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The effect of noise is studied in one-dimensional maps undergoing transcritical, tangent, and pitchfork
bifurcations. The attractors of the noiseless map become metastable states in the presence of noise. In the
weak-noise limit, a symplectic two-dimensional map is associated with the original one-dimensional map. The
consequences of their noninvertibility on the phase-space structures are discussed. Heteroclinic orbits are
identified which play a key role in the determination of the escape rates from the metastable states. Near
bifurcations, the critical slowing down justifies the use of a continuous-time approximation replacing maps by
flows, which allows the analytic calculation of the escape rates. This method provides the universal scaling
behavior of the escape rates at the bifurcations.
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I. INTRODUCTION

At the macroscale, deterministic dynamics often emerges
out of the random motion of the many subunits interacting in
a complex system. In between the micro- and macroscales,
the time evolution may admit a mesoscopic description in
terms of stochastic processes in which the deterministic dy-
namics is affected by noise. In such systems, the determinis-
tic dynamics rules the mean fields or slow modes emerging
out of the many rapidly fluctuating degrees of freedom. At
the mesoscopic scale, these latter can still manifest them-
selves and perturb the deterministic time evolution of the
slow modes by fast additive or multiplicative noises �1,2�.
Such stochastic processes have been considered for Brown-
ian motion �3�, mesoscopic electric circuits �4�, and super-
conducting junctions �5,6�, mesoscopic lasers, and other op-
toelectronic devices �7�, fluctuating hydrodynamics �8,9�,
nucleation processes �10�, reaction-rate theory �11�, nonequi-
librium chemical kinetics �12,13�, as well as collective be-
haviors such as synchronization, flocking, or swarming in
biology �14–20�.

The presence of noise may modify qualitatively the time
evolution of systems. In particular, noise can activate the
crossing of otherwise impenetrable barriers. Therefore, states
which are stable with respect to the deterministic dynamics
may become metastable under the effect of noise, as it is the
case in nucleation processes or chemical reactions �10–12�.
Instead of remaining forever in a stable state, the trajectory
thus escapes from the metastable state with a rate, which
corresponds to the lifetime of the system in the metastable
state. The phenomenon of noise-induced escape is known in
many systems including chemical reactions �11�, nucleation
processes �10�, Josephson tunnel junctions �5,6�, semicon-
ductor lasers �21�, or systems with chaotic attractors or frac-
tal basin boundaries �22–27�.

Analytical methods have been developed to evaluate the
lifetime of metastable states, especially, in the weak-noise
limit. In this limit, the lifetime is often observed to grow
exponentially with the inverse of the noise amplitude, a be-
havior which is reminiscent of Arrhenius’ law in chemical
kinetics. In microscopic chemical reactions, the noise is of

thermal origin and its amplitude is controlled by the tempera-
ture so that the rate of hopping over the energy barrier is
proportional to a Boltzmann factor at the ambient tempera-
ture. In macroscopic complex systems, the fluctuations come
from the individual motions of the multiple active entities
interacting in the system so that the noise amplitude is re-
lated to the size of the population of entities and has no
thermal origin. In such complex systems, the analog of the
activation energy is given by the action functional ruling the
stochastic process in the weak-noise limit.

If the noise is weak enough, a variational principle can be
used to deduce a Lagrangian or Hamiltonian dynamical sys-
tem from the action functional, as shown by Onsager and
Machlup �28�, Freidlin and Wentzell �29�, and others
�30–34�. Remarkably, this dynamical system is deterministic
and symplectic, i.e., area-preserving in problems with 1 de-
gree of freedom. In this respect, the method based on this
Hamiltonian dynamics is called the symplectic approach. We
notice that this approach is similar to the semiclassical
method of quantum mechanics in the limit where the me-
chanical action is much larger than Planck’s constant. As in
quantum mechanics, the action functional plays a key role in
the evaluation of various properties of interest �35–37�. For
stochastic systems, such semiclassical or WKB methods
have also been developed to obtain nonequilibrium potentials
and related probability densities in the weak-noise limit
�38–41�.

In the present paper, our purpose is to use the symplectic
approach to calculate analytically the rate of noise-induced
escape from attractors undergoing transcritical or pitchfork
bifurcations �42�. Such bifurcations occur in dissipative de-
terministic systems controlled by tuning parameters.

At a transcritical bifurcation, two steady states cross each
other and exchange their stability. On both sides of the bifur-
cation, the unstable state may form the boundary with re-
spect to a remote attractor. In this regard, this is a boundary
bifurcation. In the presence of noise, this boundary can be
crossed and trajectories may escape toward the remote attrac-
tor. Near the bifurcation, the proximity of the boundary to
the stable state can strongly enhance the escape rate in a way
to be determined.
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At a pitchfork bifurcation, a stable state becomes un-
stable, leading to the emergence of a pair of stable states.
Therefore, the deterministic system becomes bistable with
two attractors beyond the bifurcation. Noise will induce ran-
dom transitions across the unstable state forming the bound-
ary between both attractors. Here also, the escape rate from
each one of both attractors is deeply modified close to the
bifurcation.

As we show in the present paper, the symplectic approach
allows us to evaluate the effects of these bifurcations on the
lifetimes of the metastable states in the weak-noise limit. To
investigate these effects, we consider one-dimensional maps
with additive independent Gaussian random variables at each
time step. In the weak-noise limit, we obtain a symplectic
area-preserving map associated with the action functional of
this Gaussian stochastic process. Near the bifurcation, we
show that an appropriate rescaling of time transforms the
two-dimensional symplectic map into a continuous-time
Hamiltonian system suitable for analytical calculations. In
this way, the noise-induced escape rate can be evaluated ana-
lytically.

The paper is organized as follows. In Sec. II, we briefly
present the escape problem for a general one-dimensional
noisy map. In Sec. III, we detail the path-integral formalism
for such noisy systems. Thereafter, we perform semiclassical
calculation using the steepest-descent method in order to ob-
tain the general expression of the aforementioned symplectic
map. Its phase portraits are analyzed for a specific example.
With the help of this analysis, we present an analytical model
in Sec. IV which allows us to calculate an approximate but
analytic expression for the analog of the activation energy in
our context. In Sec. V, we present the results given by this
model for several noisy maps and compare them to the re-
sults of Monte Carlo simulations. Finally, we give our con-
clusions in the last section.

II. NOISY MAPS

Consider a general one-dimensional map

xn+1 = f�xn� �1�

from the set R of real numbers onto itself. Such maps are
models of the Poincaré recurrence in strongly dissipative
systems. We notice that the dynamics is deterministic in the
sense that each initial condition generates a unique trajec-
tory: xn= fn�x0�. Typically, the trajectories of such determin-
istic dynamical systems tend to an attractor or escape to in-
finity �see Fig. 1�. The attractors of one-dimensional maps
can be stationary, periodic, or chaotic. The basin of attraction
B����R of an attractor � is the set of all the initial condi-
tions of trajectories converging to �.

In some circumstances, the deterministic dynamics is af-
fected by additive noise and the quantity x is ruled by the
following noisy map:

xn+1 = f�xn� + �n, �2�

where ��n�n=−�
+� is a sequence of independent Gaussian ran-

dom variables

��n� = 0, �3�

��n�m� = ��nm, �4�

with � being the amplitude of the noise and �nm the Kro-
necker symbol. The trajectories of this system are no longer
deterministic since the trajectories �xi�i=0

n depend on the se-
quence of random variables ��i�i=0

n besides the initial condi-
tion x0.

One of the consequences is that the noise perturbs the
stability of the attractors. The boundaries of the basin of
attraction B��� can be crossed and the trajectory may escape
from attractors. Therefore, the attractors � of the determin-
istic dynamics typically become metastable in the presence
of noise. Noise-induced escape is illustrated in Fig. 2 for a
noisy map with an otherwise stable steady state.

A. Perron-Frobenius equation and operator

Although the trajectories of noisy maps are random, a
deterministic description is recovered for the probability den-
sity �n�x� that the system is found in the position x at the nth
time step. Indeed, the probability density is ruled by the
Perron-Frobenius equation �43� given by
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FIG. 1. �Color online� Phase space R vs time with typical tra-
jectories of the logistic map xn+1=�xn�1−xn� for the parameter
value �=1.9. The attracting fixed point � of coordinate x�=1
−1 /� and the repulsive fixed point 	 �x	=0� are plotted as straight
lines. 	 is one of the two boundaries of the basin of attraction
B���= �0,1� of the attractor �. The trajectories outside of �0,1� tend
to −�. Initial conditions x0
1 are sent to the region �−� ,0� at the
first step. Thereafter, these trajectories stay there and tend to −�.
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FIG. 2. �Color online� Same plot as Fig. 1 but for the noisy
logistic map �2� with �=1.9 and �=0.0117. For the sake of clarity,
each trajectory is plotted each 30 steps. Each trajectory starts on the
attracting fixed point � and fluctuates for a while before crossing
downwards the boundary 	 of the basin of attraction B���= �0,1�.
After this crossing, the trajectory is driven to −�.
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�n+1�y� =	 K�x,y��n�x�dx �5�

in terms of a stochastic kernel K�x ,y�=g�y− f�x��, where
g��� is the probability density of the noise �44�. For the
Gaussian noise �3� and �4� of noise amplitude �, this prob-
ability density is given by

g��� =
1


2��
exp�−

�2

2�
� . �6�

In the zero-noise limit �→0, the Gaussian probability den-
sity tends to the Dirac delta distribution and the Perron-
Frobenius equation of the deterministic map is recovered
�44�

�n+1�y� =	 ��y − f�x���n�x�dx . �7�

We notice that, with or without noise, the Perron-Frobenius

equation is defined by a linear operator P̂, which preserves
the non-negativity of the probability density as well as its
normalization to unity: 
�n�x�dx=1. In order to analyze the
long-time behavior of the probability density, an eigenvalue
problem can be posed for the Perron-Frobenius operator

P̂�
�x� = �
�
�x� . �8�

Since the probability density is not expected to grow without
bound, the eigenvalues should belong to the unit disk ��
�
�1.

The border of the unit disk contains the single eigenvalue
�0=1 if the probability density converges to a unique station-
ary solution of the Perron-Frobenius equation. In this case,
all the other eigenvalues are strictly inside the unit disk
��
��1 for 
�0. As a consequence, the components of the
probability density corresponding to these other eigenvalues
are exponentially damped in the long-time limit, allowing the
convergence of the probability density to the eigenfunction
�0 associated with the leading eigenvalue �0=1.

In contrast, the probability density is expected to vanish if
trajectories escape to infinity as observed in Fig. 2. In this
further case, the border of the unit disk does not contain any
eigenvalue, otherwise the asymptotic probability density
would not be vanishing. Instead, the long-time behavior is
dominated by the eigenvalue which is the closest to the bor-
der of the unit disk �0�1, such that ��
�� ��0� for 
�0.
After n iterates of the Perron-Frobenius operator, the prob-
ability density is damped by a factor �0

n so that we may
expect an exponential decay in this situation. The corre-
sponding eigenfunction �0�x� is non-negative according to
the Perron-Frobenius theorem.

B. Escape rate and mean escape time

Thanks to the probability density �n�x�, we can write
down the probability that the escape from the attractor �
occurs at a time greater than n in the noisy system �2�

P��t 
 n�� � Gn = 	
B���

�n�x�dx , �9�

where B��� is the basin of attraction of �. This probability is
also called the survival probability. On the other hand, the
probability to escape at a time n is given by

P��t = n�� � Pn = Gn−1 − Gn. �10�

We notice that the normalization condition �n=1
� Pn=G0=1 is

satisfied.
If trajectories escape to infinity, the escape rate � of the

attractor of � is defined as the long-time limit of the expo-
nential decay rate of the survival probability

� � lim
n→�

−
1

n
ln Gn. �11�

In this case, the escape can alternatively be defined in terms
of the leading eigenvalue �0 of the Perron-Frobenius opera-
tor. Since the probability density is damped as �0

n for n→�,
so does the survival probability �9� and we infer that

� = − ln �0. �12�

The inverse of the escape rate is the lifetime of the meta-
stable state corresponding to the eigenfunction �0�x�,

� �
1

�
. �13�

On the other hand, the mean escape time can be defined as
the statistical average of the random time the trajectory es-
capes from the basin B���,

�t� � �
n=1

�

nPn = �
n=0

�

Gn. �14�

If the decay is exponential in the long-time limit, Gn�e−�n,
the mean escape time is given by �t���1−e−��−1. In the
weak-noise limit where the escape rate is expected to vanish
as

� � exp�−
W0

�
� �15�

for �→0, the mean escape time can be related to the escape
rate itself by the simple relation

lim
�→0

��t� = 1. �16�

Otherwise, the mean escape time is not simply given as the
inverse of the escape rate because, in general, the mean es-
cape time depends on the transients before the long-time ex-
ponential decay at the escape rate.

C. Relaxation rate and mean first-exit time

If trajectories do not escape to infinity but randomly jump
between two attractors of the deterministic dynamics, the
probability density is expected to converge toward a station-
ary density given by the eigenfunction �0�x� of the Perron-
Frobenius operator corresponding to the eigenvalue �0=1. In
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this case, the escape rate �11� vanishes and the quantity of
interest is given by the next-to-leading eigenvalue �1 such
that ��
���1�1 for 
�0,1 if this latter is unique. The
eigenvalue �1 controls the convergence of the probability
density toward the stationary state. This convergence is ex-
ponential, which defines the relaxation rate

�̃ = − ln �1. �17�

This relaxation rate can be interpreted as the rate of jumps
between the two attractors due to the noise. In some cases,
this relaxation rate can be defined in the presence of escape if
there is a clear separation of time scales between both.

A mean first-exit time can also be defined as the statistical
average of the random time of first exit from a given basin of
attraction B���. In this scheme, the trajectories start with an
initial condition inside the basin B���, evolve in time accord-
ing to the noisy map �2�, and stop as soon as the trajectory
escapes from the basin B���. The Perron-Frobenius operator

Q̂ of this first-exit process is defined by restricting the do-
main of integration to the basin B���,

�n+1�y� = 	
B���

K�x,y��n�x�dx . �18�

For a bounded basin B���, all the eigenvalues of this further
operator are strictly inside the unit disk and an escape rate �
can be defined by Eq. �12� in terms of the leading eigenvalue
�0, as in the previous Sec. II B. Furthermore, a mean escape
time �t� can be defined for the present process by Eq. �14�. If
the attractor � of the deterministic dynamics is strictly inside
its basin of attraction B���, we expect that, in the weak-noise
limit, the relaxation rate should behave as �̃�exp�−W0 /��,
for �→0, and be related to the mean escape time �t� and the
corresponding escape rate � according to

lim
�̃→0

�̃�t� = lim
�→0

��t� = 1. �19�

For both escape and relaxation, the determination of the life-
time of the metastable state thus goes by the evaluation of
the quantity W0 which is the analog of the activation energy
in systems with thermal noise.

III. PATH INTEGRALS AND THE SYMPLECTIC
APPROACH

The aim of the present section is to obtain the symplectic
map ruling the process in the weak-noise limit.

A. Path integrals

Starting with an initial density �0 and iterating Eq. �5�,
one can obtain the probability density at time n in the form

�n�xn� =	 dx0Kn�x0,xn��0�x0� , �20�

where Kn is an integral kernel resulting from n iterations.
This kernel is the propagator associated with the time evolu-
tion of the stochastic process. For the Gaussian noise �6�, this
kernel is given by the multiple or path integral

Kn�x0,xn� =
1

�
2���n	 dxn−1 ¯	 dx1

�exp�−
1

�
Wn�x0,x1, . . . ,xn−1,xn�� , �21�

where

Wn�x0, . . . ,xn� =
1

2�
i=0

n−1

�xi+1 − f�xi��2, �22�

which defines the action functional of the Gaussian stochas-
tic process.

B. Symplectic map

In the limit of weak noise �→0, the propagator �21� can
be integrated by the steepest-descent method, which will se-
lect the extrema of the action functional �22�. These extrema
are obtained by applying Hamilton’s variational principle for
the action function �22�. The selected paths are thus the tra-
jectories of a symplectic deterministic system �45�. With this
Hamiltonian formalism in mind, the functional �22� can be
written in terms of a generating function F of the first kind
�46�

Wn�x0, . . . ,xn� = �
i=0

n−1

F�xi,xi+1� , �23�

where

F�xi,xi+1� =
1

2
�xi+1 − f�xi��2. �24�

Introducing the momentum pi canonically conjugated to the
position xi, the evolution over one time step is conceived as
a canonical transformation corresponding to this generating
function

pi+1 =
�F�xi,xi+1�

�xi+1

pi = −
�F�xi,xi+1�

�xi
.

�25�

With the generating function �24�, we obtain the two-
dimensional map

��xi+1 = f�xi� +
pi

f��xi�

pi+1 =
pi

f��xi�
. � �26�

This map is symplectic because it preserves the symplectic
differential two-form

dxi+1 ∧ dpi+1 = dxi ∧ dpi, �27�

where ∧ denotes the exterior or wedge product �47�. Ac-
cordingly, the Jacobian of the map takes the unit value,
det D�=1, so that the map is area-preserving in the two-
dimensional phase space M= ��x , p� :x�R , p�R�.
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Such area-preserving maps are expected to be typically
chaotic as it is the case for the standard map �47�. The mul-
titude of possible trajectories reflects the complexity of the
landscape of the multidimensional functional �23�. This land-
scape unveils many local extrema among which the local
minima should be selected in order to guarantee the local
normalization of the probability distribution underlying the
propagator �21�.

We emphasize that the symplectic map �26� has special
properties which are specific to the problem at hand. First,
the map �26� leaves invariant the subspace p=0 of the phase
space M. In this subspace, the two-dimensional map �26�
reduces to the noiseless one-dimensional dissipative map
xi+1= f�xi�. In consequence, the attracting fixed points of the
original map f are hyperbolic fixed points of the symplectic
map �26� that lie in the subspace p=0. Note that the repul-
sive fixed points of the map f are also hyperbolic fixed points
of Eq. �26� and also lie on the subspace p=0.

Secondly, the symplectic map �26� is not uniquely invert-
ible and may admit several inverses. This is the consequence
of the noninvertible character of the one-dimensional map f
itself, which often has extrema where its derivative f��x�
vanishes. Indeed, the inverses of the two-dimensional map
�26� are directly associated with the inverses f j

−1 of the one-
dimensional map f , such that f j

−1�f�x��=x for j=1,2 , . . . ,m.
The inverses of the two-dimensional map �26� can thus be
written as

� j
−1�xi = f j

−1�xi+1 − pi+1�
pi = pi+1f��f j

−1�xi+1 − pi+1�� ,
� �28�

with j=1,2 , . . . ,m. The inverses of one-dimensional map be-
come singular at the positions such that f��xk�=0, with k
=1,2 , . . . , m̃. These loci correspond to the borders of the do-
mains where the inverses �28� are defined

x − p = f�xk� such that f��xk� = 0, �29�

with k=1,2 , . . . , m̃. For noninvertible two-dimensional maps
such as Eq. �26� with a vanishing denominator, the concepts
of focal point and prefocal curves �or lines� have been intro-
duced �48,49�. They will be defined here below in the dis-
cussion of the phase-space structures generated by these
maps, which are different in this regard from those of the
invertible area-preserving maps such as the standard map
�47�.

C. Phase space

This section is devoted to the phase-space structures gen-
erated by two-dimensional symplectic maps �26� associated
with one-dimensional maps f undergoing bifurcations. The
study of typical phase portraits of these symplectic maps is
important because the contributions to the propagator �21�
are evaluated in the weak-noise limit in terms of the trajec-
tories of these maps. Moreover, statistical averages are re-
lated to the propagator and, as we shall see, the study of
phase space gives an insight on their properties.

1. Invariant subspace p=0

As mentioned here above, the straight line p=0 is an in-
variant subspace of the phase space M= ��x , p� :x�R , p

�R�. This line is the x axis where the dynamics is ruled by
the one-dimensional map xi+1= f�xi� of the noiseless macro-
scopic system. The trajectories outside the invariant subspace
are specifically associated with noise. This invariant sub-
space divides the phase space in two half planes and, there-
fore, constitutes a major organizing geometric structure.

2. Fixed points

The symplectic map �26� has two types of fixed points.
The fixed points x= f�x� of the one-dimensional map, which
are found in the invariant subspace p=0. For these fixed
points, the linearized map has the eigenvalues �+= f��x� and
�−= f��x�−1. Accordingly, these fixed points are hyperbolic
�or possibly parabolic in the cases of marginal stability�. If
the point is attracting �respectively, repelling� for the one-
dimensional map, the unstable �respectively, stable� direction
is transverse to the invariant subspace p=0.

On the other hand, the symplectic map may admit genuine
fixed points outside the invariant subspace p=0 for

p = x − f�x�
f��x� = 1.

�30�

These fixed points have eigenvalues given by the roots of the
characteristic equation

�2 + �pf��x� − 2�� + 1 = 0, �31�

so that they can be either elliptic or hyperbolic �or also para-
bolic in the marginal cases�.

3. Singular lines, focal points, and prefocal lines

Because of its vanishing denominators, the two-
dimensional map �26� is not defined on the singular lines

�s,k = ��xk,p�:f��xk� = 0,p � R� , �32�

with k=1,2 , . . . , m̃. The implications of these singular lines
on the phase-space structures generated by the map have
been discovered by Bischi, Gardini, and Mira who intro-
duced the concepts of focal points and prefocal lines �48,49�.

As long as the numerator corresponding to the denomina-
tor is not vanishing, the points of the singular lines are sent
to infinity by the map �26�. However, this might not be the
case if the numerator vanishes with the denominator at the
so-called focal points �48,49�

zk = �xk,p = 0� . �33�

Since the map �26� displays an undetermined ratio 0/0 at
each focal point, the image of the focal point is not neces-
sarily sent at infinity and we may wonder what is the phase-
space structure corresponding to this image. To answer this
question, let us consider a line � going through the focal
point and defined by the following parametric equations:

��x = xk + �

p = 
� + O��2� ,
� �34�

where � is the parameter and 
 the slope of the line at the
focal point. The image of this line is given by
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�����x� = f�xk + �� +

� + O��2�
f��xk + ��

= f�xk� +



f��xk�
+ O���

p� =

� + O��2�
f��xk + ��

=



f��xk�
+ O��� , �

�35�

where we have expanded in powers of the parameter �
around �=0, using f��xk�=0, and assuming that f��xk��0.
The image ���� is a line for varying values of the parameter
�. Taking the limit �=0, we obtain the image of the focal
point

��zk��x� = f�xk� +



f��xk�

p� =



f��xk�
. � �36�

We notice that the image depends on the slope 
 given to the
line � in Eq. �34�, whereupon the images are multiple and
form a line called the prefocal line

�zk
:x� = p� + f�xk� , �37�

which coincides with the border �29� of the domains of defi-
nition of the inverse two-dimensional maps �28�. Accord-
ingly, the prefocal line is mapped onto the focal point under
the inverse map �28� having the prefocal line in its domain of
definition

� j
−1��zk

� = zk. �38�

In this sense, the prefocal line constitutes the image of the
focal point, �zk

=��zk�, showing that a point can be mapped
onto a line in such two-dimensional map �26� with a vanish-
ing denominator �48,49�.

4. Global stable set and unstable manifold

The structures generated by the map � in its phase space
M can be analyzed in terms of the stable and unstable sets
associated with the saddle points. The unstable set Wu�z� of
the hyperbolic fixed point z= �x , p� consists in the set of
points that converge to z under backward iterations of �.
This can be expressed in terms of the union of the successive
images of the local unstable manifold Wloc

u �z�, i.e., the un-
stable set in a neighborhood of z,

Wu�z� = �
n=1

�

�n�Wloc
u �z�� . �39�

Even if � is not invertible, the images of the local manifold
Wloc

u �z� will be uniquely determined. Accordingly, the set
Wu�z� is a manifold in the phase space and is called the
unstable manifold �50�.

On the other hand, the stable set of the hyperbolic fixed
point z is defined as the set of points that converge to z under
forward iterations of �. It can be obtained as the union of
successive preimages given by the possibly multiple inverse
maps � j

−1 acting on the local stable manifold Wloc
s �z�,

Ws�z� = �
n=1

�

�
j

� j
−n�Wloc

s �z�� . �40�

If � is invertible, this set is a manifold and one speaks about
the stable manifold of z. However, if there are multiple in-
verse maps, the global stable set may consist of disjoint
pieces and is not a manifold �50,51�. Since we here consider
noninvertible maps f , the symplectic map �26� is noninvert-
ible so that we speak about the global stable set �instead of
stable manifold�.

At the intersection of the global stable set and the unstable
manifold associated with one and the same hyperbolic fixed
point z, we find the so-called homoclinic orbit
Ws�z��Wu�z�. If the global stable set and the unstable mani-
fold are attached to different fixed points, we are in the pres-
ence of a so-called heteroclinic orbit Ws�z��Wu�z��, which
plays an important role in the following.

As an example, a typical phase portrait of the symplectic
map �26� is depicted in Fig. 3 for the exponential map xn+1
=�xn exp�−xn�. For the noisy exponential map with the se-
lected value of the parameter �, the escape scenario is the
same as the one detailed in Fig. 2 for the logistic map. Start-
ing from the attractive fixed point x�=ln �, trajectories es-
cape after crossing of the boundary x	=0. Once this bound-
ary is crossed, the trajectory tends to −�. We notice that the
fixed points of the one-dimensional map correspond to the
fixed points �= �ln � ,0� and 	= �0,0� of the two-
dimensional map. Moreover, the stable set Ws��� and the
unstable set Wu�	� are contained in the invariant subspace
p=0. The construction of the unstable manifold Wu��� and
the global stable set Ws�	� seen in Fig. 3 have first required
the determination of the manifolds directly emanating from
the hyperbolic fixed points. This has been performed with an
algorithm specially devoted to noninvertible maps and called
the search circle algorithm �50,52�. Thereafter, we were able
to compute significant parts of the global invariant sets using
backward iterations with � j

−1 for the global stable set Ws�	�
and forward iterations with � for the unstable manifold
Wu���. We have also computed with precision the hetero-

FIG. 3. �Color online� The phase space M of the symplectic
map �26� associated with the exponential map xn+1=�xn exp�−xn�
for �=2.6. The line U is the global unstable manifold Wu��� of the
fixed point � and the line S is the global stable set Ws�	� of the
boundary 	. The heteroclinic trajectory �crosses� between these two
fixed points is found at the intersections of the two lines and some
bounded trajectories �dots� are depicted inside the region delimited
by them.

JONATHAN DEMAEYER AND PIERRE GASPARD PHYSICAL REVIEW E 80, 031147 �2009�

031147-6



clinic orbit Ws�	��Wu��� using an algorithm described in
Ref. �53�. An attentive examination of Fig. 3 shows that the
global stable set Ws�	� of the boundary fixed point 	 forms
closed loops attached to the focal point z= �1,0�. This feature
is inherent to the map �26� which is not defined on the sin-
gular lines where the derivative of the one-dimensional map
f vanishes. For the exponential map, there is such a singular
line at x=1 and its intersection with the subspace p=0 where
there is a 0/0 limit gives the focal point z= �1,0� where
f��1�=0. Such structures arise due to the noninvertibility of
f . Since the singular lines divide the phase space into distinct
regions, the only way for a curve that is forward invariant to
cross these lines is to pass through focal points, as here ob-
served for the global stable set Ws�	�. We refer the reader to
Refs. �48,49,54� for more information about this issue.

5. Dynamics close to the bifurcation

Close to the bifurcation, the dynamics undergoes a critical
slowing down. As a consequence, the symplectic map �26�
performs small steps at each iteration in the phase-space do-
main where the fixed points bifurcate. It turns out that the
dynamics of the map is similar to a continuous-time flow. In
order to illustrate this phenomenon, we continue to consider
the exponential map xn+1=�xn exp�−xn� and we depict in
Fig. 4 its phase portrait close to the transcritical bifurcation it
undergoes at the parameter value �=1. At this bifurcation,
the two fixed points x	=0 and x�=ln � cross each other and
exchange their stability. The unstable of these fixed points is
the boundary of the basin of attraction of the other so that a
boundary bifurcation happens at the transcritical bifurcation.
Below and above the bifurcation, an elliptic island exists in
the lower half plane p�0 around the extra fixed point ap-
proximately located at x���−1� /2 and p�−��−1�2 /4. At
the bifurcation, the three fixed points coalesce at the origin
with the surrounding island.

Figures 4�a� and 4�f� depict the phase portraits for values
of � far from the bifurcation where we observe that the
global stable set and the unstable manifolds are well devel-
oped. Trajectories are trapped and form an elliptic island
composed of invariant circles and chaotic zones of moderate
extension. At these values, the system �26� is clearly not
close to integrability since the global stable set and the un-
stable manifold form typical heteroclinic structures.

For values of � closer to the bifurcation, Figs. 4�b� and
4�c� show that most of the trajectories of the elliptic islands
are pretty regular lines bounded by the global stable set and
the unstable manifold nearly forming a separatrix. The cha-
otic zones have disappeared on tiny scales in phase space.
Hence, we can conclude that, close to the bifurcation, the
system �26� tends to complete integrability.

It is interesting to understand how the transition occurs
between the two situations. In Fig. 4�d�, the phase space is
depicted for an intermediate value between these of Figs.
4�c� and 4�f�. Although the phase portrait is similar to the
one in Fig. 4�c�, Fig. 4�e� shows a zoom of the global stable
set and the unstable manifold around the origin revealing
heteroclinic structures typical of nonintegrable dynamics. We
conclude that, as the bifurcation is approached, the slowing
down of the dynamics tends to transform the discrete-time
map into a continuous-time flow with 1 degree of freedom
which is thus integrable at the bifurcation. This idea will be
elaborated on in the next section.

IV. CONTINUOUS-TIME LIMIT AT BIFURCATION

A. Hamiltonian flow

In this section, we establish the correspondence between
the symplectic map �26� and a continuous-time flow with 1
degree of freedom in the neighborhood of the bifurcation.
This correspondence provides us with a method to compute
analytically the properties of the noisy map close to the bi-
furcation and, in particular, the rate of noise-induced escape
from the attractor.

With this aim, we consider a general map of the form

f�x� = �
i=0

�

cix
i, �41�

where the coefficients ci��� depend on the parameter �. For
the transcritical and pitchfork bifurcations, we take c0=0
which implies that x=0 remains a fixed point across the bi-
furcation. For a bifurcation to happen, we must moreover
suppose that the map f possesses at least another fixed point.
This means that the series �41� contains nonlinear terms. Let
us suppose that ck with k
1 is the first nonvanishing coef-
ficient besides c1.

A bifurcation occurs if the fixed point x=0 looses or gains
stability. This is the case at the value of � where the linear
stability eigenvalue of the map f at x=0 is equal to unity.
Since the linear stability of x=0 is f��0�=c1, the bifurcation
occurs at the critical parameter value �=�c, where c1��c�
=1. Near the bifurcation, the dynamics of the map is slowed
down since its slope is close to unity, c1�1, which limits the
iterations to small steps. Consistently, the other fixed points

FIG. 4. �Color online� Phase portraits of the symplectic map
�26� associated with the exponential map xn+1=�xn exp�−xn� for
different values of the parameter � close to the transcritical bifur-
cation at �=1: �a� �=0.1; �b� �=0.5; �c� �=1.2; �d� �=2.0; �f�
�=2.4. The panel �e� is a zoom of �d� around the fixed point �0,0�.
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of the one-dimensional map are approximately given by x
���1−c1� /ck�1/�k−1�, which coalesce onto the origin x=0 at
the bifurcation.

In this regard, we can suppose that trajectories �xn�n=−�
+� of

the map can be seen as trajectories x�t� of a continuous-time
stochastic dynamical system with the time t=n. Since the
time step is unity, �t=1, differences become derivatives

xn+1 − xn = �e�tx�t� − x�t��t=n = ẋ +
1

2
ẍ + ¯ . �42�

The critical slowing down near the bifurcation justifies the
truncation of this expansion to the term with the first deriva-
tive with respect to the continuous time t=n, which amounts
to assimilate the difference between two successive time
steps with a time derivative.

To implement this idea, the position xn at the previous
step is subtracted from the noisy map �2�, which is rewritten
as

xn+1 − xn = f�xn� − xn + �n, �43�

Introducing the function

g�x� � f�x� − x , �44�

the noisy map can be replaced by the Ito stochastic differen-
tial equation

dx

dt
= g�x� + ��t� , �45�

with the Gaussian white noise

���t�� = 0, �46�

���t���t��� = ���t − t�� . �47�

We notice that the time integral of this noise defines the
Wiener process W�t�=
0

t ��t��dt�. We emphasize the replace-
ment of the noisy map by the stochastic differential equation
is justified by the critical slowing down of the dynamics
close to the bifurcation.

In the weak-noise limit, this stochastic process can be
analyzed thanks to the theory by Onsager and Machlup �28�
or Freidlin and Wentzell �29� in terms of a Hamiltonian flow
with 1 degree of freedom. Its Hamiltonian function is given
by

H =
1

2
p2 + g�x�p . �48�

This Hamiltonian function rules the Hamilton-Jacobi equa-
tion derived from the Fokker-Planck equation associated to
the Eq. �45�. The trajectories are now solutions of Hamilton’s
equations

ẋ = g�x� + p

ṗ = − g��x�p ,
�49�

where p is the momentum variable canonically conjugated to
the position x. We notice that, as for the symplectic map �26�,
the fixed points of the flow ẋ=g�x� are hyperbolic fixed
points of Eq. �49� that lie on the invariant subspace p=0 of

the phase space. At least, one of the fixed point x� of the flow
ẋ=g�x� is an attractor. Its basin of attraction may be limited
by another fixed point x	 which is unstable. For the exponen-
tial map, the phase portraits of this Hamiltonian flow and the
corresponding symplectic map are depicted in Fig. 5.

B. Heteroclinic orbit and its action

For the stochastic process �45�, the attractor x� is found in
a well of the kinetic potential defined by �38,39�

U�x� = −	 g�x�dx =
x2

2
−	 f�x�dx . �50�

On the other hand, the unstable fixed point x	 is the top of a
barrier for the noise-induced escape from the potential well.
The escape over this barrier is an activated process with an
escape rate given by Eq. �15� where the constant W0 is the
action of a special trajectory of the Hamiltonian flow �49�.
This trajectory is given by the separatrix connecting the hy-
perbolic fixed point � corresponding to the attractor to the
other hyperbolic fixed point 	 at the top of the barrier
�38,39� �see Fig. 5�a��. The parametric equation of this sepa-
ratrix is

p�x� = − 2g�x� �51�

and the action of this solution between the hyperbolic points
�x� ,0� and �x	 ,0� is given by

Wh
c = 	

x�

x	

p�x�dx , �52�

where the superscript “c” stands to recall that this is the
action of the continuous-time Hamiltonian system. This ac-
tion yields the activation barrier for the escape problem in
the stochastic process �45� from the attracting fixed point x�

through the boundary x	, as if the crossing by the point x	

was the only possible channel of escape from x�. The inte-
gration of the function g gives the final result

Wh
c = 2�U�x	� − U�x��� �53�

in terms of the kinetic potential �50�.
We notice that the separatrix of the Hamiltonian flow �49�

is the limit of the heteroclinic orbit h=Ws�	��Wu��� be-
tween the global stable set of the boundary point 	 and the

FIG. 5. �Color online� Comparison between the phase portrait of
�a� the Hamiltonian flow �49� and �b� the phase portrait of the
symplectic map �26� for the exponential map xn+1=�xn exp�−xn� at
�=2.
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unstable manifold of the attractor �. Therefore, we expect
that the action �52� or �53� of the separatrix is the limit of the
action of the heteroclinic orbit of the symplectic map evalu-
ated by the sum

Wh =
1

2
� �
n=−�

+�

�xn+1 − f�xn��2�h. �54�

The approximation of the map action �54� by the flow action
�53� is justified as the bifurcation is approached as seen in
Fig. 6 where we observe that the heteroclinic orbit tends to
the separatrix of the Hamiltonian flow �49�.

V. RESULTS

To investigate the relation between the activation barrier
W0 and the actions �53� or �54� for different types of bifur-
cations, we have carried out a Monte Carlo simulation gen-
erating 2�105 escape events starting from the attractor �.
We have computed the distributions of escape times for dif-
ferent noise amplitudes �. As these distributions slowly de-
crease exponentially in time in the limit �→0, the best esti-
mator of their average is simply the statistical average �14�
according to Eq. �16�. In this way, we have obtained the
mean escape time �14� as a function of �. For �→0, this
function shows exponential increase according to Eq. �15�.
By fitting, we have computed the activation barrier W0. It is
important to notice that Eq. �15� is valid under the condition
��W0 on the values of the noise amplitude we had to con-
sider. In the case the one-dimensional map has several attrac-
tors, we have to consider the first-exit process from one basin
of attraction as described in Sec. II C.

A. Transcritical bifurcation

In this section, we study two simple maps which undergo
a transcritical bifurcation.

1. Logistic map

We first consider the logistic map

xn+1 = �xn�1 − xn� , �55�

which is a well-known model in the fields of hydrodynamics
�55,56�, glass formation dynamics �57�, and population dy-
namics �42,58�. This map possesses two fixed points:

x1 = 0, �56�

x2 = 1 − 1/� . �57�

The logistic map undergoes a transcritical bifurcation at �
=1 where these two fixed points exchange their stability. For
��1, x1 is stable while x2 is unstable and forms with its
nontrivial preimage f−1�x2� the boundaries of the basin of
attraction of x1 :B�x1�= �x2 , f−1�x2��. For �
1, x2 is stable
while x1 is unstable and forms with its nontrivial preimage
the boundaries the basin of attraction of x2 :B�x2�= �0,1�. In
both cases, the point at infinity is a second possible attractor
for initial conditions outside the described basin of attraction.

For the noisy logistic map, the escape to infinity may
occur via the two boundaries of the basin of attraction B���.
Both boundaries correspond to the same fixed point x	 since
one of the boundaries is the nontrivial preimage f−1�x	� of
the other. The phase portrait of the symplectic map �26� is
depicted in Fig. 7 where we observe similar structures as in
Fig. 3 for the exponential map. In particular, an elliptic island
surrounds the nontrivial fixed point at x= ��−1� / �2�� and
p=−��−1�2 / �4��. The symplectic map �26� has two inverse
maps ��

−1, which are defined in the domain p�x− �� /4�
limited by the prefocal line �37�. The map �26� is not defined
on the singular line x=1 /2 where f��x�=0 and a focal point
exists at z= �1 /2,0�. This focal point is the passage of the
global stable set Ws�	�, as seen in Fig. 7. The heteroclinic
orbit h=Ws�	��Wu��� connecting the fixed points � to 	
was constructed with an algorithm described in Ref. �53�.
This heteroclinic orbit effectively controls the process of
noise-induced escape to infinity of trajectories issued from
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FIG. 6. �Color online� Evolution of the heteroclinic orbit of the
symplectic map �26� associated with the exponential map xn+1

=�xn exp�−xn� as the parameter � varies from 0.4 to 2. The hetero-
clinic orbits for �=0.4 to �=0.9 are located on the left-hand side of
x=0 and those for �=1.1 to �=2.0 on the right-hand side. Around
the boundary bifurcation, the heteroclinic orbit tends to a continu-
ous curve which is the separatrix of the Hamiltonian flow �49�.

FIG. 7. �Color online� Phase portrait of the symplectic map �26�
associated with the logistic map �55� for �=1.9. Under this condi-
tion, the attractor corresponds to the fixed point �= �x2 ,0� with Eq.
�57�. The fixed point of the escape barrier is 	= �0,0�. Note that
manifolds of the global stable set have to pass by the focal point
z= �1 /2,0� to cross the nondefinition set given by the singular line
��1 /2, p� : p�R�. The heteroclinic orbit h=Ws�	��Wu��� is de-
picted by crosses.
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the attractor. Monte Carlo simulations have allowed us to
compute the escape rate and the activation barrier W0, veri-
fying in Fig. 8 that it coincides with the action of the hetero-
clinic orbit. Near the transcritical bifurcation, the continuous-
time approximation provides us with the following analytical
expression for this action:

Wh
c = � �� − 1�3

3�2 � �58�

obtained from Eq. �53� with the potential �50�. This formula
applies to both sides of the transcritical bifurcation at �=1
because of the absolute value � · �. Indeed, the fixed points
�56� and �57� exchange their roles of attractor and barrier at
the bifurcation. Figure 8 shows the excellent agreement be-
tween the activation barrier W0 and Eq. �58� as the transcriti-
cal bifurcation is approached in the limit ���→1. At the bi-
furcation, the activation barrier vanishes as the cube of the
control parameter ��=�−1.

2. Exponential map

The exponential map

xn+1 = �xn exp�− xn� with � 
 0 �59�

shares several features with the logistic map. It has two fixed
points:

x1 = 0, �60�

x2 = ln � , �61�

which cross each other in a transcritical bifurcation at �=1.
Moreover, the point at x=−� is also attracting. For 0��
�1, x1 is stable, x2 is unstable, and the basin of attraction of
x1 is B�x1�= �x2 ,+��. For �
1, x2 is stable, x1 is unstable,
and the basin of attraction of x2 is B�x2�= �x1 ,+��. Contrary
to the logistic map, these basins of attraction are not compact
and extend up to x=+� where the exponential map vanishes
and sends the points toward the fixed point x1=0. The other
half of the real axis is the basin of attraction of x=−�.

Phase portraits of the symplectic map �26� are depicted in
Figs. 3 and 4 and discussed in Sec. III C. The singular line is

located at x=1 and the focal point at z= �1,0�. According to
Eq. �37�, the prefocal line is x= p+� /e. The inverse �28� is
not defined below this prefocal line for p
x−� /e.

An analytical calculation of the activation barrier can be
carried out around the transcritical bifurcation at �=1 by
using Eq. �53� with the potential �50� yielding

Wh
c = �2� − 2 − 2 ln � − �ln ��2� , �62�

which applies below and above the bifurcation. As for the
logistic map, the activation barrier vanishes as the cube of
the control parameter ��=�−1. This result is verified in
Fig. 9 by comparison to the activation barrier computed by
Monte Carlo simulations. A very good agreement is also ob-
served with the action �54� of the heteroclinic orbit h
=Ws�	��Wu���. It shows evidence that the heteroclinic or-
bits play the key role in the determination of the activation
barrier for the noise-induced escape from the attractor.

B. Tangent bifurcation

At the tangent bifurcation, a pair of stable and unstable
fixed points emerges in the system. A one-dimensional map
illustrating this bifurcation is the quadratic map

xn+1 = � + xn − xn
2, �63�

which has the fixed points

x1,2 = � 
� �64�

for ��0. x1 is stable while x2 is unstable. For �
0, the
phase portrait of the symplectic map �26� is similar to the
one of the logistic map but the elliptic island no longer exists
for ��0 where all the trajectories of the noiseless map es-
cape to infinity. For �
0, the escape from the basin of at-
traction of x1=x�=+
� should be activated by the noise.
Close to the tangent bifurcation at �=0, the critical slowing
down justifies the treatment with the continuous-time ap-
proximation. Using Eq. �53� with the potential �50�, the ac-
tivation barrier is here given by
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FIG. 8. �Color online� Action of the heteroclinic orbit Wh and
activation barrier W0 from the Monte Carlo simulation vs the pa-
rameter value � for the logistic map �55�. The dashed curve is the
analytical action Wh

c calculated near the transcritical bifurcation and
given by Eq. �58�.
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FIG. 9. �Color online� Action of the heteroclinic orbit Wh and
activation barrier W0 from the Monte Carlo simulation vs the pa-
rameter value � for the exponential map �59�. The dashed curve is
the analytical action Wh

c calculated near the transcritical bifurcation
and given by Eq. �62�.
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Wh
c =

4

3
�3/2. �65�

Here, we recover the result obtained by Beale that the expo-
nent 3/2 is universal for the activation barrier close to a tan-
gent bifurcation �22�.

We notice that the quadratic map �63� is transformed into
the logistic map �55� by the changes x→�x+ �1−�� /2 and
�→ ��−1�2 /4. This transformation is folding the parameter
space 2 to 1, therefore, mapping the transcritical bifurcation
onto the tangent bifurcation. In this way, the exponent 3 of
the transcritical bifurcation is consistent with the exponent
3/2 of the tangent bifurcation �22�.

C. Pitchfork bifurcation

In the pitchfork bifurcation, a fixed point which pre-exists
to the bifurcation destabilizes and generated two new stable
fixed points. These two new attractors are separated by the
now unstable fixed point, which is the boundary between the
two basins of attraction. At the bifurcation, the two attractors
meet with this boundary so that the pitchfork bifurcation is a
boundary bifurcation in this regard.

We are concerned by the first-exit process induced by the
noise from one basin of attraction to the other across their
common boundary, which constitutes an activation barrier
between two wells for the kinetic potential �50�. As ex-
plained in Sec. II C, this first-exit process is similar to an
escape process in the sense that its rate is of Arrhenius type
and also given by Eq. �15� in the weak-noise limit. At the
pitchfork bifurcation, we expect that the activation barrier
W0 should vanish in a way characteristic of the bifurcation.
Two maps are investigated to determine this barrier.

1. Cubic map

The cubic map

xn+1 = �xn�1 − xn
2� �66�

undergoes a pitchfork bifurcation at the critical parameter
value �=1 and presents bistability above this bifurcation for
�
1. For our purposes, we consider positive values of the
parameter �
0. The cubic map has one fixed point below
the bifurcation and three above:

x1 = 0, �67�

x2,3 = � 
1 − 1/� if � 
 1. �68�

Moreover, the cubic map has an unstable period-two orbit at
x4,5= �
1+1 /�. For ��1, the fixed point x1=0 is an at-
tractor and its basin of attraction is bordered by the period-
two orbit: B�x1�= �x5 ,x4�. For �
1, the fixed point x1=0
becomes unstable and the fixed points x2 and x3 are two
attractors with their basins of attraction given by B�x2�
= �x1=0 ,x4� and B�x3�= �x5 ,x1=0�, respectively. Outside the
interval delimited by the period-two orbit, trajectories can
escape to infinity, which is a further attractor of the cubic
map. The symplectic map �26� associated with the cubic map
has three hyperbolic fixed points in the invariant subspace

p=0 for �
1. Now, there exist two elliptic islands sym-
metrically located around the origin. The origin 	= �0,0�
stands for the barrier while �= �x2 ,0� for instance. A hetero-
clinic orbit h=Ws�	��Wu��� connects the hyperbolic fixed
point � to 	. The associated symplectic map �26� has two
focal points z�= ��1 /
3,0� and two corresponding prefocal
lines �37�.

For �
1, noise induces random jumps between the two
basins B�x2� and B�x3�, as well as escape toward infinity. The
barrier between the two basins B�x2� and B�x3� is located at
the origin x1=0 and vanishes at the pitchfork bifurcation
while the barrier for escaping toward infinity is the period-
two orbit, which does not vanish around �=1. Accordingly,
the escape events remain rare and negligible with respect to
the first-exit events from one basin to the other. The differ-
ence of time scale between first-exit and escape events al-
lows us to investigate the former without perturbation by the
latter in Monte Carlo simulations in the parametric domain
of interest. In the weak-noise limit, the first-exit process is
controlled by the heteroclinic orbit h=Ws�	��Wu���. Us-
ing the continuous-time approximation, we can calculate
analytically the activation barrier near the pitchfork bifurca-
tion with Eq. �53� for the cubic map

Wh
c =

1

2�
�� − 1�2, �69�

which holds for �
1. The excellent agreement with the re-
sults of Monte Carlo simulations is shown in Fig. 10 where
the action Wh of the heteroclinic orbit is also plotted. Here,
the activation barrier vanishes as the square of the control
parameter ��=�−1.

2. Gaussian map

Another example of bistable system is given by the
Gaussian map

xn+1 = �xn exp�− xn
2� with � 
 0. �70�

Its fixed points are

x1 = 0, �71�
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FIG. 10. �Color online� Action of the heteroclinic orbit Wh and
activation barrier W0 from the Monte Carlo simulation vs the pa-
rameter value � for the cubic map �66�. The dashed curve is the
analytical action Wh

c calculated near the pitchfork bifurcation and
given by Eq. �69�.
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x2,3 = � 
ln � if � 
 1. �72�

The pitchfork bifurcation happens at �=1 and bistability
manifests itself for �
1. Contrary to the cubic map, escape
to infinity is not possible for this map, even in the presence
of noise. In this regard, this model is very convenient to
investigate the effects of noise on bistability. For 0���1,
the whole real line is the basin of attraction of the origin
x1=0. For �
1, the basins of attraction of the two attractors
emerging at the pitchfork bifurcation are, respectively,
B�x2�= �−� ,0� and B�x3�= �0,+��. Here also, the symplectic
map �26� has two focal points z�= ��1 /
2,0� and two cor-
responding prefocal lines �37�.

Taking x	=0 and x�=x2 for instance and calculating the
action of the heteroclinic orbit h=Ws�	��Wu��� in the
continuous-time approximation, we find

Wh
c = � − 1 − ln � , �73�

which holds for �
1. Here again, the comparison to the
results of Monte Carlo simulations and the action of the sym-
plectic map itself are excellent as shown in Fig. 11. As for
the cubic map, the activation barrier vanishes as the square
of the control parameter ��=�−1, which characterizes the
pitchfork bifurcation.

VI. CONCLUSIONS

In this paper, we have studied noise-induced escape or
exit from bifurcating fixed points of one-dimensional maps.
Such fixed points correspond to periodic orbits of strongly
dissipative dynamical systems. In this study, we have consid-
ered the transcritical, tangent, and pitchfork bifurcations
�42�. We followed a symplectic approach which applies in
the weak-noise limit. For noise generated by independent
Gaussian random variables, the time evolution can be ex-
pressed in terms of path integrals defined by an action func-
tional. In the weak-noise limit, path integrals are dominated
by the contributions of trajectories which are the extremals
of the action functional. For the present discrete-time sys-
tems, these trajectories are ruled by a symplectic map. This
two-dimensional area-preserving map reduces to the noise-

less one-dimensional map on its one-dimensional phase
space which is left invariant.

The noninvertibility of the one-dimensional map and the
associated symplectic map is at the origin of special phase-
space structures. In particular, the two-dimensional map is
not defined on singular lines, except at their intersections
with the invariant subspace. These intersections are the so-
called focal points �48,49�. The multiple inverses of the sym-
plectic map are defined on domains bordered by so-called
prefocal lines �48,49�. Strangely enough, the noninvertibility
has for consequence that each focal point is the preimage of
a corresponding prefocal line. Under such circumstances, in-
variant curves such as the stable and unstable sets may form
loops attached to the focal points and they may be composed
of several disjoint pieces, as here observed for the global
stable set. Otherwise, the symplectic map forms typical
phase-space structures such as elliptic islands surrounded by
chaotic zones and homoclinic or heteroclinic tangles. Hetero-
clinic orbits have been identified which connect the hyper-
bolic fixed points corresponding to the attractor and the top
of the barrier separating the basins of attraction.

Noise induces the escape or exit from each basin of at-
traction, changing the attractors of the noiseless map into
metastable states. The rates of escape or first exit have
Arrhenius’ dependence on the noise amplitude. In the present
nonthermal stochastic systems, the analog of the activation
energy is given by the action of the heteroclinic orbit con-
necting the attractor to the top of the barrier. We have devel-
oped an analytical method to calculate these actions close to
the bifurcations. Thanks to the critical slowing down near the
bifurcation, the noisy map behaves as a continuous-time sto-
chastic system, whereupon the corresponding symplectic
map can be approximated by a Hamiltonian flow with 1 de-
gree of freedom �28,29�. For this flow, the action of the het-
eroclinic orbit can be calculated analytically.

Applying this method to several one-dimensional noisy
maps, we have shown how the activation barrier for noise-
induced escape vanishes with the control parameter ��
��−�c near the transcritical, tangent, and pitchfork bifur-
cations. At these bifurcations, the activation barrier scales as
W0�����
 with a universal exponent 
 characteristic of the
bifurcation, as summarized in Table I. The analytical results
are in excellent agreement with Monte Carlo simulations. In
conclusion, the symplectic approach is a powerful method to
deal with stochastic dissipative systems in the weak-noise
limit and to delineate the universality of their properties near
bifurcations.
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FIG. 11. �Color online� Action of the heteroclinic orbit Wh and
activation barrier W0 from the Monte Carlo simulation vs the pa-
rameter value � for the Gaussian map �70�. The dashed curve is the
analytical action Wh

c calculated near the pitchfork bifurcation and
given by Eq. �73�.

TABLE I. Scaling behavior of the action W0 of the activation
barrier vs the control parameter ����−�c and universal exponent
for noise-induced escape or first exit from the attractor undergoing
different bifurcations. The corresponding rate is given by �, �̃
�exp�−W0 /�� in terms of the noise amplitude �.

Bifurcation Action Exponent

Transcritical �����3 3

Tangent ���3/2 3/2

Pitchfork ���2 2
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