simulations demonstrated that at low temperatures the par-

ticle magnetic moments fluctuated predominantly within the
plane of the monolayer. Additionally, rings were proved to be
based on regular polygons. The reduction in spatial degrees
of freedom made an analytical treatment possible by which
we computed and minimized analytically the energy of each
structure from the list above. At low temperatures, predict-
ably, the minimal energy configuration for the chain is the
rodlike configuration of moments, and for an ideal ring the
minimal energy configuration corresponds to the tangential
alignment of particle magnetic moments. Both, for chains
and rings, the energies decrease linearly with the number of
particles. Looking at the asymptotic behavior one can con-
clude the following:

�i� The approximation of only considering nearest neigh-
bors is valid for calculating chain energies. The precision of
the latter approximation is higher than 5% for chains shorter
than 5; for industrial ferrofluids particles are usually 10–15
nm in diameter and, if aggregating, form chains of length
2–4, which support the approximation of the nearest-
neighbor interaction. However, the same nearest-neighbor
approach fails to describe the energy of a ring.

�ii� The ring becomes the energetically favorable configu-
ration for systems larger than four particles. When the total
number of particles in a system is large enough, the differ-
ence between chain and ring energies becomes constant and
equals 3m2�2 /d3.

Our theoretical investigations supported by the results of
computer simulations of embedded rings and rings side by
side revealed several peculiarities:

TABLE I. Values of reduced energies for rings side by side �see Eqs. �12� and �19��.

Conf. I II III IV V VI

USR�20�+2UR�10� −45.16 −45.73 −45.71 −45.18 −45.18 −45.71

USR�20� 0.28 −0.28 −0.27 0.27 0.26 −0.26

FIG. 9. �Color online� Possible configurations of neighboring
particles in the rings side by side. Corresponding energies are pre-
sented in Table I. Configurations are numbered in the legend with
Roman numerals from I to VI.
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FIG. 10. Energy ratios �the energy of the structure divided by
the energy of an ideal ring� of the most favored structures from each
class as a function of the total number of particles N. The ratio for
an ideal rodlike chain is plotted with solid line �theory� and circles
�simulations�. The ratio for an ideal ring �namely, exact unity� is
depicted by dashed line. Squares together with dashed-dotted line
show the ratio for embedded rings at close contact with antiparallel
orientation of magnetic moments. The ratio for two rings side by
side in configuration II �see Fig. 9 and Table I� is presented with the
theoretical line and triangles represent simulation data.
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�i� Rings in the latter structures tend to be as close as
possible to each other. Two rings side by side have the same
size, and in embedded rings the inner ring contains the larg-
est number of particles possible.

�ii� The energies of embedded rings and rings side by side
are very close to the energy of an ideal ring but remain
higher even in the limiting case �when the number of par-
ticles goes to infinity�. This proximity explains why those
structures once formed in simulations are extremely stable.
The other reason to observe these structures in simulations is
the potential barrier which embedded rings have to overcome
to collapse into a single ring �see Fig. 6�. This very potential
barrier probably led the authors of the work �37� to conclu-
sion that embedded rings were the most probable structures
for large coupling constants and large numbers of particles.
On the other hand, here we study the ground state, where,
unlike the abovementioned work �37�, entropy does not play
any part. Thus, for large coupling constants we believe our
findings to be valid.

�iii� The absolute values of inter-ring interactions in both
structures are two orders of magnitude lower than the values
of the total energies. The inter-ring energy minima are al-
ways reached for the antiparallel orientation of magnetic mo-
ments.

The combination of computer simulations and analytical
studies proved that the ideal single ring is the ground state
structure for identical magnetic particles in a monolayer. For
less than four particles the ground state structure is the rod-
like chain. For these conclusions it is important that the plane
of monolayer is infinite in our model, i.e., concentration de-
pendencies are not considered here.

Computer experiments, besides helping to classify the
structures and verify theoretical results, put forward several
recommendations for simulated annealing. Repeating our
simulations, we found that there was a certain temperature
interval TH , . . . ,TL, TH�TL for which the equilibration pro-
ceeded efficiently and whose structures exerted a crucial in-
fluence on the structure observed at lower temperatures. Ba-
sically, no matter how fast the temperature was lowered
before reaching a certain value �T�TH�, it did not influence
the resulted structure nor the latter structure depended on the
procedure for temperatures below that region �T�TL�. In
other words, structures formed within this temperature range
would remain the same even if further simulations are very
long. The physical reason for the latter temperature interval
to exist is clear: above TH the dipolar interactions are too

weak to hold the structures, below TL the fluctuations are too
low to move the system from the local �absolute� minimum
of the energy. To determine TH and TL an additional com-
puter experiment was carried out. We took the ideal struc-
tures �a rodlike chain, a ring, embedded rings, and rings side
by side� at very low temperatures �in our simulations it cor-
responded to the value of coupling constant m2 /kT�64� and
started to heat the system up. The chain of 64 particles �the
structure known to have the energy higher than a ring� folded
to a ring �the ground state structure� at m2 /kT�10. Further
heating destroyed the ring at m2 /kT�5. Thus, the most im-
portant interval for simulated annealing of monodisperse
magnetic dipoles in the plain is roughly given by m2 /kT
range �5,10�, which for magnetite 10 nm particle corresponds
to TH�90 K and TL�45 K �in comparison, for magnetite
particles of 18 nm with 2 nm nonmagnetic layer this interval
is TH�260 K and TL�140 K�. In nearly the same m2 /kT
range �see Fig. 1� the fluctuations of magnetic moments in
the out of plain direction drop abruptly. This temperature
interval has to be handled with the highest precision. The
existence of this temperature range allows us to reduce the
computational time by one order of magnitude. The final
recommendation proposed here is the following: if there are
initial configurations that are likely candidates for the ground
states, it is much faster to heat the system first and to find the
interesting temperature interval; a further analysis can be
safely carried out for this interval only.

The ability to perform exact analytical energy minimiza-
tion on configurations relied on the absence of the third spa-
tial dimension, meaning in three dimensions it will be prob-
ably impossible to carry out the same procedure. A
simplification adopted in the present work is the monodisper-
sity of our suspension and the absence of an external mag-
netic field which are not addressed in this paper. These prob-
lems will be addressed in future investigations, and we
believe that the method of ground state structure analysis
proposed in the present paper will serve as a helpful tool for
future investigations.
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