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We continue studying long-ranged quantum correlations of surface charge densities on the interface between
two media of distinct dielectric functions which are in thermal equilibrium with the radiated electromagnetic
field. Two regimes are considered: the nonretarded one with the speed of light c taken to be infinitely large and
the retarded one with a finite value of c. The analysis is based on our results obtained by using fluctuational
electrodynamics �L. Šamaj and B. Jancovici, Phys. Rev. E 78, 051119 �2008��. Using an integration method in
the complex plane and the general analytical properties of dielectric functions in the frequency upper half
plane, we derive explicit forms of prefactors to the long-range decay of the surface charge correlation functions
for all possible media �conductor, dielectric, and vacuum� configurations. The main result is that the time-
dependent quantum prefactor in the retarded regime takes its static classical form for any temperature.
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I. INTRODUCTION

In this paper, we continue studying long-ranged quantum
correlations of surface charge densities on the interface be-
tween two distinct media, initiated in Refs. �1,2�. The model,
formulated in the three-dimensional Cartesian space of coor-
dinates �x ,y ,z�, is inhomogeneous say along the first coordi-
nate x �see Fig. 1�. The two semi-infinite media with the
frequency-dependent dielectric functions �1��� and �2��� are
localized in the half spaces x�0 and x�0, respectively.
Since there are difficulties in defining the frequency-
dependent magnetic permeability ���� �3�, we restrict our-
selves to the case �=1 in both media. The interface is the
plane x=0; a point on the interface is R= �0,y ,z�. The dif-
ferent electric properties of the media give rise to a surface
charge density which must be understood as being the mi-
croscopic volume charge density integrated on some micro-
scopic depth. It is related to the discontinuity of the x com-
ponent of the electric field on the interface. Denoting by
��t ,R� the surface charge density at time t and at a point R,
the �symmetrized� two-point correlation function, at times
different by t, reads

S�t,R� � 1
2 ���t,R���0,0� + ��0,0���t,R��T, �1�

where �¯ �T represents a truncated statistical average at the
inverse temperature � �we exclude the case of zero tempera-
ture, �→	�. We are interested in the behavior of the corre-
lation function �1� at distances on the interface R= �R� large
compared to the microscopic length scales �like the particle
correlation function�. The static case of zero time difference
t=0 between the two distinct points is simpler than the one
with t�0 and so the two cases are treated separately.

The two media configuration studied so far was restricted
to a conductor, localized say in the half space x�0 with the

dielectric function �1��������, in contact with vacuum of
the dielectric constant �2���=1 �the vacuum part of the space
is equivalent to a hard wall impenetrable to charged particles
forming the conductor�. In some theoretical studies, the di-
electric function is approximated by a simple one-resonance
Drude formula �4�

���� = 1 +
�p

2

�0
2 − ��� + i
�

, �2�

where �p is the plasma frequency, 
 is the dissipation con-
stant, and �0 is the oscillation frequency of harmonically
bound charges: �0=0 for conductors and �0�0 for dielec-
trics. In �1,2�, we applied Eq. �2� to the jellium model �some-
times called the one-component plasma�, i.e., a system of
pointlike particles of charge e, mass m, and bulk number
density n, immersed in a uniform neutralizing background of
charge density −en. The dynamical properties of the jellium
have a special feature: there is no viscous damping of the
long-wavelength plasma oscillations for identically charged
particles, so that 
→0+ in Eq. �2�. The frequencies of non-
retarded nondispersive long-wavelength collective modes,
namely, �p of the bulk plasmons and �s of the surface plas-
mons, are given by

�p = 	4�ne2

m

1/2

, �s =
�p

�2
. �3�
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FIG. 1. Two semi-infinite media characterized by dielectric
functions �1��� and �2���.
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For other conductors and dielectrics, we shall use only the
general properties of ����, without restricting ourselves to
the Drude model �2�.

The problem of a conductor in contact with vacuum was
studied in the past, with an increasing level of physical com-
plexity and their range of validity. The problem can be
treated as classical or quantum, in the nonretarded or re-
tarded regime. In all cases, the asymptotic large-distance be-
havior of the surface charge correlation function �1� exhibits
a long-ranged tail of type

�S�t,R� �
h�t�
R3 , R → 	 , �4�

where the form of the prefactor function h�t� depends on the
model used. It is useful to introduce the Fourier transform

S�t,q� =
 d2R exp�iq · R�S�t,R� , �5�

with q= �qy ,qz� being a two-dimensional �2D� wave vector.
Since, in the sense of distributions, the 2D Fourier transform
of 1 /R3 is −2�q, a result equivalent to Eq. �4� is that �S�t ,q�
has a kink singularity at q=0, behaving like

�S�t,q� � − 2�h�t�q, q → 0. �6�

�i� Classical nonretarded regime. Let the conductor be
modeled by a classical Coulomb fluid composed of charged
particles with the instantaneous Coulomb interactions. By a
microscopic analysis �5�, the long-range decay of the static
surface correlation function was found such that

hcl
�nr��0� = −

1

8�2 , �7�

where the subscript “cl” means “classical” and the super-
script “nr” means “nonretarded” �i.e., considered without
relativistic effects associated with the finiteness of the speed
of light c�. The same result has been obtained later �6� by
simple macroscopic arguments based on a combination of
the linear-response theory and the electrostatic method of
images. Note the universal form of hcl�0�, independent of the
composition of the Coulomb fluid.

�ii� Quantum nonretarded regime. The extension of the
static result �7� to a quantum Coulomb fluid, modeled by the
jellium, was accomplished in Ref. �7�. The absence of damp-
ing was crucial in the treatment using long-wavelength col-
lective modes, the bulk, and surface plasmons with frequen-
cies given in Eq. �3�. The Maxwell equations, obeyed by the
plasmons, were considered in the nonretarded �nonrelativis-
tic� regime with the speed of light c taken to be infinitely
large, c=	, ignoring in this way magnetic forces acting on
the charged particles. The obtained time-dependent result has
the nonuniversal form �7–9�

hqu
�nr��t� = −

1

8�2 �2g��s�cos��st� − g��p�cos��pt�� , �8a�

g��� =
���

2
coth	���

2

 , �8b�

where the subscript “qu” means “quantum.” According to the
correspondence principle, a quantum system admits the clas-
sical statistical description in the high-temperature limit
��→0. In this limit, the function g���=1 for any � and the
quantum formula �8a� reduces to the classical nonretarded
one

hcl
�nr��t� = −

1

8�2 �2 cos��st� − cos��pt�� . �9�

For t=0, we recover the classical static formula �7�.
�iii� Quantum retarded regime. In the previous paper �1�,

we studied the surface charge correlations taking into ac-
count retardation �c is assumed finite� and the quantum na-
ture of both the jellium and the radiated electromagnetic
�EM� field, which are in thermal equilibrium. In other words,
the quantum particles are fully coupled to both electric and
magnetic parts of the radiated EM field. By using Rytov’s
fluctuational electrodynamics �3,10,15�, we showed that
there are two regions of distances R on the interface: the
intermediate one given by the inequalities 
ph�R�c /�p
�
ph���c stands for the thermal de Broglie wavelength of
photon and c /�p is the wavelength of electromagnetic waves
emitted by charge oscillations at frequency �p�, where the
nonretarded results �8a� and �8b� apply, and the strictly
asymptotic one given by the inequality c /�p�R, where a
retarded result applies. After long calculations in �1�, a bit
shortened through the alternative method of �2�, a very
simple form of the retarded result was found,

hqu
�r��t� = −

1

8�2 . �10�

Here, the superscript “r” means “retarded.” We see that, for
any temperature and time t, the inclusion of retardation ef-
fects causes the prefactor function h�t� to take its universal
static classical form �7�, independent of � and c. Formula
�10� does not change in the classical limit ��→0, i.e.,

hcl
�r��t� = −

1

8�2 . �11�

The presence or the absence of magnetic fields is important
in two-point classical statistical averages, taken at two dif-
ferent times �11�. Therefore, it is not surprising that the clas-
sical retarded formula �11� and the classical nonretarded one
�9� do not coincide with one another for nonzero time differ-
ences, hcl

�r��t��hcl
�nr��t� for t�0. On the other hand, for t=0

we have

hcl
�r��0� = hcl

�nr��0� . �12�

This equality is in agreement with the Bohr-van Leeuwen
theorem �12,13� about an effective elimination of magnetic
degrees of freedom from statistical averages �with zero time
differences among the fixed points in the coordinate part of
the configuration space� of classical systems; for a detailed
treatment of this subject, see Ref. �14�.

In the previous papers �1,2�, we used the fact, special to
the jellium model, that there is no damping for small wave
numbers. The question whether the crucial formula �10� is
still valid for a conductor with dissipation was left as an open
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problem. There are still many other unsolved physical situa-
tions that deserve attention. What happens in the case of a
general dielectric in contact with vacuum? Filling the
vacuum region by a material medium, other types of contacts
are possible, such as conductor-conductor, dielectric-
dielectric, and conductor-dielectric. Another kind of problem
is the algebraic complicacy connected with the derivation of
result �10� for the jellium with the relatively simple form of
the dielectric function. Does there exist a simple method for
evaluating the large-distance asymptotics of the surface
charge density correlation function that is applicable to the
jellium as well as to other more complicated systems? All
questions asked are answered in the present paper.

The generalization of the formalism to contacts between
all kinds of materials, defined by their dielectric functions,
has already been done in Ref. �1�. The true problem is the
mathematical handling of the final �nonretarded or retarded�
formula for the Fourier transform �S�t ,q�, written as an in-
tegral over real frequencies, to deduce the small-q behavior
�6�. Here, we accomplish the task first by extending the in-
tegration over real frequencies to a contour integration in the
complex frequency plane and then using integration tech-
niques in the complex plane together with the known ana-
lytical properties of dielectric functions in the frequency up-
per half plane. In short, the time-dependent retarded results
maintain the simplicity of the jellium formula �10� and in-
volve only dielectric functions of media in contact at zero
frequency. The nonretarded results are complicated and
available only, in general, as infinite series over Matsubara
frequencies.

The paper is organized as follows. Section II is a gener-
alization of the classical static result �7� for conductor to a
dielectric. The result will serve us as a check of more general
calculations. Section III summarizes briefly the general ana-
lytical properties of dielectric functions in the complex fre-
quency upper half plane, which are necessary for the deriva-
tion of our basic results. Section IV applies the present
method for the calculation of �S�0,q�. Section V does the
same for �S�t ,q�. Section VI is a conclusion.

II. STATIC CORRELATIONS FOR CLASSICAL
DIELECTRICS

It has been known for a long time �5� that the classical
surface charge correlations on a conductor, made of particles
interacting through the Coulomb law and bounded by a plane
wall, are long ranged. We prefer to use the macroscopic lan-
guage �6�. If R and R� are two points on the wall, the clas-
sical correlation, for distances �R−R�� large compared to the
microscopic scale, behaves like

�S�R − R�� � ����R���R��� � −
1

8�2�R − R��3
�13�

�we assume that the conductor is uncharged, ���R��=0�.
A generalization of Eq. �13� for the case of a dielectric of

static dielectric constant ��0�=�0 bounded by a plane can be
found by the same method that has been used in �6�. ��R� is
related to the discontinuity of the x component of the electric
field on the wall. We call Ex

out�in��R� the limit of that field

component as R is zero from the outside �inside� of the di-
electric. The correlation of the surface charge densities is

���R���R��� =
1

�4��2 ��Ex
in�R� − Ex

out�R���Ex
in�R��

− Ex
out�R���� . �14�

If a test infinitesimal charge is introduced at
r= �x�0,0 ,0� in the dielectric, the electric potential created
by the dielectric at a point r�= �x��0,y� ,z�� in the dielectric
is given by the method of images as �4�

���r���q =
1

�0
� q

�r� − r�
−

q�1 − �0�
�1 + �0��r� − r��� −

q

�r� − r�
,

�15�

where r�= �−x ,0 ,0� is the image of r. The last term in Eq.
�15� is the potential created by q, which should not be in-
cluded in the potential created by the dielectric. The linear-
response theory relates response �15� to the unperturbed cor-
relation function between the additional Hamiltonian q��r�
and ��r��, giving

���r���q = − �q���r���r��� . �16�

Since the x component of the electric field is Ex�r�
=−�� /�x���r�, using Eqs. �15� and �16� we can obtain the
correlation of the x component of the electrical fields inside
the dielectric at the wall as

��Ex
in�R�Ex

in�R��� = 	 2

1 + �0
−

2

�0
+ 1
 1

�R − R��3
. �17�

Similar calculations give the correlation outside the dielectric

��Ex
out�R�Ex

out�R��� =
1 − �0

1 + �0

1

�R − R��3
�18�

and the cross correlation

��Ex
in�R�Ex

out�R��� = −
1 − �0

1 + �0

1

�R − R��3
. �19�

Using Eqs. �17�–�19� in Eq. �14�, we obtain

����R���R��� � −
1

8�2	 1

�0
+ 1 −

4

1 + �0

 1

�R − R��3
,

�20�

which is the wanted generalization for a dielectric. With re-
gard to definition �4�, we have the nonuniversal result

hcl�0� = −
1

8�2	 1

�0
+ 1 −

4

1 + �0

 . �21�

The value of ��0� is infinite for any kind of conductor and we
retrieve Eq. �13� from Eq. �20�, or Eq. �7� from Eq. �21�.
This fact explains the universality of the static hcl for con-
ductors.
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III. ANALYTICAL PROPERTIES OF DIELECTRIC
FUNCTIONS

Analytical properties of dielectric functions are described
in many textbooks �3,4,15�. They apply to an arbitrary di-
electric function of real materials, including the idealized
Drude formula �2�. We shall mention only those properties
that are important in the derivation of our basic results; the
proofs of theorems are given in the above textbooks. The
vacuum case ����=1 is excluded from the discussion.

Due to the causal relation between the displacement D
and the electric field E, the dielectric function of every me-
dium can be expressed as

���� = 1 + 

0

	

d� ei��G��� , �22�

where the function G��� is finite for all values of �, including
zero. In particular, G��� tends to zero as �→	 for dielectrics
and it tends to 4�� �� is the conductivity� as �→	 for
conductors. Relation �22� has several important conse-
quences.

Let us first consider the frequency � to be purely real. It
follows from Eq. �22� that �����=��−��. Denoting ����
=�����+ i�����, where both the real ����� and the imaginary
����� parts are real numbers, we thus have

����� = ���− ��, ����� = − ���− �� . �23�

For any real material medium with absorption, it holds

����� � 0��0� for � � 0��0� . �24�

The sign of ����� is not subjected to any physical restriction.
If � is complex, �=��+ i��, representation �22� tells us

that ���� is an analytical function of � in the upper half
plane ���0. Apart from a possible pole at �=0 �for con-
ductors�, the analyticity extends also to the real � axis. ����
has no zeros in the upper half plane. We notice that the
analyticity properties of ���� can also be derived from the
Kramers-Kronig relations combined to the positivity of �����
for ��0.

The function ���� does not take real values at any finite
point in the upper half plane, except on the imaginary axis.
We can deduce from Eq. �22� that for any complex � it holds
�����=��−���. For purely imaginary �= i��, indeed we find

��i��� = ���i��� ⇒ Im ���� = 0 for � = i��. �25�

Moreover, on the imaginary axis, ���� decreases monotoni-
cally from �0�1 �for dielectrics� or from 	 �for conductors�
at �= i0 to 1 at �= i	.

With regard to symmetries �23� for a real �, the expansion
of the dielectric function around the origin �=0 reads, for a
conductor with conductivity ��0,

���� =
4��i

�
+ a + O��� , �26�

where the sign of the constant a is not restricted; for a di-
electric medium of static dielectric constant �0,

���� = �0 + ia� + O��2�, a � 0, �27�

where the positive sign of the constant a is fixed by the
physical requirements �24�.

In the limit ���→	, a Taylor series expansion of G���
around �=0+ in Eq. �22� implies that, for both conductors
and dielectrics,

Re����� − 1� = O	 1

�2
 , �28a�

Im ���� = O	 1

�3
 . �28b�

IV. STATIC SURFACE CHARGE CORRELATIONS

In the general case of the plane contact between two me-
dia of dielectric functions �1��� and �2��� pictured in Fig. 1,
the quantum formula for the Fourier transform of the surface
charge correlation function �5� in the long-wavelength limit
q→0 was derived in Ref. �1�. Its static t=0 version can be
re-expressed as

�Squ�0,q� = 

−	

	 d�

�
Im f��� , �29�

where the form of the function f��� depends on the consid-
ered �retarded or nonretarded� regime. In the retarded case,
f���� fqu

�r���� is given by two equivalent representations

fqu
�r���� =

q2

4�2g���
1

�1����2��� + �2����1���
��1��� − �2����2

�1����2���

=
q2

4�2g���
�1����2��� − �2����1���

q2��1��� + �2���� − �2�1����2���/c2

�	 1

�1���
−

1

�2���

 , �30�

where g��� is defined in Eq. �8b� and the �complex� inverse
lengths �1 and �2, one for each of the half-space regions, are
given by

�1,2
2 ��� = q2 −

�2

c2 �1,2���, Re �1,2��� � 0. �31�

In the nonretarded case, f���� fqu
�nr���� is obtained from Eq.

�30� by setting the speed of light c→	. Since �1=�2=q in
this limit, we get

fqu
�nr���� =

q

4�2g���	 1

�1���
+

1

�2���
−

4

�1��� + �2���
 .

�32�

The derivation procedures outlined below are applicable to
both retarded and nonretarded regimes and so, whenever
possible, we use the simplified notation f��� to cover both
functions fqu

�r���� and fqu
�nr����.

For a real frequency �, the symmetry relation �����
=��−�� implies that �����=��−��. Consequently, f����
= f�−��, i.e.,
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Re f��� = Re f�− ��, Im f��� = − Im f�− �� . �33�

As �→0,

Im f�0� = 0, �34a�

Re f�0� =
q

4�2	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 . �34b�

If � is complex and ���→	, with the aid of the asymptotic
relations �28a� and �28b� we find that

lim
���→	

f��� = 0. �35�

It is complicated to calculate the correlation function di-
rectly from formula �29� by expressing the imaginary part of
f���, then integrating over � and finally taking the q→0
limit. We shall find the value of the integral of interest in
another way, by using integration techniques in the complex
plane and the analytical properties of dielectric functions,
summarized in the previous section.

We can change slightly the path of integration, writing



C1

d�

�
f��� = − i�f�0� + P


−	

	 d�

�
f��� , �36�

where C1 is the path following the real axis, except it goes
around the origin �=0 in a small semicircle in complex up-
per half plane whose radius � tends to zero �Fig. 2�. The first
term on the right-hand side �rhs� of Eq. �36� is the contribu-
tion of the negatively oriented semicircle around the origin;
P denotes the Cauchy principal value avoiding the origin,

P

−	

	 d�

�
f��� � lim

�→0
�


−	

−� d�

�
f��� + 


�

	 d�

�
f���� .

�37�

It is easy to see from the symmetry relations �33� and equal-
ity �34a� that

P

−	

	 d�

�
f��� = i


−	

	 d�

�
Im f��� . �38�

We can close the path C1 by a semicircle at infinity C2 �see
Fig. 2� along which the integral �C2

d� f��� /� is zero be-
cause of the asymptotic relation �35�. Denoting the closed
contour as C �C=C1�C2� and applying the operation Im to
both sides of relation �36�, we arrive at



−	

	 d�

�
Im f��� = �f�0� + Im �

C

d�

�
f��� . �39�

The integral over the contour C can be evaluated by using
the residue theorem at poles �� j� of the function f��� in the
� upper half plane bounded by C,

Im �
C

d�

�
f��� = 2��

j

Res�f ,� j�
� j

, �40�

provided that Res�f ,� j� /� j is real �which will be the case�;
Res denotes the residue. The static correlation function �29�
is expressible as

�Squ�0,q� = �f�0� + 2��
j

Res�f ,� j�
� j

, �41�

where the value of f�0� is real, given by Eq. �34b�. The
original algebraic task thus reduces to the problem of search-
ing for all poles of the function f��� in the � upper half
plane.

Both the retarded �30� and the nonretarded �32� versions
of the f function contain g��� defined in Eq. �8b�. Since g���
can be expanded in � as follows �16�:

g��� = 1 + �
j=1

	
2�2

�2 + � j
2 , � j =

2�

��
j , �42�

it has in the upper half plane an infinite sequence of simple
poles at the imaginary Matsubara frequencies

� j = i� j, Res�g,� j� = � j �j = 1,2, . . .� . �43�

The nonretarded f function �32� has no further poles in
the upper half plane since the dielectric functions �1��� and
�2��� do not take there real values at any finite point. The
retarded f function �30� might have some further poles at
points � satisfying the equation

�2 = �cq�2	 1

�1���
+

1

�2���

 . �44�

Interestingly, in the case of the jellium in vacuum �with real
dielectric functions�, this is just the dispersion relation for
the surface plasmons �polaritons�; for a recent review, see
�17�. We are interested in the long-wavelength limit q→0. If
q=0, the only solution of Eq. �44� is �=0; this point is not
inside the contour C due to the presence of the semicircle
around �=0. Now, let us study how the solutions of Eq. �44�
“glue off” from �=0 when q is infinitesimal, but not identi-
cally equal to zero. We need the small-� expansion of
1 /����. It follows from expansions �26� and �27� that for
both conductors and dielectrics we can write

ω

Im ω

ε ReC1

C2

FIG. 2. The contour in the complex frequency plane for t=0.
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1

����
=

1

��0�
− ib� + O��2�, b � 0, �45�

where the material constant b, b=1 / �4��� for conductors
and b=a /�0

2 for dielectrics, is always positive, except for
vacuum when b=0. For small q, Eq. �44� thus exhibits two
solutions:

�� � � cq	 1

�1�0�
+

1

�2�0�

1/2

− i
�cq�2

2
�b1 + b2� . �46�

Since b1+b2�0, the two poles �� move, as q increases from
zero to a small positive number, from �=0 to the lower �
half plane, i.e., outside of the region enclosed by the C con-
tour. We conclude that, in both retarded and nonretarded re-
gimes, only the poles on the imaginary axis at the Matsubara
frequencies �43� contribute to the static correlation function
�41�, which thus becomes expressible as follows:

�Squ�0,q� =
q

4�
	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 + F�0,q� ,

�47a�

F�0,q� = 2��
j=1

	
Res�f ,i� j�

i� j
. �47b�

The first term on the rhs of Eq. �47a� is independent of ��
and c; the explicit form of the �static� function F�0,q� de-
pends on the considered �retarded or nonretarded� regime.

A. Retarded regime

In the retarded case �30�, we have

Fqu
�r��0,q� =

q2

2�
�
j=1

	
1

�1�i� j��2�i� j� + �2�i� j��1�i� j�

�
��1�i� j� − �2�i� j��2

�1�i� j��2�i� j�
. �48�

We recall from Sec. III that the values of the dielectric func-
tions �1,2�i� j�, and consequently of the inverse lengths
�1,2�i� j� �31�, are real. We are interested in the limit q→0 for
which �1,2�i� j�=� j�1,2

1/2�i� j�. Since � j � j and, according to Eq.
�28a�, ��i� j�−1=O�1 / j2�, the sum in Eq. �48� converges.
This means that the function Fqu

�r��0,q�, being of the order
O�q2�, becomes negligible in comparison with the first term
in Eq. �47a� when q→0. In view of representation �6�, we
find the static prefactor associated with the asymptotic decay
to be

hqu
�r��0� = −

1

8�2	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 . �49�

Since this expression does not depend on the temperature
and �, its classical ��→0 limit is the same, i.e.,

hcl
�r��0� = −

1

8�2	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 . �50�

B. Nonretarded regime

In the nonretarded case �32�, we have

Fqu
�nr��0,q� =

q

2�
�
j=1

	 	 1

�1�i� j�
+

1

�2�i� j�
−

4

�1�i� j� + �2�i� j�

 .

�51�

It is evident from the asymptotic behavior ��i� j�−1
=O�1 / j2� that the sum in Eq. �51� converges. The function
Fqu

�nr��0,q� is of the order O�q� and its contribution to
�Squ

�nr��0,q� in Eq. �47a� is nonzero in the limit q→0.
The explicit evaluation of the infinite sum over the Mat-

subara frequencies in Eq. �51� is, in general, very compli-
cated. As a check of the presented formalism, we reconsider
the previously studied case of the jellium in contact with
vacuum, i.e.,

�1��� = 1 −
�p

2

�2 , �2��� = 1. �52�

Inserting these dielectric functions into Eq. �51� and using
the analog of the summation formula �42�,

�
j=1

	
��/��2

j2 + ��/��2 =
1

2
�� coth � − 1� �53�

for �=���p /2 and ���s /2 ��s=�p /�2�, we obtain

Fqu
�nr��0,q� =

q

4�
�2g��s� − g��p� − 1� �54�

with g��� defined in Eq. �8b�. Adding to this function the
first term q / �4�� in Eq. �47a�, we reproduce the t=0 case of
the previous result �8a�.

In the classical �high-temperature� limit ��→0, each of
the frequencies �� j� j=1

	 tends to infinity, the corresponding
terms in the summation over j in Eq. �51� vanish, and so
Fqu

�nr��0,q�→0. We are left with only the contribution identi-
cal to the retarded classical result �50�, i.e., hcl

�nr��0�=hcl
�r��0�,

as it should be. For the configuration of a conductor, �1�0�
=	, in contact with vacuum, �2�0�=1, we recover the uni-
versal result �7�. For the configuration of a dielectric, �1�0�
=�0, in contact with vacuum, �2�0�=1, we recover our pre-
vious result �21�. The classical static prefactor hcl�0� to the
1 /R3 asymptotic decay is nonzero for an arbitrary configu-
ration of two distinct media, except for the special case of
two conductors. In that special case, the asymptotic decay is
of a short-ranged type.

V. TIME-DEPENDENT CHARGE CORRELATIONS

For an arbitrary time difference t�0 between two
points on the interface, the quantum formula for the Fourier
transform of the surface charge correlation function �5�
reads �1�
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�Squ�t,q� = 

−	

	 d�

�
e−i�t Im f��� �55a�

=

−	

	 d�

�
cos��t�Im f��� , �55b�

where the retarded form of f��� is given in Eq. �30� and the
nonretarded one is given in Eq. �32�.

Substituting f��� by e−i�t f��� we can follow, in principle,
the procedure outlined between Eqs. �36� and �39� of the
previous section to extend the integration over real frequen-
cies to an integration over the contour C in Fig. 2. The
trouble is that on the left-hand side �lhs� of Eq. �39� we end
up with the integration over � of 1 /� multiplied by

Im e−i�t f��� = cos��t�Im f��� + sin��t�Re f��� . �56�

Comparing this expression with representation �55b�, we see
that only the first term is needed. Within the C-contour for-
malism, we did not find a way how to get off the second
�unwanted� term.

Our strategy is based on a transition from real times
t�0 to imaginary times. In order to keep the function
e−i�t f��� /� integrable over real �, we make the substitutions
t→−i� for ��0 and t→ i� for ��0 ���0�, transforming in
this way e−i�t f���→e−����f���. In the � upper half plane, the
contour C in Fig. 2 will be replaced with two contours C+
and C− in the quarter spaces Re ��0 and Re ��0, respec-
tively �see Fig. 3�. The contours are constructed in such a
way that one avoids the singularities �simple poles� of
f��� /�: the one at �=0 and the infinite sequence of poles at
the imaginary Matsubara frequencies �i� j� j=1

	 . The contour C+
is directed along the real axis from zero to 	, except for an
infinitesimal quarter circle around the origin �=0, continues
by a quarter circle at infinity, and returns to the origin neigh-
borhood along the imaginary axis, avoiding by infinitesimal
semicircles the Matsubara frequencies �i� j�. The contour C−
is directed along the real axis from −	 to zero, except for an
infinitesimal quarter circle around the origin �=0, continues
along the imaginary axis, avoiding by infinitesimal semi-
circles the Matsubara frequencies �i� j�, and returns to the

starting point by a quarter circle at infinity. In close analogy
with the procedure outlined between Eqs. �36� and �39�, we
can derive the integral equality

�
C+

d�

�
e−��f��� + �

C−

d�

�
e��f���

= − i�f�0� + P

−	

	 d�

�
e−����f���

− i��
j=1

	
Res�f ,i� j�

i� j
�e−i�j� + ei�j�� . �57�

Here, we have used two facts: the contributions coming from
the straight-line fragments of the paths C+ and C− between
two neighboring frequencies �i� j , i� j+1� cancel exactly with
one another due to the opposite directions of the integrations
and the contribution of the C+ semicircle �C− semicircle�
around the pole i� j is equal to −i� Res�f , i� j� / i� j multiplied
by the corresponding time-dependent factor e−i�j� �ei�j��. The
lhs of Eq. �57� is equal to zero since there are no poles of the
integrated functions inside the contours C+ and C−. Since the
ratio Res�f , i� j� / i� j is a real number, taking the imaginary
part of Eq. �57� leads to



−	

	 d�

�
e−���� Im f��� = �f�0� + F��,q� , �58a�

where

F��,q� = 2��
j=1

	
Res�f ,i� j�

i� j
cos�� j�� . �58b�

The function F�� ,q� represents the �imaginary� time gen-
eralization of the static F�0,q� �47b�. In the retarded case,
the generalization of the static formula �48� reads

Fqu
�r���,q� =

q2

2�
�
j=1

	
1

�1�i� j��2�i� j� + �2�i� j��1�i� j�

�
��1�i� j� − �2�i� j��2

�1�i� j��2�i� j�
cos�� j�� . �59�

In the nonretarded case, the generalization of the static for-
mula �51� reads

Fqu
�nr��t,q� =

q

2�
�
j=1

	 	 1

�1�i� j�
+

1

�2�i� j�

−
4

�1�i� j� + �2�i� j�

cos�� j�� . �60�

We have shown in Sec. IV that the series determining the
functions in Eqs. �59� and �60� are convergent for �=0. The
presence of the oscillating factor cos�� j�� in the series for
��0 even improves their convergence property. Let us “pre-
tend” that we have found the explicit form of the function
F�� ,q� �58b�; the type of the regime is irrelevant. To express
the time-dependent correlation function �55b�, we have to
return from imaginary to real times by considering the sub-
stitution �→ it in Eq. �58a�. Since the integral on the lhs of

ω

Im ω

ε ReC+C

CC +

ω

ω

2

1

FIG. 3. Two contours in the complex frequency plane for t�0;
� j = i� j �j=1,2 , . . .� are the Matsubara frequencies.
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Eq. �58a� is finite for all complex � with Re ��0, there must
exist a well-behaved analytical continuation F�it ,q� of the
function F�� ,q�. Consequently,

�Squ�t,q� =
q

4�
	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 + Re F�it,q� .

�61�

For t=0, the operation Re on F�0,q� become superfluous and
we recover the static result �47a�.

To check that the formalism works correctly, we recon-
sider the nonretarded regime for the contact between the jel-
lium and vacuum. Inserting the corresponding dielectric con-
stants �52� into Eq. �60� and using the summation formula
�16�

�
j=1

	
��/��2

j2 + ��/��2cos	 j
�

�
��
 =

1

2
��

cosh�� − ���
sinh �

− 1� ,

�62�

we obtain

Fqu
�nr���,q� =

q

4�
	���s

cosh�����s/2� − �s��
sinh����s/2�

−
���p

2

cosh�����p/2� − �p��
sinh����p/2�

− 1
 . �63�

The analytical continuation of this function from � to it is
well defined. Using the relation Re cosh��− i�t�
=cosh � cos��t� valid for real � and �t, we get

Re Fqu
�nr��it,q� =

q

4�
�2g��s�cos��st� − g��p�cos��pt� − 1�

�64�

with g��� defined in Eq. �8b�. Adding to this result the first
term q / �4�� in Eq. �61�, we reproduce the previous time-
dependent result �8a�.

In the retarded case, the function Fqu
�r��� ,q� in Eq. �59� is

of the order O�q2�. The same property holds for its analytical
continuation Fqu

�r��it ,q�. Equation �61� then tells us that, in the
limit q→0,

�Squ
�r��t,q� =

q

4�
	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 . �65�

In view of representation �6�, the quantum time-dependent
prefactor to the asymptotic decay takes, for any temperature,
its static classical form

hqu
�r��t� = −

1

8�2	 1

�1�0�
+

1

�2�0�
−

4

�1�0� + �2�0�
 . �66�

This result holds for all possible media combinations if one
takes ��0�→ i	 for conductors, ��0�=�0�1 for dielectrics,
and ��0�=1 for vacuum.

VI. CONCLUSION

Although the present work is rather technical, its main
result �65� �or, equivalently, Eq. �66�� is of physical interest.
It represents the generalization of the analogous result, ob-
tained in Refs. �1,2� and valid exclusively for the special
jellium model of conductors in contact with vacuum, to all
possible media �conductor, dielectric, and vacuum� configu-
rations. The derivation of the general result �65�, based on
the integration in the complex plane and on the known ana-
lytical properties of dielectric functions in the frequency up-
per half plane, is much simpler and more transparent than the
one performed for the jellium in contact with vacuum �1,2�.

There is still an open question: which physical reasons
that the inclusion of retardation effects causes the asymptotic
decay of time-dependent quantum surface charge correla-
tions to take its static classical form independent of � and c?
For the static quantum case t=0, a possible explanation
might be that the surface charge correlation function depends
on the only dimensionless quantity ��c /R constructed from
universal constants and the distance. If this is the case, the
large-distance asymptotics R→	 is equivalent to the classi-
cal limit ��→0. A verification whether this claim is true or
not is left for the future. The case t�0 will be still an open
problem. Another explanation might be based on an assump-
tion that at distances R much larger than the thermal photon
wavelength ��c a decoupling between matter and radiation
appears and, consequently, only the Coulomb instantaneous
interaction intervenes in the asymptotic behavior. Analogous
situations occur in the crossover 1 /R6→1 /R7 for van der
Waals interactions or in the thermal screening of transverse
electromagnetic interactions �18�. It might be also possible to
verify our results by using a fully microscopic approach.

We believe that Rytov’s fluctuational electrodynamics and
the techniques presented are applicable also to other impor-
tant phenomena associated with the presence of a surface
between distinct media. One of such problems can be the
evaluation of the shape-dependent dielectric susceptibility
tensor �3,19,20� for quantum Coulomb fluids, with and with-
out retardation effects. Another interesting topic is the large-
distance behavior of the current-current correlation function
near an interface between two media.
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