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Orientational ordering in sheared inelastic dumbbells
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Using even driven simulations, we show that homogeneously sheared inelastic dumbbells in two dimensions
are randomly orientated in the limit of low density. As the packing fraction is increased, particles first tend to
orient along the extensional axis, and then as the packing fraction is further increased, the alignment shifts
closer to the flow axis. The orientational order parameter displays a continuous increase with packing fraction
and does not appear to exhibit a universal scaling with elongation. Except at the highest packing fractions, the
orientational distribution function can be reconstructed with only the first coefficient of the Fourier expansion.
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I. INTRODUCTION

Molecular shape has a strong influence on the structural
and dynamic properties of molecular fluids. There is always
some degree of local orientational ordering and, for suffi-
ciently elongated molecules, long-range orientationally or-
dered phases, such as the nematic phase, appear in the phase
diagram. These phases may occur even in hard particle sys-
tems with no attractive interactions and can be explained by
entropy maximization arguments. The effect of particle
shape on the behavior of granular systems is, in contrast,
largely unexplored. Granular systems are, of course, funda-
mentally different from their thermal (equilibrium) counter-
parts in many ways. They are composed of inelastic par-
ticles, in which energy is dissipated at each collision. In
order to maintain the flow, a source of energy, such as a
shear, must be present.

Recently, a density dependent nematic to smectic-like
transition was observed for vibrated granular rods [1]. Also,
a density-dependent isotropic-nematic transition, consistent
with theory and simulation, has been found for vibrated rod-
shaped granular materials confined to quasi-two-dimensional
(2D) containers [2]. Narayan e al. [3] presented experimen-
tal evidence for giant number fluctuations in a monolayer of
fluidized rods, although similar behavior has also been ob-
served in systems of spherical particles [4]. All of these stud-
ies have been carried out in boundary-driven systems, where
the energy supply is due to vibration at the boundaries. It is
of interest to investigate other instances of granular systems
composed of nonspherical particles, and sheared systems are
of particular interest due to their relevance for numerous ap-
plications.

It has long been known that shear tends to align mol-
ecules. Indeed, Maxwell first studied the phenomenon over a
century ago [5] by observing the optical bifringence that re-
sults from the alignment. Doi proposed a kinetic theory for
the orientation of rod-like polymers in a homogeneous flow
field [6], which was extended to investigate the effect of flow
on the isotropic-nematic phase transition [7]. There are also
hydrodynamic theories of nematic systems [8,9] and non-
equilibrium molecular dynamics simulations of linear [10]
and short chain molecules [11,12] and nematic fluids [13]
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under shear. As intuitively expected, shear tends to align the
molecules along the extensional axis, and the orientational
probability distribution shows a maximum along the exten-
sional axis and a minimum along the compressional axis.

In these molecular systems, significant alignment is ob-
tained only at very high-shear rates, or very close to phase
boundaries. This can be rationalized as follows. The orienta-
tional effect of shear is due to the difference in the mean
molecular velocities across a distance comparable to the mo-
lecular length scale in liquids. This tendency to orient is
disrupted by the thermal fluctuating velocities of the mol-
ecules. The thermal velocities of (large) molecules are typi-
cally in the range of 100 m/s at room temperature. In con-
trast, even at very high-strain rates of 10—100 s~ the
product of the particle diameter and the strain rate is at most
of the order of 107> m/s (a slightly different argument using
mean free paths should be applied to gases). Therefore, the
alignment effect due to shear is likely to be small in practical
applications, unless the system is already close to a nematic
transition in liquids, or unless the flow speed is close to the
speed of sound in gases.

Granular systems are crucially different from molecular
systems, however, in that the shear rate and fluctuating ve-
locity are no longer independent, but are related by an energy
balance. The consequence is that shear rate can never be
considered small unless the system is nearly elastic [14].

In contrast to the extensive body of work on sheared mo-
lecular systems, there are few studies of granular systems
composed on anisotropic particles under shear, despite their
acknowledged importance in industrial settings. In a recent
article, Cleary [15] used the discrete element method (DEM)
to explore the effect of particle shape on flow in a Couette
shear cell. The particle geometry was described by a super-
quadric, xV+(y/A)N=s" where A is the aspect ratio of a par-
ticle with semimajor axis s and N characterizes the “blocki-
ness” of the particle. The shear was induced by moving walls
and a linear spring dashpot was used to model the normal
and tangential forces during the particle-particle and particle-
wall collisions.

Here, we study the effect of boundary driven shear on the
orientational alignment of a two-dimensional system of in-
elastic dumbbells. In contrast to Cleary’s study, we use hard
particles that undergo instantaneous collisions. Also, instead
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of physical walls we generate shear with the periodic bound-
aries, which leads to a homogeneous steady state.

The equilibrium phase behavior of two-dimensional hard
rod fluids is quite subtle. Frenkel and Bates [16] concluded,
however, that short rod systems do not exhibit a nematic
phase, but undergo a transition directly from the solid to an
isotropic phase. We expect this to be the case for the hard
dumbbell system and indeed the results that we obtain are
consistent with the lack of a nematic phase. This allows us to
focus on the effect of shear on the orientational alignment in
the absence of an underlying phase transition. We study how
the dumbbells orient with respect to the flow field in a ho-
mogeneous shear flow, and we investigate the effect of elon-
gation, packing fraction and inelasticity on the degree of
alignment. A future article will discuss the dynamic proper-
ties of the system.

II. COLLISION MODEL AND SIMULATION
METHODOLOGY

Granular flows of hard spherical particles (particles in
which the pair potential is infinite when there is overlap, and
zero otherwise), have been simulated by the event driven
(ED) method. The ED method is used to simulate instanta-
neous collisions between hard particles, where the simulation
proceeds in discrete collision events, instead of the fixed
time intervals used in molecular dynamics for molecules
with continuous potentials. In this procedure, the time re-
quired for the collision of two spherical particles i and j of
diameter D with positions r; and r; and velocities v;, v; can
be obtained by solving the quadratic equation

2.2 2 2
Vljtlj+2(l'u.Vl])tlj+l‘l]—D =0, (1)

where r;;=r;—r; is the separation vector at zero time, V;;
=v;—V; is the relative velocity, and D, the particle diameter,
is the separation of the two particles at collision. Only the
positive real roots ¢;; of the above equation correspond to real
future collisions, and the impending collision among all the
particles is the one that occurs in the shortest time. The for-
mulation of the ED algorithm is considerably simplified by
the fact that Eq. (1) for the collision time is quadratic, which
can be solved quite easily. In the case of nonspherical par-
ticles, however, it is necessary to solve a transcendental
equation for the collision time of the form f(z)=0 rather than
a polynomial equation. The procedure also has to be efficient
and should accurately capture all the collisions that take
place. A standard approach to solving algebraic equations
involves combining the Newton-Raphson method with inter-
val bisection. For the Newton-Raphson method, we also re-
quire the time derivative of the transcendental equation. To
prevent the search for roots being totally open ended, it is
convenient to enclose each particle in a circumscribing
sphere and to seek collisions only while the spheres overlap.
This means solving an equation like Eq. (1) so as to define
the time interval of interest. We are still left with the problem
of locating subintervals of time in which collisions can be
shown either to occur (i.e., in which f(z) changes sign) or not
to occur.

We employ the method of retrospective collision detection
first proposed by Rebertus and Sando [17] and developed by
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Allen et al. [18]. To summarize how this method works, the
configuration is advanced on a regular step-by-step basis,
just as in standard continuous-potential molecular dynamics,
but using free-flight without collision. At the end of each
step, the configuration is examined for overlapping pairs of
molecules. For each overlapping pair, the collision equation
is solved retrospectively to find the time at which collision
should have occurred. The system is rewound to the point of
collision, collision dynamics implemented, and the system is
advanced to the end of the step. The configuration is then
examined again to see if, after this, there is overlap. If such
an overlap is detected the step is immediately abandoned,
and the original configuration is restored. In this occurs the
timestep is halved. If no overlap is detected, the routine goes
on to consider the next colliding pair, and so on through the
whole list. If all the collisions on the list are tackled success-
fully, the system will be moved to next time step. The com-
plicated (although not very time consuming) part consists of
handling multiple overlaps and resolving sequences of (pos-
sibly) inter-dependent collisions occurring within a very
short time of each other. Full details on the simulation pro-
cedure can be found in Allen et al. [18].

The inelastic hard disk model has been used extensively
for spherical particles with a constant coefficient of restitu-
tion. We extended the collision equations to inelastic non-
spherical particles as follows. Consider two dumbbells with
linear velocities v; and v, and angular velocities w; and w,.
Then, the total precollisional relative velocity at contact is,

€=Vin+ @ XTI —wy XTIy, (2)

where v{,=v;—V,. During collision, the components of g,
change such that,

(n- g{z) =—e¢,(n-gp)

(I-nn) - gfz =(I-nn)- g,

where n is the unit vector along the centerline of the two-
sphere segments in the dumbbell that are colliding, and
primed quantities denote values after collision. The param-
eter ¢, is the normal coefficient of restitution. The linear and
angular momentum change of the two particles in a collision
can be written as,

Pi=p; +Ap
P,=p,-Ap
Ji=Ji+r, X Ap
J;=J,-r, X Ap.
where

B —(I+e,)gn'n
2/m+ (v, X )T+ (rp, X n)¥I’

Ap

where [ is the moment of inertia and Ap=nAp. The case
e,=1 corresponds to perfectly smooth elastic particles,
where the component of the relative velocity along the line
joining the centers of the particles is reversed in a collision.
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FIG. 1. (Color online) A dumbbell consists of two fused disks of
diameter D with centers separated by a distance L. The Lees-
Edwards boundary conditions induce a uniform shear in the sense
shown. The orientation of the dumbbell with respect to the x axis is
denoted by 6

The kinetic energy of the particles is unchanged in a collision
for e,=1, while there is a dissipation of energy for ¢, <1.

We generate homogeneously sheared inelastic hard dumb-
bell configurations with a particular L/ D ratio where L is the
distance between the centers of the fused disks of a dumbbell
and D is the diameter of the disk using the event-driven
algorithm described above together with the Lees-Edwards
boundary conditions [19]. The simulation box dimensions
are I, and [, both are of unit length. In our simulation ge-
ometry, x and y are the velocity gradient directions respec-
tively: see Fig. 1. The top and the bottom boxes move with
velocities +U and —U, respectively, with respect to the cen-
tral box. When a particle crosses the top/bottom boundary of
the central box with a horizontal velocity v,, its image enters
through the bottom/top with a horizontal velocity (v.)inage
=v, + U. This induces shear at the top/bottom boundaries of
the central box, which then propagates by collisions into the
central box. For most of the results reported here, the number
of dumbbells used is 216; however, we have checked system
size dependence by carrying out some simulations with four
times the box size and 864 dumbbells, and we find no sig-
nificant variation between the larger and smaller systems.
Some snapshots of the 216 particle systems at different area
fractions are shown in Fig. 2.

If a system of elastic particles is subjected to shear, the
temperature will gradually increase. In order to achieve a

FIG. 2. (Color online) Sample configurations at packing frac-
tions v=0.4 (left) and v=0.8 for coefficient of restitution ¢,=0.8
and L/D=1.0.
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FIG. 3. (Color online) The average velocity v;,=(v,/ 7,) (O),
the scaled area fraction v*=(v/7) (A), the scaled components of the
stress o = (0 / T (), q:},z(a),y/ﬁ),),) (>), 0'2:(0'11/6'11) (0),
as a function of distance across the channel y*=(y/l,) for L/D=1,
¢,=0.8 and for average area fraction v=0.1 (top) and »=0.7 (bot-
tom). Here, [, is the height of the simulation box which has been
divided into ten equal bins, and the over bars represent averages
over the entire box. The dashed line shows the expected linear
velocity profile vy=(y/l,).

steady state, it is necessary to apply a thermostatting method
such as rescaling the velocities between collisions [20]. In a
granular fluid a thermostat is not necessary as energy is dis-
sipated by each collision (e,<1). A steady state is estab-
lished when the rate of energy supply through shear balances
the rate of energy dissipation. Using dimensional arguments
(e.g., [14]), one can show that this leads to

V= C(1 - e)TID?, (3)

where T denotes the mean square of the velocity fluctuations
(the particle mass can be set equal to 1 without loss of gen-
erality), and C is a (dimensionless) function of packing frac-
tion and aspect ratio.

If the system is homogeneously sheared, we expect to
observe a linear velocity profile, v,=yy, where 7y is the shear
rate, in the central box. In addition the area fraction and the
stress tensor are expected to be constant. These dynamical
variables were extracted by dividing the channel into ten bins
of equal width, and averaging over all the particles within
one bin. With this procedure, we average over 500 realiza-
tions for the average value for each bin, and each bin con-
tains about 20 particles on average. Therefore, the averages
are calculated over approximately 10* particles for each data
point across the channel. In the simulations, we find a con-
stant area fraction and a linear mean velocity profile to a very
good approximation, as shown in Fig. 3 for L/D=1.0, e,
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=0.8 and for two different values of the area fraction. All the
components of the stress tensor are constant across the chan-
nel.

III. RESULTS AND DISCUSSION

After an initial relaxation period, we observed a linear
velocity profile with a shear rate y=U/[=5.0. Since there is
no material time scale characterizing the collision, time can
be scaled by the inverse of the strain rate. The only param-
eters affecting the flow dynamics are the length and diameter
of the dumbbells, the packing fraction and the coefficient of
restitution. Furthermore, there should be no modification in
the system dynamics if all times are scaled by the inverse of
the strain rate. We have checked this in the simulations by
increasing the strain rate by a factor of 5, and verifying that
the system dynamics is unaltered. Most of the results re-
ported here are for N=216, although we also increased the
system size by a factor of 4 and observed no significant
changes. We performed approximately 1000 collisions per
particle to allow the system to reach a steady state, followed
by a further 2000 collisions per particle during which we
computed properties. To verify that a homogeneous shear is
present, we plotted velocity profiles as a function of height of
the simulation box for all the parameter ranges described in
this work. All were found to be linear. The stress tensor
components, granular temperature and density are also uni-
form throughout the system. The variation of these quantities
with inelasticity, area fraction and L/D ratio will be reported
in a separate publication. Here, we focus on the order param-
eter and the orientational distribution. The geometry of a
dumbbell and the coordinates used to specify its position and
orientation are shown in Fig. 1. Sample snapshots are shown
in Fig. 2.

We investigated the orientational order in the system by
calculating the matrix

1 N
]T/ Z] (Zuaiul&‘ - 5&,3) N (4)

Qa,B =
where u,; denotes the component « of the unit vector speci-
fying the direction of the i"" dumbbell and the angular brack-
ets denote an average over a (large) number of configurations
at equally spaced time intervals. The matrix Q has two ei-
genvalues, =S, the largest of which corresponds to the order
parameter. In a perfectly orientationally ordered system S
=1, while in the isotropic phase (for an infinite system) S
=0. First we examine the order parameter as a function of
area fraction for different L/D ratios. The order parameter as
a function of inelasticity and elongation is shown in Figs. 4
and 5, respectively.

We see from Figs. 4 and 5 that there is a continuous
increase in the ordering as the elongation is increased, or the
coefficient of restitution is decreased. Figure 6 shows the
order parameter as a function of packing fraction for three
different system sizes (N=216, 432, and 864). The ordering
increases with increasing packing fraction and it is also ap-
parent that there is little, if any, effect of system size.

The increase in ordering with packing fraction is easy to
understand on the basis of packing constraints. The increase
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FIG. 4. (Color online) The order parameter S as a function of
(1 —ei) for L/D=1.0 and for packing fractions v=0.3 (O), v=0.4
(A), v=0.5 (V), v=0.6 (), v=0.7(X), The curves show best fits
of the form S=B(1—ei)”2.

in ordering with inelasticity can be understood as follows.
For a steady shear flow, there is a balance between the rate of
production of fluctuating energy due to mean shear and the
rate of dissipation due to inelastic collisions. From the en-
ergy balance condition, Eq. (3), we see that if we decrease
the coefficient of restitution at constant packing fraction and
aspect ratio, the fluctuating velocity decreases at constant
shear rate. Since velocity fluctuations tend to randomize the
system whereas the mean shear tends to align particles in the
flow direction, a decrease in the coefficient of restitution in-
creases ordering in the system.

We can deduce from Eq. (3) that the limit e,— 1 corre-
sponds to an elastic system with no shear. An interesting
feature of Fig. 4 is that the order parameter decreases to zero
in this limit. Therefore, we conclude that for all the L/D
ratios and packing fractions studied here, there is no sponta-
neous symmetry breaking and order/disorder transition in the
absence of shear, an observation that is consistent with a
theoretical analysis of the planar dumbbell fluid [21] and also
with simulation studies of the 2D spherocylinder fluid [16], a
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FIG. 5. (Color online) The order parameter S as a function of
L/D for ¢,=0.80 and for packing fractions v=0.3 (O), v=0.4 (A),
v=0.5 (V), v=0.6 (0), v=0.7(X). v=0.8(+). The curves show
best fits of the form S=A(L/D).
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FIG. 6. (Color online) The order parameter S as a function of
packing fraction v for different system sizes: N=216 (O), N=432
(A), N=864 (V). L/D=1 and ¢,=0.8.

closely related system for L/D = 1. The increase in ordering
that we observe is due solely to the imposition of a shear
flow.

Based on the competition between the shear, which tends
to align particles, and the fluctuating velocity, which random-
izes orientation, we would expect S to be a function of the
variable y¥D/T"2. From the energy balance, Eq. (3), we ex-
pect that Se(1—e2)2. For packing fractions of less than
about 0.5 this expression does provide a good representation
of the simulation data for S: See Fig. 4. At higher packing
fractions, significant deviations from linearity are observed.

The curves in Fig. 5 are fits of S=A(L/D), which is the
expected behavior for small L/D if S has an analytic depen-
dence on L/D. This linear fit describes the behavior for pack-
ing fraction up to about 0.5. However, at higher packing
fractions beyond about 0.5, curvature is evident.

While the order parameter S gives an averaged estimate of
the alignment, more detailed information is provided by the
orientational probability distribution function, P(6#) (where
9=tan‘1(uy/ux) is the angle shown in Fig. 1) and P(6)d# is
the probability that the angle lies between 6 and 6+d6. The
orientational distribution functions for e,=0.8 are shown in
Fig. 7 (for L/D=0.25) and Fig. 8 (for L/D=1.0). At low-
packing fraction, the distribution is nearly uniform, implying
that there is no preferred orientation. As the packing fraction
increases the distribution becomes more peaked with a maxi-
mum at ¢, and a minimum at 6,— /2. These distributions
are qualitatively similar to those obtained by Rapaport [11]
in simulations of short chain molecules in pipe flow. At low-
packing fraction, the maximum and minimum are close to
the extension axis (6,=7/4) and compression axes, respec-
tively. As the packing fraction increases, the preferred orien-
tation shifts progressively to smaller angles (closer to the
flow direction), with the minimum following. This behavior
can be confirmed by computing tan 6,=¢,/e, where e, and
e, are the components of the normalized eigenvector (See
Fig. 9).

Since P(6) evolves in a self-similar manner, we attempt to
express it in the form of a Fourier expansion,
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FIG. 7. (Color online) The orientational distribution function,
P(0), at L/ D=0.25, ¢,=0.8, for packing fractions 0.7, 0.6, 0.5, and
0.4 in order of decreasing amplitude. The solid and dashed lines
show the reconstruction of the function using the first term, a;, and
the first two terms, a; and a,, of the Fourier expansion, respectively.

P(0) = 717 + > a, cos[2n(6—- 6,)], (5)

n=1

where the first term (1/7r) on the right side is due to the
normalization condition fjf/zp(e)w:l. The other Fourier
coefficients can be calculated using the orthogonality rela-
tions

2 /2
a,= —f P(6)cos[2n(6- 6,)]d6. (6)
T _72

It can easily be verified that the first coefficient a, is related
to the orientational order parameter by a,;=(2S/ ). The con-
nection is established starting from u,=cos 6, u,=sin ¢ and
the definition of Q, Eq. 3.1.

FIG. 8. (Color online) Same as Fig. 6, except L/D=1.0
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FIG. 9. (Color online) tan(6,) as a function of L/D for ¢,=0.8 at
different packing fractions: v=0.2(>), v=0.3 (O), v=0.5 (V), v
=0.6 (<), v=0.7(X). Error estimates are shown for v=0.2. The
errors are smaller at higher packing fractions.

/2
0.=Quil-1=| (2cos? - 1)P(6)do= gal cos 2,.
—7/2
(7
Similarly
/2 T
Q,,=Qu;-1)= (2 sin® - 1)P(6)dO=— S cos 26,
—7/2
(8)
and
m .
Q.= Q= Quyu,) = S sin 20,. 9)
The eigenvalues of the matrix Q are
A==V Q)=+ gal (10)

so that S=(7/2)a,. The corresponding eigenvectors are
(c?s 6,,) and ( sin 6[,). (11)
sin 6, cos 0,
We have obtained the values of a;, a,, and 0, by a nonlinear
fit of the Fourier expansion, Eq. (5), truncated to second
order to the numerical simulation data. Some numerical val-
ues are presented in Table I. We observe that the coefficients
a; and a, increase with packing fraction at constant L/D and
with L/D at constant packing fraction. For the simulations
reported here, the ratio (a,/a,) has a maximum of about 0.1

at the highest area fractions and the lowest coefficients of
restitution examined here. This indicates that the orienta-
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TABLE I. Coefficients of the Fourier expansion of the orienta-
tional distribution function at various packing fractions. ¢,=0.8

L/ID v tan(6,) a a,

0.25 0.4 0.913 0.028 0.001
0.25 0.5 0.888 0.053 0.003
0.25 0.6 0.847 0.094 0.005
0.25 0.7 0.824 0.159 0.010
1.0 0.4 0.734 0.106 0.006
1.0 0.5 0.651 0.177 0.018
1.0 0.6 0.570 0.255 0.030
1.0 0.7 0.517 0.305 0.026

tional distribution function is well described by just the first
term in the Fourier expansion, i.e., a simple cosine function;
all higher terms in the expansion are numerically small.

IV. DISCUSSION

Our simulations show that there is a continuous increase
in the alignment of sheared inelastic dumbbells with increas-
ing inelasticity, aspect ratio and packing fraction, but no dis-
continuity. Although there is no isotropic-nematic transition
in the equilibrium 2D dumbbell systems with L/D <1, more
elongated particles such as ellipses and spherocylinders do
display such a transition. In three dimensions (3D), numeri-
cal simulation studies, most notably by Frenkel [22], indi-
cated that there is a discontinuous isotropic-nematic transi-
tion for spheroids and spherocylinders with finite aspect
ratios greater than about 2.5, as well as a nematic-smectic
transition in spherocylinders. At present, it is still not clear
whether the imposition of shear would have a qualitative
effect on these transitions, and whether the ordered state
would be dynamically stable. While one might intuitively
expect that shear will have only a quantitative effect on the
transition, studies on hard sphere systems indicate ordering is
completely destroyed by the presence of shear. In a system of
hard spheres in three dimensions, there is a crystallization
transition at a packing fraction of 49% in the absence of
shear. However, in the presence of shear, it is found that
there is no ordering transition, and the system continues to be
in the random state even as the random close packing-
packing fraction is approached [23]. It is possible that shear
may have a similar effect on the isotropic-nematic transition
in 3D hard anisotropic particle systems.
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