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We present a technique, which we call “etching,” which we use to study the harmonic measure of Fortuin-
Kasteleyn clusters in the Q-state Potts model for Q=1–4. The harmonic measure is the probability distribution
of random walkers diffusing onto the perimeter of a cluster. We use etching to study regions of clusters which
are extremely unlikely to be hit by random walkers, having hitting probabilities down to 10−4600. We find good
agreement between the theoretical predictions of Duplantier and our numerical results for the generalized
dimension D�q� including regions of small and negative q.
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I. INTRODUCTION

A. Potts model

The Q-state Potts model, a generalization of the Ising
model to Q different spins, has been the subject of consider-
able interest �1�. Two important cases are Q=1 and Q=2,
which correspond to percolation �2� and the Ising model,
respectively. When a Potts system is prepared at its critical
temperature, subsets of the clusters of like spins, the Fortuin-
Kasteleyn �FK� clusters �3,4� �to be defined below�, are self-
similar fractals �5�. For Q=1 the FK clusters are the same as
the usual percolation clusters. In this paper, we will study the
harmonic measure of the hulls of these fractal clusters for
Q=1,2 ,3 ,4.

The harmonic measure may be thought of as the distribu-
tion of the surface electric field on a charged conductor.
Since the Laplace equation and the steady-state diffusion
equation are identical in form, the harmonic measure is also
equal to the distribution of probabilities of random walkers
diffusing far from the cluster onto a given section of the hull.
In this paper, we use a biased random-walk sampling tech-
nique to obtain the harmonic measure. We also review other
methods for measuring small probabilities and give details of
our algorithms.

The harmonic measure is of practical interest because of
its relation to the anomalous frequency dependence of the
impedance of rough electrodes �6� and because of its obvious
connection to processes that involve absorption of diffusing
particles such as catalysis �7�. It has a deep connection to the
structure of diffusion-limited aggregates �DLA� �8�, since the
harmonic measure determines where each walker will land;
that is, for DLA it is the growth probability. In the case of
critical Potts clusters and DLA, the harmonic measure is
multifractal �9�. Advances in conformal field theory and
Schramm-Loewner evolution have brought about renewed
interest in the harmonic measure. In particular, certain as-
pects of the harmonic measure for Potts clusters can be com-

puted in the continuum limit using these methods �10–15�.
Numerical investigation of the harmonic measure of per-

colation �16� and DLA �16–18� clusters is difficult because
the measure has a huge dynamic range for systems of even
moderate size. In Refs. �16–18� one of two methods were
used: the first is the straightforward one of releasing a large
number of random walkers far from the cluster and determin-
ing where they land. The second uses relaxation or equiva-
lent algorithms to solve the Laplace equation. The random
walker method can only measure probabilities down to about
10−10 and samples a very small part of the measure for clus-
ters of reasonable size. Relaxationlike methods are computa-
tionally costly and limited to small clusters and give similar
lower limits on the probabilities that can be measured.

For DLA it is possible to go to much smaller probabilities
by using the method of iterated conformal maps �19–21�.
However, this technique is only capable of treating moderate
size clusters �22�. In an earlier publication we generalized the
random walker method and gave a technique capable of ob-
taining probabilities down to 10−300 for any fractal. We ap-
plied it to FK clusters for percolation and the Ising model
�23�. This paper describes a further development of those
techniques.

B. Generalized dimensions

The harmonic measure, the distribution of probabilities
that random walkers will hit a given site on the perimeter of
a cluster, is very complicated and varies wildly for the cases
we are studying; see Fig. 1. A popular and useful way to
characterize it is in terms of the generalized dimension, D�q�,
of the measure. We define these objects as follows: we cover
the hull with boxes of length L. With each box we associate
a probability, pi, which is the sum of the measure over the
sites within the box. We then define a function ZL�q�, some-
times called the partition function:

ZL�q� = �
i

pi
q, �1�

where q is some power �24�. If the object in question is
fractal, then the partition function will follow a power law in
L:
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ZL�q� � �R/L�−�q = �R/L�−�q−1�D�q� �2�

for �R /L�→�, where R is the size of the cluster. For integer
q, D�q� corresponds to the fractal dimension of the q-point
correlation function. There are special values of D�q�. D�0�
is the fractal, box-counting, dimension of the hull. Also D�1�,
the information dimension, is always unity by Makarov’s
theorem �25�. A related function is the singularity spectrum
f���, the Legendre transform of D�q�:

f��� = q
d�

dq
− �, � =

d�

dq
. �3�

In this paper, we will focus exclusively on the D�q�. The
singularity spectrum can be derived from our results using
Eq. �3�.

II. MODELS

A. Simulations of FK clusters for the Potts model

We produce critical Potts clusters in two ways. For per-
colation, we use the Leath algorithm �26�. The algorithm
starts with a single active site; we attempt to turn its neigh-
bors into active sites with probability p. If a conversion at-
tempt fails, the site is labeled inactive. The process is re-
peated with neighbors of the active sites which have not been
labeled as inactive. The process continues until there are no
new active sites. If p equals pc, the percolation threshold, a
critical percolation cluster is produced. The outer layer of
active sites is called the complete perimeter. Its fractal di-

mension is denoted DH. The cluster of active sites is sur-
rounded by a single layer of inactive sites; this layer is called
the accessible �or exterior� perimeter �27� and has a fractal
dimension denoted DEP. The accessible perimeter of interest
because, unlike the complete perimeter, it is expected to have
a well-behaved limit when clusters are very large and are
rescaled. The harmonic measure has been determined in this
limit for the accessible perimeter of Potts clusters �10,11�.

To obtain critical Potts clusters for Q=2,3 ,4, we grow
equilibrated FK clusters using the Swendsen-Wang �SW� al-
gorithm �28�. For any configuration of spins, FK clusters are
subsets of clusters of like spins formed by a bond percolation
process. That is, we consider the clusters formed when adja-
cent spins are connected with probability pc�Q�=1−exp�
−Kc�Q��, where Kc�Q� is the critical coupling constant. For
Q=2,3 ,4, on the triangular lattice, pc�Q� is known to be 1
−1 /�3, 1−1 / �1+ 1

2
�3 sec�� /18��, and 1/2, respectively �29�.

To obtain the equilibrium ensemble of FK clusters we iterate
two steps until the system settles down �see below�. The first
step takes every current FK cluster and replaces the spin with
one of the Q possible values, at random. In the second step,
the bonds connecting the clusters are discarded and bond
percolation is performed again, with p= pc�Q�, on all neigh-
boring sites with the same spin. The process is then repeated
by updating the spins on the newly formed clusters. These
two steps together constitute a spin update.

B. Parameters and observables

We grew critical Potts clusters for Q=1–4 on the trian-
gular lattice, as described above. We chose to use a triangular
lattice rather than a square lattice because the square lattice
does not allow diffusion into fjords bounded by diagonal
entrances. We use the width of the system, W, as the charac-
teristic length. The clusters we want span in the width direc-
tion but not in the height direction. To make sure the clusters
will only span in one direction, we chose very large aspect
ratios. The height of the lattices were 100W and 8W for Q
=1 and Q�1, respectively. We looked at six different system
widths, W=128,256,512,1024,2048,4096. Because FK
clusters are intrinsically bond clusters, we needed to use a
trick to turn them into site clusters. We created a lattice twice
as dense as the original and marked every site at the center of
a bond and every site where two bonds meet as cluster sites.
The FK cluster widths used were W /2
=64,128,256,512,1024,2048.

To have proper FK clusters we require equilibration in the
SW algorithm. We numerically determined that the equilibra-
tion time for Q=2,3 ,4 is of the order of W spin updates by
looking at the relaxation of the average energy per spin and
the average largest cluster size. For Q=2,3 and small W we
ran a separate simulation to equilibrium for each spanning
cluster which was added to our ensemble. For Q=2 and 3
and W=2048 and 4096 and for all of the Q=4 clusters, the
equilibration time was too large to proceed in this way. In
these cases we equilibrated the system once and recorded an
ensemble of spanning clusters as the simulation proceeded.
We conservatively estimate the correlation time as 50 spin
updates for all W and Q. This means we recorded a spanning
cluster every 50 spin updates.

10-1
10 -8
10-14
10-20
10-26
10-32
10-38
10-45
10-51

FIG. 1. �Color online� The harmonic measure for the complete
perimeter of a small, W=64, percolation cluster. The solid gray
regions represent the area that is inaccessible to the random walkers
diffusing from above the cluster. Every perimeter site is colored
according to its measure. The computation was performed using the
etching method described below. Note that the measure on this
small cluster spans 50 orders in magnitude.
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For each system size we grew a number of clusters. For
all Q our ensemble was 2000, 2000, 1000, 1000, 400, and
100 clusters for W=128,256,512,1024,2048,4096, respec-
tively.

III. MEASURING SMALL PROBABILITIES WITH
RANDOM WALKERS

A. Previous methods

Small probabilities in the harmonic measure correspond
to very unlikely paths. As the simulation proceeds we can
think of the event of a random walker landing where the
measure is very small as a rare event. Thus, computing small
probabilities is a similar task to finding the rate of a rare
chemical reaction �30�, a rare extinction of a disease �31� or
a population �32�, or the failure of a queuing system via
queue overflow �33�.

Accelerated numerical methods for these problems often
involve biased event sampling. The sampling can frequently
be cast as a random walk, either through state space or in our
case, physical space. For example, one could ask what is the
probability that a random walker starting halfway up a hill
will successfully climb up to the top before sliding down to
the bottom. If the hill is steep, it could be impossible to
directly sample the probability to climb the hill. One could
place barriers uniformly on the hill, which when crossed by
the random walker, will split the random walker into two
walkers, each with equal weight which add up to the original
weight of the walker. This will aid sampling of the events
higher up on the hill. This method is called “splitting” and
effectively performs importance sampling �34�. One signifi-
cant drawback of splitting is that if the barriers are too
densely or sparsely spaced, the number of random walkers
will tend to diverge or extinguish, respectively.

The methods we detail in this paper are related to the
splitting method, but differ in that our methods do not have
the possibility of diverging or extinguishing. Another popular
method called “milestoning” �35� does not have a divergence
problem, but does require the system studied to be in equi-
librium and the location of the barrier to be known a priori,
whereas our method works for equilibrium and nonequilib-
rium systems and the barriers are placed “on the fly.”

B. Signposts

We have developed several accelerated methods for the
harmonic measure problem. The motivation, as we have
stated, is that it is usually impossible to send in enough ran-
dom walkers to directly obtain the harmonic measure: the
clusters will frequently have regions with probabilities of
being hit that are smaller than 10−100. It would require of
order 10100 random walkers to sample this region; such a
computation is clearly impossible.

We now review the first method we developed, the sign-
post method �23�. The signpost method consists of two steps
which are applied iteratively; see Fig. 2. In the first �probe�
step we release N diffusing random walkers far from the
cluster to determine which regions are rarely visited in
straightforward sampling. Next, we block off all poorly

sampled regions with signposts �absorbing lines�. In the sec-
ond �measurement� step, N more walkers are released far
from the cluster and either absorb on the cluster �or the ac-
cessible perimeter� or onto the signposts. The walkers sent in
this step have their weight permanently added to the har-
monic measure of the perimeter sites where they landed. In
the next probe step, the walkers are released from the points
on the signposts where the walkers in the previous measure-
ment landed. The new walkers have a weight of p /N, where
p is the fraction of random walkers that absorb onto signpost
lines in the previous step, to conserve probability. The probe
step again helps determine which regions are still poorly
sampled, which are subsequently blocked off. Next, another
measurement step is performed. This process is repeated un-
til all regions are explored by the random walkers. This al-
gorithm can be applied to on- and off-lattice clusters.

We should note some things about this method. First, one
must determine the entire perimeter of the cluster at the be-
ginning of the computation in order to figure out how to
block poorly sampled regions. Also, one needs to choose a

(a) (b)

(d)
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0.0 0.0

0.0
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FIG. 2. �Color online� The signpost method. The system is pe-
riodic in the horizontal direction. �a� First �probe� step: N random
walkers are released from the top row and absorb onto the perimeter
sites. �b� We choose the first probability threshold as 0.1. Using this
threshold, we connect the bounding sites using signpost sites. In the
second �measurement� step we send N more random walkers from
above which can absorb onto the signpost or perimeter sites. �c�
Second probe step: the random walkers are launched from the sign-
post sites in the previous measurement step. The weights of the
walkers released in this step have a weight of p /N where p is the
fraction of the random walkers that hit the signpost site in �b�. �d�
The second threshold, 0.01, is used to determine the location of the
new signpost sites.
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rate to reduce the threshold for calling areas “poorly
sampled” in each iteration. In �23�, we moved the threshold
down by a power of 10 each iteration, whereas in �36�, we
reduced it as a function of how many walkers hit the signpost
in the previous iteration. When more walkers hit the sign-
posts we moved them even deeper. The second method gave
more consistent walker saturation, which should lead to a
slower compounding of error. It is important to note the sign-
post algorithm is only practical for two-dimensional prob-
lems. For higher dimensions, one would need to define sign-
post surfaces to block poorly sampled regions. This could be
very complex for a complicated cluster.

C. Etching

We now describe the method we use here which we call
“etching.” Consider the hull of FK clusters grown on a tri-
angular lattice with periodic boundary conditions. We want
to find the harmonic measure of the top perimeter from
above. To do this, we start by marking all sites that are ex-
terior to the cluster from above as soft sites; the soft sites are
absorbing like the cluster �or accessible perimeter� sites. The
highest row is limited to one level above the highest point on
the perimeter.

We next relabel every site on that highest row as a current
level site; these are not absorbing. We release N random
walkers, each with weight 1 / �NW�, from each current level
site. The walkers released from these sites are allowed to
walk until they deposit their weight onto a soft site or a
perimeter site. If they move one level further away from the
cluster, they are immediately moved back onto the current
level sites using a Green’s function which must be deter-
mined in advance. However, this is rather simple since it is
the Green’s function to return to a plane from one site above
the plane. This Green’s function is used for the entire simu-
lation and limits how far a walker can backtrack to at most
one level above the cluster. After all random walkers are
released, the labels on each current level site are removed
and every soft site hit in the previous step is labeled as a
current level site. From each current level site i we release N
random walkers with weight pi, where pi is the amount of
probability deposited on the site in the previous step divided
by N. This process is repeated until there are no more soft
sites. See Fig. 3.

Etching can be thought of the limit of the signpost method
with the signposts spaced one site apart. However, etching
has several benefits over the signpost method. First, the en-
tire perimeter of the cluster does not need to be mapped out
before we start. Both algorithms have the same time com-
plexity, O�W3� for the complete perimeter of Ising clusters,
and both methods have similar memory requirements. In
contrast to the signpost method, the etching method can be
easily generalized to higher-dimensional lattice problems and
networks. We have successfully used etching to obtain the
harmonic measure of three-dimensional percolation clusters
�37�.

D. Green’s functions

We have also developed a rare-event method which may
be significantly more efficient than etching and signposting

for some problems. Thus far we have applied this method
only to simple test problems. This method manipulates prob-
abilities directly and does not allow backtracking of prob-
ability. To do this, we calculate the Green’s function
G�i , j ;k , l�, i.e., the probability to move to any of the sites i,
j in the next level from a given site k, l in the current level.

To illustrate our algorithm, consider finding the probabil-
ity distribution a channel with absorbing walls on a square
lattice. The initial condition is that the probability is uni-
formly distributed among the sites in the first row of the
channel and the zeroth row is a reflecting boundary. All sites
that initially have probability are denoted by C. The previous
level sites, absorbing sites, and next level sites accessible to
the current level sites are denoted by B, A, and N, respec-
tively. �Initially, the previous level is the reflecting bound-
ary.� In each iteration, the goal is to move all of the prob-
ability from each current level site to all the next level and
absorbing sites.

(a)(a)(a) (b)(b)(b)

(d)(d)(d)
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FIG. 3. �Color online� The etching method. Walkers are released
from the current level sites. The next level of soft sites absorb
walkers; they are then relabeled as current level sites. Future sites
are all sites which will eventually become current level sites. The
first round of random walkers is launched from the row above the
cluster, �a�. The weight of all of the walkers released is 0.2 /N,
where N is the number of walkers released per current level site.
20% of the walker weight is deposited onto the top row of perimeter
sites and the next level soft site, which will release N walkers in the
next step. �b�. One more perimeter site is accessible to the random
walkers and 5% of the weight is deposited on the site in the next
level. �c� Three sites in the next level each absorb 1% of the walker
weight. �d� Due to the reduced weight of the walkers released in the
next step, small probabilities are measured on the newly exposed
perimeter sites.
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We find the Green’s function by iteration on an index s.
The process begins for some current level site, k, l; �k , l�
�C. Initially, probability only resides at k, l so that for s
=0, Gs�i , j ;k , l�=�i,k� j,l. In each iteration, the probability is
moved to each of the current level site’s neighbors,

G�s+1��i, j ;k,l� = �
�m,n�

W�i, j ;m,n�G�s��m,n;k,l� , �4�

using the jump probability,

W�i, j ;m,n� =
1

4
��i,m+1� j,n + �i,m−1� j,n + �i,m� j,n+1

+ �i,m� j,n−1� �m,n� � C

=GB�i, j ;m,n� �m,n� � B

=�i,m� j,n �m,n� � A � N . �5�

Here GB�i , j ;m ,n� is the Green’s function for the previous
level, see below, and the last line represents the probability
staying at absorbing and next level sites. GB�i , j ;m ,n� takes
into account all the processes that would correspond to ran-

dom walkers backtracking before the previous level. To start
the process, the reflecting boundary has GB�i , j ;0 ,n�
=�i,1� j,n.

For large s, virtually all of the probability will be on ab-
sorbing sites and next level sites. In any finite amount of
time, some slight probability will remain in the current level,
so after the stopping criterion is met, the probabilities re-
corded on the absorbing and next level sites must be normal-
ized. When this has been achieved, we have the Green’s
function from a given site in the current level, k, l, to any site
in the next level, i, j:

GB�i, j ;k,l� = lim
s→�

G�s��i, j ;k,l� . �6�

In the next step, this GB will be used as a jump probability.
This process is repeated for all current level sites so that

Green’s functions from those sites to the next level sites and
absorbing sites are calculated. With these Green’s functions,
it is easy to determine where the probability from the first
level will end up. If the probability in the starting level is
P�k , l�, then the probability in the next level is

P�i, j� = �
�k,l��C

GB�i, j ;k,l�P�k,l� . �7�

Note that �i , j� can be absorbing sites as well as next level
sites.

The next step is to relabel all current level sites as previ-
ous level sites, relabel all next level sites as current level
sites, and mark all sites that are accessible to the new current
level sites �which are not previous or absorbing sites� as next
level sites. Then the process is repeated.

The end result of this process is that all of the original
probability is at absorbing sites, as it would be using sign-
posting or etching. Although this example contained only
sites that were completely absorbing or nonabsorbing, the
Green’s function method can easily be generalized to partial
absorption problems.

FIG. 4. An example of the fit of versus to a straight line for
q=2.0379. The behavior is similar for all q values that we have
examined. The slope of the line is ��q���q−1�D�q�.

FIG. 5. �Color online� The D�q� spectrum for the accessible perimeters of Q=1,2 ,3 ,4 clusters in �a�, �b�, �c�, and �d�, respectively. The
solid lines are the theory of �11� and the symbols are the results of our simulations for several system widths. The vertical dotted lines mark
qmin for the theoretical spectra for infinite systems.
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The Green’s function method is somewhat more complex
to program than the etching method and the simplest imple-
mentation involves setting up the Green’s function lookups
in sparse arrays. This leads to a memory complexity which
grows like W2d, where d is the dimension of the space. The
memory complexity would significantly reduce its useful-
ness, as it would take at least 1 terabyte to store a two-
dimensional cluster with a length scale of 1000 lattice sites.
However, it is possible to store the Green’s function lookup
in an associative array; this reduces the memory complexity
to Wd−1+D, where D is the fractal dimension of the perimeter.
For the external perimeter of two-dimensional percolation
clusters the memory complexity grows like W7/3, which is
quite close to the memory complexity for etching, W2. For a
cluster with a length scale of 1000 sites, the minimum re-
quired memory would be about 10 megabytes for the Green’s
function method.

IV. RESULTS

We used etching to find the harmonic measure of Q-state
Potts model clusters. We analyze the measure by producing
D�q� spectra and histograms of the probability distributions.
To obtain D�q�, we start by sectioning individual clusters
into boxes of length L as described above. Because we are
using a triangular lattice, it is convenient to use a parallelo-
gram aligned with the lattice as a box. After completely tiling
the cluster with boxes, we define the probability within a box
pi,L as the sum of the measure of perimeter sites within the
box. We then calculate Z�L ,q� using Eq. �1�. D�q� is related
to Z�L ,q� by �q−1�D�q�=m, where m is the slope of
log Z�L ,q� versus log L.

We found that for a given Q and q, all system sizes have
similar local slope behavior over a range of L; see Fig. 4. In
order to average over the ensemble we average log Z. How-
ever, if we use the slopes for each individual member of the
ensemble and average them we get virtually identical results.

The spectra of generalized dimensions for the external
hulls of Q=1–4 are given in Fig. 5. In all cases the results
are close to the theoretical predictions �11�. The theoretical
predictions include a divergence of D�q� for q�qmin for an
infinite system; see below. Our simulation results increase
rapidly with W for this regime, as expected; see Fig. 6.

For completeness, we include the spectrum of generalized
dimensions for the complete perimeter for the case Q=1; see
Fig. 7. There is no theoretical prediction for this quantity. For
positive q the results are close to those of the accessible
perimeter shown in Fig. 5. This is because, for positive q,
large probabilities contribute most of the weight in Z�q�.
Near q=0 the two spectra differ because there are signifi-
cantly more sites with small measure for the complete hulls.

We also considered the distribution of the values of p
directly, by making histograms of its frequency for all Q and
W. The histograms turn out to be power laws with negative
powers near −1; for an example see Fig. 8. Since the histo-
gram is very accurately a power law in p, it is useful to plot
the local slope of the histogram, which is shown in Fig. 9 for
the accessible perimeters for Q=1–4. We also show the local
slope for the complete perimeter of Q=1; see Fig. 10. The
slope is calculated over about 10 orders of magnitude in p
for the accessible perimeter, and more than one order of
magnitude for the complete perimeter.

The significance of the slope is that it gives information
about the nonscaling aspects of the distribution, and, in par-
ticular, the value of qmin mentioned above. If we call the
slope of the histogram −� �so that � is a positive number�
we see that the partition function of Eq. �1� formally diverges

FIG. 6. �Color online� The D�q� spectrum for the accessible
perimeters of Q=1 clusters for small q. As the system size increases
the simulated values increase, presumably to approach infinity for
q�−1 /24.

FIG. 7. �Color online� The D�q� spectrum for Q=1 for the com-
plete perimeter. There is no theoretical prediction for this quantity.
However, for q substantially bigger than 0 we expect this result to
be very similar to the result for the accessible perimeter since large
probabilities will dominate the sum in Eq. �1�. The line labeled
“theory” is for the accessible perimeter.

FIG. 8. �Color online� The histogram of the frequency of occur-
rence of the values of p for the accessible perimeter for Q=1. The
points for various values of W are superimposed.
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if q��−1, or, said another way, we expect D�q� to be un-
defined for q�qmin=−1+�. This means that the partition
function is dominated by a few instances of very small prob-
abilities which does not scale as power law in R /L. The
values for the limit of the spectrum agree well with the pre-
dictions of Duplantier �10,11�; see Fig. 9. Note that the
slopes are very nearly constant over about 40 orders of mag-
nitude in p.

The slopes for the complete perimeter of percolation clus-
ters are also constant over many orders of magnitude; see
Fig. 10. In this case we find that � is very close to 1 and the
limit of the spectrum is at qmin=0. There is no theory for this
case and no explanation for this intriguing result.

V. ERROR ESTIMATE

Since etching involves sampling the probability, there will
be errors due to the finite number of random walkers released
at each step. For the results in this paper, we released 103

random walkers per current level site for all system widths
and Q values.

We can estimate the sampling errors as follows: we con-
sidered one percolation cluster with W=2048 and made ten
independent computations of the pi. The variance of the
probability over this sample at a given point on the cluster,
�pi, is a measure of the reliability of the measurement. In our
case we found that some points have a rather large percent-
age error, though always less than a factor of 3, but the
average over all the points, 	�pi / pi
, was 23%. Note that the
very small probabilities well inside the cluster have very
small errors. There is no buildup of the error as we etch
toward the interior, as might have been expected.

If it is necessary to reduce the error further, more random
walkers can be used. However, we believe that the ensemble
averaging that we did means that the generalized dimensions
are much more accurate than the individual probabilities.
Our evidence for the last statement is the good quality of the
fit in Fig. 4 and the closeness of the results in Fig. 5 to

theory. Note also that D�0� is close to the known fractal
dimensions of the exterior perimeters.

VI. CONCLUSIONS

In this paper, we presented the etching method, an accel-
erated technique for computing the harmonic measure. We
are able to measure probabilities as small as 10−4600. We
showed how this method relates to other methods. We used
etching to obtain the harmonic measure for the accessible
perimeter of FK clusters for the Q-state Potts model for Q
=1–4, for a range of system sizes. We compared this data to
theoretical predictions �10,11�. These theories were produced
for a continuum model which, in principle, might not apply
to the scaling limit of the Q-state Potts model on a lattice. In
fact, we found good agreement between our numerical re-
sults and the theoretical predictions for every comparison we
made including the D�q� spectra and the slopes of the power-
law probability distributions.

For the complete perimeter of percolation clusters, we
found the slope to be almost exactly −1 for about 4000 or-
ders of magnitude. This suggests the smallest q for which

FIG. 10. �Color online� The local slope of the histogram of the
frequency of occurrence of the values of p for the complete perim-
eter for Q=1.

FIG. 9. �Color online� The local slope of the histogram of the frequency of occurrence of the values of p for the accessible perimeter for
Q=1,2 ,3 ,4 in �a�, �b�, �c�, and �d�, respectively. Also shown �solid lines� are the theoretical predictions of the local slope from �11�. Note
that in �b� the smallest probabilities recorded were not from the largest system size, but were from W=1024. This can be understood by the
fact that ten times as many clusters were generated for W=1024. That is, among the many samples at W=1024, a few abnormally deep
clusters were recorded which happened to have the smallest probabilities.
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D�q� is defined is q=0. This means that there are many in-
stances of small probabilities on the complete perimeter of
percolation clusters which tend to diverge toward negative
infinity faster than any power of R /L.

Etching, signposting, and the Green’s function method are
three tools which can find very small probabilities. The ad-
vantage of signposting is that it is natural to use in off-lattice
systems, and, in fact, we have applied it to off-lattice DLA
�36�. Etching is simple to program and should be easy to use
in higher-dimensional on-lattice systems. Lastly, the Green’s
function method is likely to be the most efficient of the al-

gorithms for on-lattice and network systems, but it is more
difficult to implement and requires more memory than etch-
ing. The etching and Green’s function methods �but not sign-
posting� can be used in problems which involve absorption
probabilities less than unity.
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