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Methods for understanding classical disordered spin systems with interactions conforming to some idealized
graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which
has a densely connected structure, have become well understood. Many features generalize to sparse Erdös-
Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary
conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions
with weak dense interactions, which we term a composite model. The equilibrium properties are examined
through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferro-
magnetic phases by perturbative schemes. We present results of replica symmetric variational approximations,
where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin
glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to
replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connec-
tivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic
to ferromagnetic phases is apparent.
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I. INTRODUCTION

Statistical physics methods for studying disordered spin
systems have become well developed. Much of the develop-
ment can be traced back to early work on mean-field models
for disordered magnetic systems and the theory was strongly
developed in spin-glass models �1,2�. One problem in study-
ing spin glasses and disordered media has been in appropri-
ately modeling the inhomogeneity within tractable frame-
works. Statistical descriptions of inhomogeneity are often
realized by random coupling ensembles. Small systems de-
scribed in this way may have strongly varying properties, but
the ensemble may be chosen so that the macroscopic descrip-
tion is asymptotically well defined.

Both dense and sparse graphical models are useful in un-
derstanding a range of phenomena, such as neural networks
�3�, information theory �4�, and other information processing
�5�, where spatial and dimensional constraints are often less
rigid. Many complex systems have an inhomogeneous inter-
action structure that can be approached, if not exactly repre-
sented, by consideration of simple random graph ensembles.
In this paper, spin-glass models with couplings conforming
to infinite-dimensional Erdös-Rényi random graphs are con-
sidered �6�. In the large system limit, many equilibrium prop-
erties depend on the connectivity distribution and how the
number of couplings per variable scales with N, the system
size. Dense graphs have a number of links per variable that is
O�N� in the large system limit, whereas sparse ensembles
have finite mean connectivity in this limit. Many topological
features become well defined in these limits. Two standard
sparse coupling distributions are considered: a description
with regular connectivity, and one with Poissonian connec-

tivity. The distinctions between these two sparse models and
the limiting case of full connectivity are illustrated in Fig. 1.

Some densely connected models may be analyzed exactly
for ensembles of uniform binary interactions, and certain
random coupling models, most famously the Sherrington-
Kirkpatrick �SK� model of spin glasses �7�. Simplification of
the analysis in the disordered case is often possible through
noting the ability to describe large sets of interactions by
central limit theorems �8�. For sparse connectivity models,
such as the Viana-Bray �VB� model �9,10�, a locally treelike
approximation �Bethe approximation� is often essential in
simplifying analysis; central limit theorems again apply to
certain objects but not directly to the set of local interactions
for any variable. Models, which do not allow the use of
central limit theorems or locally treelike approximations, are
normally significantly more difficult to analyze.

Frameworks in which an interplay between strong sparse
and weak pervasive couplings might be proposed in a variety
of areas. In nanotechnology, for example, miniaturization of
classical components will preserve engineered short-range
interactions, but other accidental correlations may emerge
not limited by the designed connectivity structure, and these
may well be modeled by a mean-field �infinite connectivity�
like interaction. A mixed connectivity may also be a de-
signed feature. Neuronal activity is known to involve a com-
bination of short- and long-range information processing
structures, this motivated a 1+�-dimensional model of neu-
ronal activity �11� discovering many novel properties. An-
other example of such an engineering application is in the
bandwidth allocation in multiuser communication systems,
where improvement over standard methods is possible �12�.

To motivate a closely related study, Hase and Mendes
noted a possible application for theories of these structures
�13�. Consider the model with sparse antiferromagnetic �AF�
couplings on a structure, otherwise, fully connected through
ferromagnetic couplings. This composite model can be con-
sidered as one in which a ferromagnetic phase is maintained
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by a densely connected network, but with a small proportion
of links attacked. Often only a small portion of a link struc-
ture is accessible to an attacker, so it is interesting to con-
sider how the system response differs from weak attacks on
all �or most� links.

The effect of an attack on a sparse subset may cause a
transition away from the ordered phase, when sufficiently
strong. It is possible that the nature of transitions away from
the ordered state may differ from those with only a single
interaction scale. The effect of disruption of networks by
random attack, or frustrating interactions, is of importance in
many practical network models �13,14�, the restriction to
random topologies allows a focus on generic properties, in
this case restricted to the issue of sparse- and dense-induced
effects.

More generally, a range of mean-field behavior, including
spin glasslike, may be supported by the dense substructure
combined with an arbitrary set supported by the sparse sub-

structure, as shown in Fig. 2. In so doing, a wider variety of
competitive phase behavior is explored.

It may be expected that many of the results for composite
systems will be similar to those for the limiting sparse and
dense models. Four thermodynamic phases describe equilib-
rium properties of spin models with independent and identi-
cally distributed �iid� couplings: a pure state with no macro-
scopic order, the paramagnetic phase; a pure state with
macroscopic order aligned with some mean bias in the cou-
plings, the replica symmetric �RS� ferromagnetic �F� phase; a
macroscopically aligned phase, but with some complicated
phase-space fragmentation, the mixed �M� phase; and a
phase with no macroscopic alignment and a complicated
fragmentation of the phase space, the spin-glass phase �SG�.
Within both the sparse and dense Ising spin models, these
phases are exhibited and many features are shared by the two
models.

1−core

Full graph

2−core

FIG. 1. �Color online� Shown are the couplings �links� among a set of spin variables �circles�, which describes graphically a particular
quadratic Hamiltonian. Left figure: the fully connected graph is a special case of a dense graph describing the SK model, with O�N� nonzero
couplings per variable in the large system limit. Centre/right figure: the VB model is defined with O�1� nonzero couplings per variable in the
large system limit. Center figure: in the case of a regular connectivity random graph above the percolation threshold, there is an inhomo-
geneous structure on a global scale, but locally the structure is a Bethe lattice �regular tree�. Right figure: in the case of a random graph with
Poissonian connectivity the local structure is again treelike. Above the percolation threshold many trees of finite size and unconnected
variables exist, as well as a giant component containing O�N� variables, and many loops �6�. The 1 core contains all variables with at least
one link, including the giant component above the percolation threshold. Additional structures within the giant component may be identified,
including a 2 core, obtained by recursively removing leaves �singly connected variables� from the giant component.

FIG. 2. �Color online� Left figure: a sparse model defined by some mean connectivity describes couplings in the sparse model. Center
figure: a fully connected model describes couplings in the dense model. Right figure: a fully connected graph with a subset of strong sparse
links; this is the composite model. The sparse subset of couplings is much stronger than the couplings on the other edges.
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The main question investigated in this paper is how phase
behavior and transitions differ in the composite model from
the behavior of the sparse and dense subsystems of which it
is composed. Attention is restricted to cases above the per-
colation threshold in the random sparse substructure. In this
way, the largest subset of variables connected through O�1�
�sparse� interactions is of size O�N� and sufficient to allow a
macroscopic ordering in the absence of dense interactions.
For nonpercolating random graphs, with a largest connected
component of size O�log�N�� or finite, it is thought the ther-
modynamic properties will be quantitatively similar to mod-
els of dense interactions among microscopic states. Other
scalings may include substructures of intermediate size
�O�N�� ,0���1�, as in nearly percolating substructures,
which may allow distinct phenomena from both the above
cases at low temperature.

Section II outlines the ensemble of models studied, which
are then analyzed by the replica method in Sec. III. Section
IV develops the replica equilibrium solution by population
dynamics alongside an analogous belief propagation �BP�
algorithmic method applicable to typical samples. A stability
analysis of the BP equations and population dynamics is de-
rived. Section V presents a leading-order solution to the
composite system in terms of a simplified ansatz on the order
parameter with results discussed in Sec. VI. Section VII
demonstrates the RS solutions for several composite models
in the interesting range of parameters about the triple point in
the phase diagram. Section VIII presents hypotheses on the
structure of the low-temperature phases alongside experi-
mental results derived by BP and Monte Carlo methods. We
then conclude with a brief summary.

II. COMPOSITE ENSEMBLES

The composite model can be described by a Hamiltonian
with coupling of N spins

H�S�� = − �
�ij�

�J�ij�
D + J�ij�

S �SiSj − �
i

ziSi, �1�

where �ij� are an ordered set of variables. The couplings are
labeled as dense �D� or sparse �S� and are sampled indepen-
dently for each link according independent ensembles de-
scribed shortly. The quenched variable abbreviation Q indi-
cates a sample of the couplings and S� are the dynamic
variables. The field vector z� is used only as a conjugate pa-
rameter to explore symmetries, the limit z�→0� �vector of zero
fields� is always assumed throughout this chapter, although
some physical quantities and insight are demonstrated using
conjugate fields as described in Appendix B.

The equilibrium properties of the model are studied. The
Hamiltonian implies a static probability distribution on the
state space given by

P�S�� =
1

Z��,Q�
exp�− �H�S��	 , �2�

where � is the inverse temperature and Z is the partition
function.

The spin states of interest are the typical case equilibrium
distribution, in the large system limit. Properties of these

states are established through the mean free energy

�fE��� = − lim
N→�

1

N
�log Z�Q, �3�

where E is the ensemble parametrization.
The model is fundamentally a fully connected one, the

sparse component is realized as a subset of couplings that are
O�1� in magnitude, whereas all other couplings are weaker
and rescaled to system size �decreasing as a function of N�.
Due to this difference in scaling with system size, many
thermodynamic results for standard densely connected spin
models do not apply.

A. Dense (SK) substructure

The dense substructure fully connects N spin variables S�
� ��1	N, with couplings sampled independently and at ran-
dom according to the Gaussian distribution parametrized by
J0 and J

P�JD� = 

�ij�

P�J�ij�
D �;

P�J�ij�
D � =

1
�2�J2/N

exp�−
N

2J2
J�ij�
D −

J0

N
�� , �4�

with a necessary scaling of components included. This set of
couplings has a statistical description corresponding to the
SK model.

B. Sparse (VB) substructure

It is convenient to factorize the sparse couplings as

J�ij�
S = A�ij�V�ij�. �5�

The ensemble is described by a connectivity matrix A, which
is zero for all but a fraction C /N of components, and a dense
coupling matrix V, with no zero elements. In the irregular
ensemble, each directed edge is present �nonzero� indepen-
dently with probability C /N, with C as the mean variable
connectivity, so that a prior for inclusion of an edge is

P�A� = 

�ij�

�
1 −
C

N
���A�ij�� +

C

N
��A�ij� − 1�� , �6�

this being the connectivity in a standard Erdös-Rényi random
graph. The couplings in the nonzero cases are described by a
distribution with finite moments and are sampled indepen-
dently according to

P�V� = 

�ij�

P�V�ij��; P�V�ij� = x� = ��x� , �7�

in the general case. A practical distribution for analysis is the
�J distribution defined as

��x� = �1 − p���x − JS� + p��x + JS� , �8�

with two parameters, p is the probability that the link is
antiferromagnetic, and JS is the strength of coupling. Regular
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connectivity ensembles have each variable constrained to in-
teract with exactly C neighbors,

P�A� 	 

i=1

N

�
�
j

Aij − C� . �9�

C. Representative parametrizations

Four models are considered in greater detail owing to
their simplicity and ability to make transparent a range of
observed phenomena. The F-AF model includes ferromag-
netic dense couplings [J=0, J0
0 �Eq. �4��] and antiferro-
magnetic sparse couplings [p=1 �Eq. �8��], with connectivity
C=2, and is described by

H�S�� = −
B��,JS�

N
�
�ij�

SiSj + JS�
�ij�

A�ij�SiSj . �10�

The function B�� ,JS� /N is introduced to balance the ferro-
magnetic and antiferromagnetic tendencies. Choosing
B�� ,JS� as a positive monotonically increasing function of
the scalar parameter �, the relative strength of the antiferro-
magnetic and ferromagnetic parts is kept in some intuitive
balance. As � increases, there is an increased tendency to-
ward aligning spins within the Hamiltonian—the ferromag-
netic �ordered� state is promoted.

It is also interesting to consider the converse case, the
AF-F model with a ferromagnetic sparse part �p=0� and an-
tiferromagnetic dense model �J=0,J0�0�, with connectivity
C=2,

H�S�� = − JS�
�ij�

A�ij�SiSj +
B��,JS�

N
�
�ij�

SiSj , �11�

with B being again some suitably rescaled function, JS must
also be defined.

These models can also be considered for the case of regu-
lar connectivity. Either antiferromagnetic couplings, the
regular F-AF �10� and AF-F �11� models, are considered; but
in each case with connectivity chosen to be C=3 �a minimal
choice above the percolation threshold�.

III. REPLICA METHOD

The replica method is used in both �13,15� to study the
composite system free energy in the limit of large N. The
replica method is the most concise analytical method avail-
able, although many results presented herein can be devel-
oped through the cavity method with suitable assumptions.
For convenience the fields z�→0, as in Eq. �1�, in the various
calculation steps. Variations in this are useful in establishing
a number of system properties as outlined in Appendix B.

In the replica approach, the typical case behavior is ex-
amined through the free-energy density �3� averaged over the
quenched disorder. That is to say we do not expect typical
samples from the ensembles to differ in the value of the
order parameters and other extensive properties. The replica
identity

�log Z�Q = � �

�n
�

n=0
�Zn�Q �12�

allows for the average over the logarithm to be replaced by
the partition sum of a replicated set of variables. This is by
an analytic continuation of n to the set of integers, giving a
form for which the quenched averages may be taken. The
properties of the free energy are constructed through the rep-
licated partition function

�Zn�Q = 

�=1

n


�
S��

��

�ij�

exp���J�ij�
D + J�ij�

S ��
�

Si
�Sj

���
Q

,

�13�

where the quenched averages and dynamic averages may be
taken equivalently.

The exponent is factorized with respect to the quenched
variables in the sparse and dense parts. The average in the
dense part involves an expansion to second order in N of
J�ij�

D . The leading-order terms are described by J0 and J2 �Eq.
�4��, and higher-order terms are taken to be negligible in the
large N limit. The average in the sparse part is more in-
volved, the full method is presented in Appendix A. The
brief outline of the method in the remainder of this section
applies only for Poissonian connectivity in the sparse sub-
structure. The site dependence in the energetic part is factor-
ized in general by introducing three classes of order param-
eters,

q� =
1

N
�

i

Si
�; q��1,�2� =

1

N
�

i

Si
�1Si

�2; 
�S� =
1

N
�

i

�S,Si
,

�14�

where q� describes the homogeneous magnetization, q��1,�2�
describes the two-replica correlations, and the generalized
order parameter �16� 
�S� describes many kinds of spin cor-
relations, where the bold font vector notation is used to rep-
resent a vector labeled by replica indices rather than site
indices, denoted by an over-line vector notation,

�S,Si
= 


�=1

n

�S�,Si
�; S = �S��� = 1, . . . ,n	 . �15�

The order parameters q� and q��1,�2� can be defined from
the generalized order parameter in the Poissonian connectiv-
ity case

q� = �
�


��� ���; q��1,�2� = �
�


��� ���1��2. �16�

However, solving the saddle-point equations, by population
dynamics in the RS description, where order parameters are
assumed to be invariant under replica-index permutations, is
complicated without the redundant description �14�, and the
redundant description is necessary in the regular and F-F
models. Furthermore, having order parameters describing
both dense and sparse parts is useful in discriminating effects
due to sparse and dense substructures and the connection
with the standard sparse and dense descriptions is also made
transparent in the limiting cases: taking q�=q��1,�2�=0 to re-
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cover the thermodynamics of a sparse system and 
���=1
to recover a purely dense thermodynamic description.

The original mixed topology problem is replaced by a site
factorized �mean field� model—the complexity being en-
coded in a set of interactions among replica encoded in the
order parameters. The definitions of the order parameters
may be transformed to an exponential form by introducing a
weighted integral over conjugate parameters �denoted by a
hat�. The exponential form allows a saddle-point method to
be applied; an extremization of the exponent allows the free
energy to be identified as

�fE = lim
n→0

�

�n
Extr�
,
̂,q�,q̂�,q��1,�2�,q̂��1,�2�	

�G1��,E,
�

+ G2��,E,
̂� + G3�
̂,
�	 , �17�

up to constant �ensemble parameter dependent� terms. The
term G1 encodes an energetic term describing interactions,
which in the absence of an external field is given by

G1 = −
1

2
�J0�

�

�q��2 −
1

2
�2J2 �

��1,�2�
�q��1,�2��2

−
C

2
log�

S,S�


�S�
�S��� dx��x�exp��x�
�

S�S��� ,

�18�

where ��x� is the coupling distribution in the sparse part �8�.
The term G2 is an entropic term coupling the sparse and
dense order parameters

G2 = − log�
S

exp��
�

q̂�S� + �
��1,�2�

q̂��1,�2�S
�1S�2 + C
̂�S�� .

�19�

The coupling between the order parameters and their conju-
gate forms is present in the term

G3 = C�
S


�S�
̂�S� + �
�

q�q̂� + �
��1,�2�

q��1,�2�q̂��1,�2�.

�20�

The free energy is used to calculate various self-averaging
properties of the system by taking derivatives with respect to
conjugate parameter, as outlined in Appendix B. The inverse
temperature is conjugate to the energy, from which the en-
tropy is calculated. Derivatives with respect to uniform fields
conjugate to 1� can be used to test emergent ferromagnetic
order. By inclusion of a random field of mean zero, the vari-
ance can be used to calculate correlation functions and sus-
ceptibility.

The order parameters defined at the extrema of the saddle
point �denoted by �� obey coupled saddle-point equations,


��S� = P�S�; q�
� = �

S
S�P�S�; q��1,�2�

� = �
S

S�1S�2P�S� ,

�21�

where

P��� 	 exp�C
̂���� + �
�

q̂�
��� + �

��1,�2�
q̂��1,�2�

� ��1��2� ,

�22�

is a normalized probability distribution on the replicated
state space.

The conjugate parameters are determined by equations
without coupling between the sparse and dense parts


̂���� � 	 �
�


�����exp��x�
�

������
x

;

q̂�
� = �J0q�

� ; q̂��1,�2�
� = �2J2q��1,�2�

� , �23�

with x distributed according to ��x� as in Eq. �7�. From these
six equations, it is possible to eliminate the conjugate param-
eters �Eq. �23�� to leave a fixed point defined without the
conjugate parameters.

IV. REPLICA SYMMETRIC FORMULATION
AND BELIEF PROPAGATION

A. RS saddle-point equations

The order parameters are defined by the standard sparse
and dense RS forms


���� � =� dh��h�

�=1

n
exp�h��	
2 cosh h

; q�
� = m; q��1,�2�

� = q ,

�24�

with the variational aspects captured by the normalized dis-
tribution on the real line ��� and two scalar parameters
�m ,q�.

The saddle-point equations can then be written for the
general case, inclusive of regular and Poissonian connectiv-
ity, as

��h� 	� �

c=1

ce

�dhcdxc��hc���xc����h − hRS��
ce,�

,

�25�

where

hRS = m + ��q + �
c=1

ce

atanh�tanh��xc�tanh�hc�� , �26�

and ce is distributed according to the excess connectivity
distribution, a normalized distribution proportional to
CP�C−1�, where P�C� is the full variable connectivity dis-
tribution, regular or Poissonian. The integration variable � is
normally distributed. The dense parts are defined similarly

m =� �

c=1

cf

�dhcdxc��hc���xc����h − hRS�tanh�h��
cf,�

,

�27�

and
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q =� �

c=1

cf

�dhcdxc��hc���xc����h − hRS�tanh2�h��
cf,�

,

�28�

but with the averages in cf being with respect to the full
connectivity distribution.

These equations can be solved numerically by a method
of population dynamics �17� subject to two additional recur-
sions on scalar quantities �27� and �28�.

B. Composite belief propagation equations

Composite BP can be interpreted in the context of the
composite system as a heuristic method of determining mar-
ginals of the static probability distribution �40� given a
quenched sample �18�. Whereas an exhaustive calculation
requires O�2N� operations to construct a marginal, BP is
guaranteed to produce an estimate in a number of operations
that scales only linearly with the number of edges.

The equations from factors to nodes are trivial in the case
of binary factors, so iterations on variable messages alone
can be composed. Defining two directed messages for every
link �ij�, which can be interpreted as log-posterior ratios for
spins on graphs with some interactions removed �cavity
graphs�

hi→j
�t+1� =

1

2�
�
�i

�i log P̂�t+1��Si = �i�Gi→j�

=
1

�
�

k\�i,j	
atanh�tanh��hk→i

�t� �tanh��J�ik��� , �29�

where P̂ is used to denote an approximated probability dis-
tribution. The cavity graph is a factor graph rooted in vari-
able i with the coupling J�ij� set to zero. The assumption
underlying the probabilistic recursion is the independence of
log-posterior ratios, which allows them to be used accurately
as priors in each step, so that the recursion is equivalent to
that on a tree.

BP can be iterated from some initial condition. If correla-
tions between messages are sufficiently weak then the mes-
sages will converge to correctly describe the probabilities.
Marginal properties, such as the magnetization at equilib-
rium, can be constructed from converged messages. A log
marginal may be estimated by

Hi
�t+1� =

1

2�
�

�

� log P̂�t+1��Sj = ��G�

=
1

�
�
j\i

atanh�tanh��hj→i
�t� �tanh��J�ij��� . �30�

The condition of sufficiently weak correlations is closely
related to the notion of a pure state is statistical mechanics
�2�. The assumption of independent messages applies only
when the log posteriors �Eq. �29�� reflect the distribution in a
pure state, the similarity with Eq. �26� is not coincidental.
Pure states act as local attractors of the BP dynamics, and it
is only when there is a competition between these attractors

that dynamics is expected to fail. With BP initialized suffi-
ciently close �globally� to a pure state, or in the case of a
unique attractor, convergence to the pure state can be antici-
pated giving a correct description of the equilibrium prob-
ability distribution.

Simplification of dense messages

Assuming the messages to be independent then each mes-
sage can be considered as a random object determined by the
couplings in the cavity graph. The messages are therefore iid
and the sum over many messages will converge to a Gauss-
ian random variable. To leading order, the messages may be
rewritten incorporating this insight

hi→j
�t+1� = m�t� + �q�t��i→j

�t�

+
1

�
�

k���i\j	
atanh�tanh��hk→i

�t� �tanh��J�ij��� , �31�

where m�t� is the mean and q�t� is the variance, and term �i is
used to denote variables connected to i through strong cou-
plings. The distribution over reweighted messages �i→j will
be asymptotically Gaussian if the approximation is correct.
The value of the message for a particular instance of the
quenched disorder is given by

m�t� + q�t��i→j
�t� =

1

�
�

k\��i�j	
atanh�tanh��hk→i

�t� �tanh��J�ij��� .

�32�

The Gaussian statistics are defined by analogy with the RS
thermodynamic quantities, to leading order in N

m�t� = �J0
1

N
�
i=1

N

tanh��Hi
�t��; q�t� = �2J2 1

N
�
i=1

N

tanh2��Hi
�t�� ,

�33�

for any dense set of couplings �19�. The log-posterior ratios
for the spin states on the full graph are approximated as

�Hj
�t+1� = m�t� + �q�t�� j

�t� + �
k��i

atanh�tanh��hk→i
�t� �tanh��J�ij��� .

�34�

The term �i is closely related to �i→j, up to a correction on
the order of 1 /N, by removing the restriction on the sum in j
from Eq. �32�.

In the case that J�0 it is necessary to evaluate �i for each
link, still requiring O�N2� evaluations as in the original algo-
rithm. To reduce computational complexity, it may be valu-
able to marginalize over this if J�J0 or if the sparse cou-
plings dominate dynamics, but if J=0 it is sufficient to take
�i

�t�=0 and algorithm complexity is reduced to O�N�, as il-
lustrated in Fig. 3. A method for combining messages in
models comprising both densely and sparsely interacting
components has been recently introduced �20�.

C. Stability analysis

If the replica description correctly describes a single pure
state, then this implies that the spin-glass susceptibility is not

JACK RAYMOND AND DAVID SAAD PHYSICAL REVIEW E 80, 031138 �2009�

031138-6



divergent in the thermodynamic limit. In the case of a sparse
graph, the treelike approximation provides a natural basis for
constructing a self-consistent estimate of the spin-glass sus-
ceptibility �21�; whereas in the dense model a direct test of
eigenvalue stability toward replica symmetry breaking can
establish a complete description �22�.

An analytic framework entirely within the replica method
might be constructed to test spin-glass susceptibility. As in
Appendix B, a connection can be made between the particu-
lar instability in the order parameter and the divergence of
the physical quantity, spin-glass stability, within the RS
framework. This identity is not pursued within this paper,
instead a more intuitive framework, believed to be equiva-
lent, is presented.

The nondivergence of the spin-glass susceptibility in
sparse and dense models requires the local stability of the
saddle-point equations; this proves to be an equivalent con-
dition to the stability of the BP equations on a typical graph
in the limit N→� �19,21�. Stability of the BP equations is
therefore explored for a typical sample. Assuming a linear
perturbation ��hi→j

�t� 	 about some fixed point �hi→j
�t� 	 of the BP

Eq. �29� implies an independent recursion on the perturba-
tions that may be written at the leading order,

�hj→k
�t+1� = �

i\�j,k	
�hi→j

�t� �1 − tanh2��hi→j
�t� ��tanh��J�ij��

1 − tanh2��hi→j
�t� �tanh2��J�ij��

. �35�

In the dense part, the fluctuations may again be represented
by a Gaussian random variable of mean and variance

J0��hi→j
�t� �1 − tanh2��hi→j

�t� ���

���hi→j
�t� �2�1 − tanh2��hi→j

�t� ��2� , �36�

respectively, since the couplings are assumed to be uncorre-
lated with the perturbations in BP, the average is with respect
to all perturbations and fields incident on j. An expansion of
hi→j in terms of Hi is possible so that the statistics can be
shown to be identical at leading order for all j �19�; there-
fore, the perturbations evolve according to quantities which
are time but not site dependent,

�m�t� = J0��Hi
�t��1 − tanh2��Hi

�t����;

�q�t� = J2���Hi
�t��2�1 − tanh2��Hi

�t���2� , �37�

where �Hi
�t� are the perturbations in the log posteriors, which

are equal to �hi→j
�t� at the leading order whenever J�ij� is not a

strong-coupling term.
A final approximation is to assume Hi is uncorrelated with

�Hi. In this case, the statistics can be written only in terms of
q�t�, ��Hi�, and ���Hi�2�. However, this is not true at leading
order when a sparse component is present. Variables with
larger connectivity in the sparse part are described by a field
distribution of greater variance, and the perturbations scale
similarly. Instead, the pair of correlation functions �Eq. �37��
determines the evolution of perturbations.

Evolution of the perturbations can be undertaken in par-
allel with BP; to each message is attached a representative
statistic for, or a distribution over, perturbations. It is suffi-
cient to consider a distribution of perturbations characterized

by a mean �h̄i→j
�t� and variance �h̄i→j

2�t� attached to each macro-
scopic field. If these parameters decay exponentially, in ex-
pectation, then this is an indication of fixed-point stability.

m
(t)

(t+1)

i−>k
h

G i−>k

ik

m
(t)

(t+1)

i
H

(t+1)

i
H

S,(t)

j−>ih

(t+1)

i−>j
h

G i−>j

ij

m
(t)

G i−>j

(t)

l−>i{h }

m
(t) (t+1)

m+d

k

S,(t)

j’−>ihS,(t)

j’−>ih
S,(t)

j’−>ih

S,(t)

j−>ihS,(t+1)

i−>jh

G i−>k

i
i

G

k

i

j

G

ij

j’

FIG. 3. �Color online� BP constructs an estimate of the posteriors by message passing, each message is a log-posterior estimate for some
variable subject to the removal of the interaction with another variable �the variable to which the message is passed�, as in the top subfigures.
In the lower two subfigures, the central limit is applied to the messages on dense links and in some cases only a single parameter is then
required to represent the O�N� dense messages. A related approximation is implicit in the derivation of the RS free energy.
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Assuming that there is no linear instability, the equation

determining �h̄i→j
2�t� is

�h̄i→j
2�t� = �q�t� + �

i��j\k
�h̄i→j

2�t� 
 �1 − tanh2��hi→j
�t� ��tanh��J�ij��

1 − tanh2��hi→j
�t� �tanh2��J�ij��

�2

,

�38�

with a similar equation applicable to the case of a linear
perturbation.

The BP equations can be interpreted as a recursive instan-
tiation of the RS saddle-point Eqs. �25�–�28� except in the
explicit site dependence, so that quenched disorder specific
correlations may accumulate over several updates. Assuming
a negligible feedback process in BP, or a modified problem
without loops or with annealed disorder, the macroscopic
properties established by BP will depend only on the steady-
state distribution of messages on sparse links and the mean
and variance of dense messages. Objects analogous to a his-
togram estimate to � �Eq. �25�� and scalar parameters m�t�

and q�t� in the saddle-point method. However, at the level of
the mapping of individual points in the RS description �26�,
it is possible that local fluctuations of the messages on fields
are unstable, despite stability in the distribution. Whereas
divergence in ��h� might be observed in a macroscopic in-
stability in the first moment of �, an instability of the map-

ping in ��h̄2� will not be realized in any macroscopic mo-
ment of the distribution. It is this instability in the mapping
which is probed by the BP stability analysis. In the absence

of a linear instability, it is assumed that divergence in ��h̄2� is
a necessary condition for any local instability.

The fluctuations on sparse messages are represented fully
in this framework, whereas dense messages are summarized
under approximation. The stability is a self-consistent �lon-
gitudinal� test of stability but is known not to probe all pos-
sible instabilities and so provides only a sufficient criteria for

instability. The SK model is an example where the longitu-
dinal stability of the ferromagnetic phase, as derived through
a BP framework �19�, does not capture correctly the spin-
glass transition at low temperature, as shown in Fig. 4. Since
the models investigated in detail later have inhomogeneity in
the sparse substructure only �J2=0�, it is felt that the test of
stability, as applied in this paper, may be a more accurate
reflection of true local stability toward replica symmetry
breaking. A connection between the stability tested through
the BP framework and an instability entirely within the rep-
lica method might be established as outlined in Appendix B.

V. EXACT HIGH-TEMPERATURE FORMULATION

In the limit �→0, the paramagnetic solution 
=1, q�

=0, q��1,�2�=0 is the only stable solution but becomes un-
stable as temperature is decreased. This process can be in-
vestigated by considering the moments of 
 through a mo-
ment expansion representation


��� = 1 + �
�

q̄��� + �
��1,�2�

q̄��1,�2��
�1��2

+ �
L=3

�
��1,. . .,�L�

q̄��1,. . .,�L��
�1 . . . ��L. �39�

The saddle-point equations can be solved in each moment
�q̄	 and stability tested in some subset of the moments.

In the sparse substructure, both the excess and full con-
nectivity distributions are Poissonian, the saddle-point Eq.
�21� can be expanded, using the identity �16�, as

P��� = 

L=1

� � 

��1,. . .,�L�

�cosh�XLq̄��1,. . .,�L��

��1 + ��1
¯ ��L tanh�XLq̄��1,. . .,�L����� , �40�

eliminating the conjugate parameters �Eq. �23��. The terms
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FIG. 4. �Color online� The phase diagrams for disordered spin-glass systems often exhibit a phase behavior similar to the SK model. Left
figure: the phase transitions are indicated by solid dark lines. As temperature is lowered, there is a transition from an RS paramagnetic phase
�m=q=0� to either an RS ferromagnetic �m
0� or spin-glass �q
0,m=0� phase. As temperature is lowered in the ferromagnetic phase,
there is also an RS to full-RSB transition. Under the RS assumption, the longitudinal instability measures calculated in the context of BP
coincides with the F-SG transition in the RS description �dashed line�. The instability of the ferromagnetic phase is not correctly predicted;
the result is a lower bound in temperature for the replica instability in the ferromagnetic phase �toward a mixed phase�.
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X1 = �J0 + T1; X2 = �2J2 + T2; Xi = Ti if i 
 2,

�41�

determine transition properties, where

Ti = C� dx��x�tanhi��x� . �42�

The saddle-point equations can be written in terms of an
equation for each moment

q̄��1,. . .,�L� = tanh�XLq̄��1,. . .,�L�� +
�1 − tanh2�XLq̄��1,. . .,�L����S�1 . . . S�L��q̄��1,. . .,�L�

XL

1 + �S�1 . . . S�L��q̄��1,. . .,�L�
tanh�XLq̄��1,. . .,�L��

, �43�

where the notation �¯ ��x indicates an average with respect
to Eq. �40�, but with x=0. A solution is apparent, which is
the paramagnetic solution with z= ���1 . . .��L� and
q��1,. . .,�L�=0 for all choices of indices. This is the only solu-
tion when XL→0, corresponding to the high-temperature
limit.

At lower temperature, a solution may emerge in one of the
moments. It is only necessary to show that some component
q̄ allows a nonzero solution. The second term in Eq. �43� is
zero at leading order in q̄ in the moments of the distribution,
and there is no coupling of the moments at leading order.
Hence, any solution which emerges continuously from the
paramagnetic solution must do so with equality at leading
order between the first term of the right-hand side and the
left-hand side. This leads to criteria XL=1 for the existence
of a continuous transition.

For a discontinuous transition to occur in some compo-
nent, without Xi
1, requires the derivative of the second
part with respect to q̄ to be a convex function of q̄ in some
range of the parameter �43�. However, the derivative is a
concave function of q̄, so that unless Xi
1 for some com-
ponent, there can be no solution other than the paramagnetic
one.

A. High-temperature phase transitions

The existence of nonparamagnetic order is determined
from Eq. �43� as

X1 
 1 1-spin,ferromagnetic�F�order,

X2 
 1 2-spin,spin-glass�SG�order,

XL 
 1 L-spin order. �44�

In each case, the solution which emerges may be estimated
by an expansion in the right-hand side of Eq. �43� up to some
order. Cubic order can be considered as a minimum to obtain
the continuously emerging solution. To allow for the replica
limit n→0, an assumption on the correlations is required, RS
being the simplest, and the order parameters may then be
determined. Depending on the order of solution required,
some coupling between moments is relevant, and it is neces-
sary to solve a set of coupled equations.

The emergence of a ferromagnetic phase is realized in a
continuous transition toward nonzero values of q̄�. Through
coupling of the order parameters, all parameters q̄��1,. . .,�L�
become nonzero at order O��q̄��L�.

The emergence of a spin-glass phase is realized in a con-
tinuous transition toward nonzero values of q̄��1,�2�, while
q̄�=0. Even order parameters are generated by the coupling
of terms at a higher order.

The transition toward an L-spin order is irrelevant to the
high-temperature analysis, since by consideration of Eq. �41�
it is clear that XL�X2 for all L
2, with equality only in
pathological cases, therefore, the transition can only be to-
ward a ferromagnetic or spin-glass phase.

In the case that X1=X2, at the high-temperature transition
point both orders may emerge simultaneously and in compe-
tition. This case can be understood at leading order through
an SK auxiliary model.

B. SK auxiliary system

In either the case of a ferromagnetic order, or spin-glass
order, the behavior is described at leading order about the
paramagnetic phase by the terms �q�	 and �q��1,�2�	. The free
energy can be written in these cases as a function of only
these two types of order parameter. After elimination of con-
jugate parameters, the free energy can be written up to con-
stant terms as

�fE = lim
n→0

�

�n
− log�
S

exp�X1�
�

q�S�

+ X2 �
��1,�2�

q��1,�2�S
�1S�2� +

X1

2 �
�

q�
2

+
X2

2 �
��1,�2�

q��1,�2�
2 � . �45�

This is the replica formulation of the SK model free energy
�7�. Therefore, at leading order the high-temperature phases
are equivalent to the SK model, up to the � dependence of
the energetic coupling terms. Instead of the standard term
�J0, there is X1, and instead of �2J2 there is X2.

For every composite system of Poissonian connectivity,
there exists an auxiliary SK model with an equivalent
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leading-order behavior at high temperature. By mapping the
composite parametrizations to the SK model, all the leading-
order high-temperature transition properties must carry over,
including the nature of replica symmetry breaking �RSB� and
the stability of the RS description.

Let A denote the parametrizations �J0
A ,JA ,�A� of an SK

model with an equivalent high-temperature behavior to some
composite system at the high-temperature transition. This pa-
rametrization is redundant, there are only two independent
parameters, and so JA=1 is chosen. The standard phase dia-
gram for an SK model under this parametrization is demon-
strated in Fig. 4.

The auxiliary parametrization is determined by the map-
ping equilibrating the coefficients in the free energy �41�,

�AJ0
A = X1; ��A�2 = X2. �46�

Where this mapping is continuous, it is possible to consider
how the auxiliary system parametrization responds to varia-
tion in temperature �or some other parameter� in the compos-
ite system. Variation in � in the composite model is realized
as a trajectory in the auxiliary model parameter space given
by

�J0
A

��A = 2
J0 − JSC�1 − tanh2��JS��

JSC tanh��JS��1 − tanh2��JS��
−

1

�A . �47�

In the case that the couplings to higher-order moments are
small �XL�1 for L
2� then the mapping may be applied
with some confidence to lower temperature. Such a scenario
will occur when the X1 and X2 are dominated by the dense
substructure terms, or when C is large in the sparse substruc-
ture.

C. Beyond leading order

The leading-order approximation to the composite system
differs from the SK model in the anomalous dependence of
energetic components on �. This observation alone is suffi-
cient to account for many of the novel features of composite
models reported at high temperature.

About the ferromagnetic transition, the term q� appears at
leading order to provide a thermodynamic description. The
magnitude of �q��2 is proportional to �1=X1−1 at leading
order and at Lth order the value is dependent on moments of
the distribution up to q̄��1,. . .,�L�. The set of nonlinear coupled
equations can be solved in parallel at each order. The ferro-
magnetic phase is at leading order an RS phase so that an
expansion with simple RS components will be stable at lead-
ing order. The full description of the ferromagnetic phase
differs from the auxiliary system description at the third or
fourth order.

The spin-glass phase does not include any nonzero odd
moments and is described at leading order by �2=X2−1 and,
at second order, includes the term q̄��1,�2,�3,�4�. This term
arises from the sparse substructure and so behavior deviates
from the auxiliary model at second order. However, since
even moments have positive coefficients, all with a mono-
tonic dependence on �, phenomenological properties may
not differ significantly from the VB model, which has been
thoroughly studied �e.g., �10��.

In the vicinity of the triple point, where both �1 and �2

are positive, the terms q̄��1,�2,�3� and q̄��1,�2,�3,�4� are relevant
at the second order. The literature developed in studying the
VB model is sufficient to describe RS properties and stability
about the triple point �9,23�. The leading-order behavior
gives a transition from an RS ferromagnet to a spin glass
according to a balance in the components �1=�2 /2. The
second-order term in the sparse model indicates the existence
of a mixed phase, with a refinement of the transition line.

The de Almeida-Thouless �AT� line is sufficient to de-
scribe stability of an RS solution in the dense model at all
temperatures �22�. In order to correctly describe transitions
in the sparse or composite models, it is necessary to consider
a wider range of eigenvalues �23�, which cannot be evaluated
other than numerically, except at the percolation threshold
�absent in the composite model� or as a polynomial expan-
sion truncated at some order.

A stability analysis considering moments up to fourth
order was recently presented �15�. It considers an RS de-
scription with inclusion of non-zero �q̄��1,�2,�3� , q̄��1,�2,�3,�4�	
but with an analysis of instabilities restricted to variation in
�q̄� , q̄��1,�2�	. This predicts a comparable splitting of the line
�1=�2 /2 to those found for the VB model, but for some
ranges of parameters a stable spin-glass phase is incorrectly
identified. Since only a restricted set of eigenvalues is con-
sidered, this is not unreasonable but demonstrates a weak-
ness in the method.

Regular connectivity

The derivations of this section, so far, beginning from Eq.
�43� onward have been specific to the case of Poissonian
connectivity �19� and do not necessarily extend to composite
models with non-Poissonian connectivity. The replica theory
is developed along similar lines to previous sections in Ap-
pendix A to be inclusive of the regular connectivity en-
semble. The 1-spin and 2-spin dense substructure order pa-
rameters are determined by Eq. �14� and take zero values in
the paramagnetic phase. The sparse substructure order pa-
rameter is different from Eq. �14� to be inclusive of non-
Poissonian connectivity but in general takes a value 
=1 in
the paramagnetic solution and may be expanded as a set of
moments �Eq. �39��. However, with the new definition q�

� q̄� and q��1,�2�� q̄��1,�2� in general. Each of these order
parameters corresponds to distinct physical quantities:
q��q��1,�2�� are related to the mean magnetization �2-spin cor-
relation�, whereas q̄� , q̄��1,�2� correspond to these quantities
weighted by connectivity in the sparse substructure, as indi-
cated in Appendix B.

Along similar lines to the previous analysis, it is possible
to consider the emergence of order by treatment only of the
leading-order behavior about the paramagnetic solution. The
1-spin order terms are coupled at leading order by the saddle-
point equations; thus there is no decoupled representation
describing emergence of spin glass and ferromagnetic order
in general. The criteria for a ferromagnetic solution to
emerge continuously from the paramagnetic solution as tem-
perature are lowered is determined by the point at which
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q�

q̄�
� = ��J0 T1 tanh��x�

�J0
�C − 1�

C
T1 �
q�

q̄�
� , �48�

if such a point exists; its existence requires the principal
eigenvector of the matrix to be the one vector. However, the
existence of a solution point in the coupled equations is not
guaranteed, and there exist a range of parameters in which
decreasing temperature results in a pair of complex-
conjugate eigenvalues, which exceed one in modulus.

The right-hand side of Eq. �48� represents the leading-
order 1-spin terms in the saddle-point Eq. �21�, after elimi-
nation of the conjugate parameters. In the case of Poissonian
connectivity, the existence of a continuous transition is nec-
essary for the existence of a ferromagnetic or spin-glass
phase �43�. This is due to the concavity of the saddle-point
equation when interpreted as a mapping, concavity is as-
sumed to hold also for the regular connectivity composite
system.

However, in a general model it is necessary only for the
principal eigenvalue of the matrix �48� to exceed one for
some nonparamagnetic solution of the saddle-point equations
to exist. When the modulus of the principal eigenvalue ex-
ceeds one, the assumption of weak coupling between the
moments in the order parameters expansion ceases to be
valid when considering an expansion coincident with the ei-
genvector. The criteria that the modulus in the leading-order
expansion are greater than one corresponds to a set of crite-
ria,

1

2
�
�J0 +

C − 1

C
T1� ��
�J0 +

C − 1

C
T1�2

+ 4
�J0T1

C
�


 1 1-spin order,

1

2
�
�2J2 +

C − 1

C
T2� ��
�2J2 +

C − 1

C
T2�2

+ 4
�2J2T2

C
�


 1 2-spin order,

C − 1

C
TL 
 1 L-spin order. �49�

The potential exists for the modulus to exceed one, while the
discriminant is less than zero in the 1-spin order term, when
either T1 or �J0 is negative. This phenomena, absent in the
VB and SK models, is contingent on a subset of couplings
being antiferromagnetic. In spite of a comparable functional
form in the 2-spin order term, the transition from a paramag-
net to a spin glass is always described by a non-negative
discriminant and real eigenvalues.

The complex eigenvalues imply complex-conjugate
eigenvectors. Where the eigenvalues are real, it is possible to
test the stability of the equilibrium solution by inclusion of a
conjugate field in proportion to the eigenvector components
�see Appendix B�. However, where the eigenvalue is com-
plex such a field is not physical and is not consistent with
assumptions made in the development of the equilibrium so-
lution.

Attention is restricted to real-valued perturbations of the
order parameters, which can be associated with the real-
valued conjugate fields. A local instability in the paramag-
netic solution is only anticipated toward a ferromagnetic
phase when the real part of the principal eigenvalue is larger
than one or toward a spin-glass solution when criteria �Eq.
�49�� are met. If the paramagnetic solution is stable with
respect to an infinitesimal term conjugate to the magnetiza-
tion in the Hamiltonian then the paramagnetic solution will
be recovered continuously as the conjugate field approaches
zero. This is equivalent to the criteria that the linearized
saddle-point equations are convergent to the zero solution.
Linear instability is apparent when the real part of the eigen-
values exceeds one. However, since the perturbation is not
coincident with an eigenvector there is no leading-order so-
lution to the linearized equations when the external field is
added. The instability in the paramagnetic solution is toward
a discontinuously emerging solution.

The discontinuously emerging solution from the paramag-
netic instability might be a locally stable �thermodynamic or
metastable� solution across a wider range of temperatures
than that indicated by the local stability analysis of the para-
magnetic solution. In limited simulations, comparable in size
to those described in Sec. VIII, the behavior observed at
temperatures close to �but below� the modulus one criteria
�49� is consistent with the hypothesis of two locally stable
solutions. One solution describes the thermodynamic phase,
and the other a metastable solution, with decreasing tempera-
ture a discontinuous thermodynamic is anticipated.

The case of large � allows only for a transition from a
paramagnetic to ferromagnetic state, and this may be discon-
tinuous. As well as a thermodynamic solution, several dy-
namical transitions may describe changes in local stability
criteria of the solutions; these local instabilities may be
dominate aspects of dynamics, and in general will not be
coincident with thermodynamic transitions.

At intermediate � values, the paramagnetic solution may
be locally unstable first toward a spin-glass solution as tem-
perature is lowered. The presence of another metastable or
thermodynamic ferromagnetic phase may change the proper-
ties of this transition by comparison with the standard con-
tinuous case.

In the limit of large C, a simplified description is possible
in the transition criteria for the regular connectivity case.
With a sensible scaling of the moments of ��x� so that T1
and T2 remain finite as C increases, the final term in the
discriminant �49� becomes negligible and a simple transition
criteria is recovered, consistent with the Poissonian system

�J0 + T1 
 1; �2J2 + T2 
 1. �50�

This is also the result that would be obtained in naively
applying the dense system method, using only a mean and
variance of link strengths, to the two-scale system. Examples
of discontinuous high-temperature transitions are examined
in Sec. VI C, with a clear departure from the conditions laid
out in Eq. �50�.
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VI. LEADING-ORDER PREDICTIONS
FOR PHASE BEHAVIOR

A. F-AF model

The SK auxiliary model can be used to predict trends as
temperature or some other parameter is varied in the F-AF
model about the high-temperature transition points. Using
the mapping �46� combined with an exact �full-RSB� de-
scription of the transitions and phases of the SK model at
high and low temperatures, the trajectories implied by the
mapping can be used as a leading-order predictor of phase
behavior.

Choosing the F-AF models �Eq. �10�� such that

B = �; JS = atanh�1/�C� , �51�

a class of models parametrized by �� �0,�� is created. The
disorder in couplings decreases with � from a typical spin
glass set to an ordered ferromagnetic set. These models are
characterized by a high-temperature spin-glass transition at
�C=1 when ��1, and a high-temperature ferromagnetic
transition at a temperature �C

−1=� when �
1. There is a
triple point in the parameter space at �=1, �=1. Phase tran-
sitions between ferromagnetic and spin-glass phases are pos-
sible where ��1 and ��1.

Near the triple-point model parametrization ��=1�, a de-
crease in temperature results in a competition between ferro-
magnetic and spin-glass solutions. A graphical answer to
which solution dominates is provided by Fig. 5, for a range
of high-temperature transition properties. If only leading-
order moments are considered in the free energy then all
composite systems evolve toward an RS ferromagnetic be-
havior with decreasing temperature. Thus, unusual transi-
tions away from FRSB spin-glass phases toward RS ferro-
magnetic phases are predicted as temperature is lowered.

The auxiliary model is an approximation except very
close to the high-temperature transition, where higher-order
moments are negligible and linear approximations apply. At
lower temperature, complicated couplings with these higher-
order moments may prevent an FRSB to RS transition. How-
ever, working at the level of linearization near the transition
point the unusual FRSB to RS transitions are still observed
in some models.

In the F-AF model, a spin-glass phase with zero magne-
tization cannot be a sufficient description at low temperature.
This is because the spins disconnected from the sparse sub-
structure can evolve independently and undergo an indepen-
dent phase transition induced by the dense substructure. The
results at the leading order are in agreement with this obser-
vation.

B. AF-F model

Consider the assignments

B = ��1 − C tanh�JS/���, JS = atanh�1/�C� , �52�

as applied to the AF-F model �11�, with �
� �0,JS /atanh�1 /C�� describing the level of order in cou-
plings. Larger � can be considered, but these correspond to
systems with small ferromagnetic couplings in the dense part
rather than antiferromagnetic ones.

The predictions based on a leading-order representation of
the order parameters are shown in Fig. 6. Composite systems
are predicted to evolve toward spin-glass phases as tempera-
ture is lowered; lowering temperature at large � results first
in transitions to stable RS ferromagnetic phases then toward
a mixed phase before finally a spin-glass phase. The auxil-
iary model predicts that at lower temperature the magnetic
moment is suppressed, for all � up to the maximum value
JS /atanh�1 /C�, so that in the low-temperature limit all sys-
tems are in a phase equivalent to a “finite temperature” spin-
glass phase in the SK model. As temperature is lowered, RS
states become unstable toward RSB, which is the scenario
normally observed in dense or sparse spin-glass models.

The prediction that all systems converge toward a finite
temperature spin glass is a consequence of the limited mo-
ment description. The spin-glass behavior is a residual effect
of the sparse couplings and, at low temperature, depends
strongly on higher-order moments, which are absent in the
auxiliary model. The spin-glass phase is not induced by the
dense antiferromagnetic couplings.

FIG. 5. �Color online� The F-AF models �Eq. �10�� in a param-
eter range ��= �0.75,1.25� ,1 /�= �0,2�� are mapped through Eq.
�46� to auxiliary SK models parametrized by �J0

A /JA ,1 /�A�. These
models are equivalent about the high-temperature transition lines
and elsewhere equivalent when constraining higher than second-
order moments to zero �Eq. �39��. Horizontal isobars indicate con-
stant �, and the near vertical isobars indicate constant �, in the
composite model parameter space. The set of transition lines for the
SK model is shown; the upper most solid lines describing the high-
temperature phase transition. The SK auxiliary model predicts that
as temperature is lowered in the composite models, behavior con-
verges toward a mean-field ferromagnetic behavior. For small �, the
prediction is that a spin-glass phase transforms through a mixed
phase to an RS ferromagnet behavior as temperature is lowered.
Decreasing temperature about the triple point ��=1�, there is only
an RS ferromagnetic behavior. The three highlighted isobars corre-
spond to composite systems from left to right parametrized by �
=0.952 �J0

A=0.925 at �C�, �=1 �J0
A=1 at �C�, and �=1.23 �J0

A

=1.15 at �C�, across a range of temperatures.
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C. Regular connectivity models

Figure 7 demonstrates the limitations on the parameter
range consistent with unique locally stable RS solutions, in
the case of regular connectivity systems. The two figures
correspond to the models �10� and �11�, but with regular
couplings �Eq. �9�� and mean connectivity 3. The coupling
scaling is

B = ��1 − C tanh�JS/���; JS = atanh�1/�C − 1� . �53�

The choice of JS ensures that everywhere temperature �=1
corresponds to a spin-glass instability in the paramagnetic
solution. The choice of scaling means that under the approxi-
mated ferromagnetic transition scheme �50�, the critical tem-
perature implying local instability in the paramagnetic solu-
tion toward ferromagnetism increases linearly with �
denoted by the dashed line in Fig. 7. If the transition were
predicted by Eq. �50� then a triple point would occur at 1: for
��1 all high-temperature transitions would be of a spin-
glass type and for �
1 transitions would be of a ferromag-
netic type.

With couplings characterized by Eq. �53�, a range of �
values allow the instability of the paramagnetic solution to-
ward 1-spin order to be described by complex eigenvalues.
In the AF-F regular model, at small values of �, the complex
eigenvectors describe the stability of the paramagnetic solu-

FIG. 6. �Color online� The AF-F model �11� as parametrized in
�−� space ��= �0.75,1.25� ,1 /�= �0,2�� is mapped �Eq. �46�� to an
auxiliary dense model parameter space. The auxiliary model predic-
tion is that the magnetic order parameter �m2� goes to zero in all
composite models as temperature is lowered; a FRSB spin-glass
phase describes the zero-temperature limit. The three highlighted
systems correspond to systems with �=0.746 �J0

A=0.925 at �C�, �
=1 �J0

A=1 at �C�, and �=1.23 �J0
A=1.15 at �C�.
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FIG. 7. �Color online� In this figure, the horizontal line indicates a high-temperature instability in the paramagnetic solution toward 2-spin
order. Other lines indicate instabilities toward 1-spin order: the straight diagonal line is assuming the conditions �Eq. �50��, the thick and thin
lines are the points where the real part or modulus of the principal eigenvector�s� equal one, respectively. Left figure: in the AF-F model,
decreasing temperature results in either a continuous spin glass or ferromagnetic transition. �a� At small �, a spin-glass phase emerges
continuously with decreasing temperature. �b� At large �, eigenvectors describing 1-spin order are real; a continuous ferromagnetic transition
is found. Right figure: in the F-AF model, continuous and discontinuous transitions occur; no continuous transition triple-point exists. �a� At
small �, eigenvectors describing the 1-spin order are complex, but a spin-glass high-temperature transition is dominant. �b� At large �, a
continuous transition occurs described by a real eigenvector. �c� An instability in the paramagnetic solution in the first moment is anticipated
at the lower �thick� line for intermediate �, the properties of the discontinuously emerging solution �labeled ?� cannot be established by a
linearized approach. The thin line indicates instability in the modulus for the linearized system, which is speculated to relate to the existence
of the nonparamagnetic solution.
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tion toward 1-spin order; but as temperature is lowered a
spin-glass instability is first attained. At larger � �equiva-
lently J0�, a triple point is reached, but here the eigenvectors
are real, and a continuous transition from the paramagnetic
to ferromagnetic phase is found at larger �.

In the F-AF regular model, complex eigenvalues occur in
a parameter range relevant to the high-temperature transition.
When J0 is sufficiently large, a continuous high-temperature
ferromagnetic transition is observed and, at small �, there is
a continuous spin-glass transition. There exists a broad range
of � between these regimes where the ferromagnetic solution
cannot emerge continuously from the paramagnetic solution
and two locally stable solutions are anticipated. There is no
triple point in this model suitable for a perturbative analysis.

In a small number of Metropolis-Hastings Monte Carlo
simulations �24�, two attractors corresponding to
paramagnetic- and ferromagnetic-type configurations were
found in these parameter ranges, though no systematic analy-
sis was undertaken.

VII. REPLICA SYMMETRIC SOLUTION
OF LOW-TEMPERATURE BEHAVIOR

In Figs. 8–10, stability measures and magnetizations for
the composite models, equivalent at �C to SK models with
J0

A=1, J0
A=1.15, and J0

A=0.925, are presented at various tem-

peratures below the 1 /�C. The trends found are compared to
those predicted by the auxiliary model in the vicinity of the
transitions, as shown in Figs. 5 and 6, and also RS solutions
to dense �SK� and sparse �VB� models with equivalent high-
temperature properties.

A. Numerical evaluation of the saddle-point equations

To work beyond a perturbative approach, the RS saddle-
point equations are solved by population dynamics �17�. The
results are presented based on samples from a single run of a
population dynamics algorithm. In population dynamics, ma-
chine numbers are used for m and q and the distribution � is
represented by an order-parameter histogram �W� of N com-
ponents

� → W = �h1, . . . ,hN	 . �54�

The saddle-point Eqs. �25�–�28� are treated as a mapping
with integrals and summations replaced by random samples.
This implies a random map from the histogram to itself.
Updating histograms recursively by a large number of ran-
dom maps, from a random initial condition, leads to an ac-
curate description of the fixed point �.

The random sampling is done in such a way as to reduce
fluctuations in the variance of the Gaussian distributed
samples and mean of the Poissonian distributed samples to
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FIG. 8. �Color online� A comparison of the stability exponent and magnetization for the F-AF �circles�, AF-F �crosses�, VB �dashed line�,
and SK �solid line� models under the RS assumption. Every model is equivalent at the high-temperature spin-glass transition point to an SK
model parametrized by J0

A=0.925, and temperature variation is considered on the rescaled interval �C /�= �0.2,1.05�. In the top figure, two
stability exponents are given for the SK model, a longitudinal measure SK�RS� and a latitudinal measure SK�RSB�. In the lower figure, the
sparse and dense models show similar trends with �
0 and m2=0. Composite models behave as sparse spin-glass models whenever m2

=0; but there is a departure in both models at low temperature. In all models as temperature decreases �
0, except for the F-AF model,
which is negative over an intermediate temperature range. Both composite models attain a nonzero magnetic moment at low temperature,
which is not seen in the VB or SK models. The F-AF model is in approximate agreement with Fig. 5 at a high temperature. However, the
behaviors observed in the composite models at low temperature are not anticipated by the auxiliary model.
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O�1 /N�. A single iteration includes an update of every field
in the histogram W with either parallel or random sequential
order. Given that antiferromagnetic couplings play a role in
the dynamics, there is a risk that an invalid macroscopic
antiferromagnetic state could be amplified by parallel up-
dates. This scenario does not form a problematic point in the
analysis undertaken but was relevant to work undertaken in
�15� and carefully avoided. In order to control finite-size ef-
fects a scheme of microcanonical sampling was employed
with respect to W, so that each field in generation �t� is
involved in forming exactly C fields in generation �t+1�.

A histogram of 65 556 floating point fields run for 1024
iterations appears to resolve all statistical quantities of inter-
est down to a temperature of �1 / �10�C�, with great preci-
sion, even in the vicinity of phase transitions. At lower tem-
perature, there is a rapid decrease in the resolution of
statistical quantities, which is uniform across tested systems
and probably related to numerical precision limitations in the
representation for hyperbolic functions. Based on the con-
verged set of order parameters, samples are taken in the fol-
lowing 256 iterations to determine robust system statistics.

The initial condition for the order parameters m2, q, and
W are chosen as paramagnetic combined with a small sys-
tematic bias toward spin-glass and ferromagnetic configura-
tions with small but nonzero values to the dense substructure
moments �m2=q�, elements of W are sampled according to a
Gaussian N�m ,q� such that the mean and variance of the
histogram values are m+O�1 /N� and q=O�1 /N�. Other ini-
tial conditions were also tested to ensure that dynamical bias
was not implied by initial conditions; the suggested scheme
converged effectively and systematically.

Numerical evaluation of the stability equations

The longitudinal stability is tested by initializing a fluc-
tuation histogram �W

�W = ���2�1
�t�,��2�2

�t�, . . . ,��2�N
�t�	 , �55�

where each component corresponds to a distinct field in the
histogram W �54�. Each component represents a topology

free measure of �h̄i→j
2�t� , each of which is evolved according to

Eq. �38�, with the site-dependent fields and parameters re-
placed by a sample of fields from W and other quenched
disorder determined as in the field update. Cases in which
J2=0 �q�t�=0�, without linear perturbations are considered.
The stability exponent is

��t� = log

�
l

��2�l
�t�

�
l

��2�l
�t−1�

, �56�

which is negative if BP is convergent in expectation. This is
averaged over many generations, alongside renormalization
of �W to prevent numerical precision problems.

B. F-AF and AF-F models

Results for VB, SK, F-AF, and AF-F models are shown.
The VB model presented for comparison is of connectivity 2,
the same as the sparse substructures for F-AF and AF-F
models, and has a balance of antiferromagnetic and ferro-
magnetic interactions described by a �J model �8�. Figures
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FIG. 9. �Color online� A comparison of the longitudinal stability and magnetization for the F-AF �circles�, AF-F �crosses�, VB �dashed
line�, and SK �solid line� models under the RS assumption. Every model is equivalent at the high-temperature transition to an SK model with
J0

A=1, coincident with the triple point in the phase diagram. Temperature variation is considered on the rescaled interval �C /�
= �0.2,1.05�. Trends differ in F-AF from Fig. 5 in that the magnetization acquires a maximum value, and the stability exponent tends toward
a positive value at sufficiently low temperatures. Trends differ in AF-F from Fig. 6 in the appearance of a magnetic moment at low
temperatures.

EQUILIBRIUM PROPERTIES OF DISORDERED SPIN … PHYSICAL REVIEW E 80, 031138 �2009�

031138-15



8–10 follow the dashed lines in Figs. 5 and 6 to highlight the
behavior of the system as temperature is lowered along fixed
J0

A values. Figure 8 demonstrates the results for the set of
systems equivalent at the high-temperature transition point to
a dense model with J0

A=0.925. In all systems, there is a high-
temperature paramagnet to spin glass transition at �C=1, be-
havior is examined for relative temperature �C /� in the in-
terval �0.1,1.05�.

The stability exponent ��� and magnetization �m2� are
identical in all the models very close to the transition, the
phase is a spin glass �m=0,q
0�, and the RS description is
unstable ��
0�. The F-AF model becomes unstable toward
a mixed �unstable RS ferromagnetic� phase at relatively high
temperature. This is qualitatively similar to the prediction
based on the auxiliary model of the composite system �see
Fig. 5�, and the transition temperature is comparable to what
would be predicted by the auxiliary model.

When the magnetization is zero �the spin-glass solution�,
only the even moments of the distribution in the composite
models contribute to their behavior. These include only
sparse model-dependent parts for F-AF, AF-F so that these
models are described by a saddle-point solution identical to
the sparse model.

In the AF-F model, the ferromagnetic order parameter is
suppressed down to a temperature �C /��0.25, where it ac-
quires a small value. This is close to the point where q
reaches a maximum value, saturation is reached before q
=1 due to the disconnected component in the sparse sub-
structure. This low-temperature transition must have a strong

dependence on higher-order moments since it is in strong
contrast with the auxiliary model prediction �Fig. 6�.

Figure 9 demonstrates results for the same models and
temperature range, but for cases in which the models have a
high-temperature triple-point transition. In this figure, the
F-AF model has a behavior that is clearly distinct from the
other three models. As temperature is lowered, a ferromagnet
phase is found rather than a spin-glass phase in the other
cases, in agreement with Fig. 5. At lower temperatures, a
maximum magnetization is reached and a small decrease in
magnetization is discernable at the lowest values in the tem-
perature range. With �C /��0.5, the RS ferromagnetic phase
becomes unstable to a mixed phase.

Initially, at high temperatures, the AF-F model is de-
scribed by a spin-glass phase. With the continuous emer-
gence of a ferromagnetic moment at low temperature, there
is a decrease in the stability exponent.

In Fig. 10, the behavior of systems exhibiting a high-
temperature ferromagnetic transition is shown, systems with
auxiliary models defined by J0

A=1.15 at the high-temperature
transition. In this regime, re-entrant behavior is seen in the
SK model, but not in the VB or composite models. The two
composite models follow very closely the behavior of the
VB model, although at �C /��0.3 there appears to be a
modification of the trend in the stability exponent for the
AF-F model absent in the F-AF and VB models.

The ferromagnetic moment is largest in the AF-F model at
high temperature and the F-AF model at low temperatures.
There are also several such crossovers in the stability expo-
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FIG. 10. �Color online� A comparison of the longitudinal stability and magnetization for the F-AF �circles�, AF-F �crosses�, VB �dashed
line�, and SK �solid line� models under the RS assumption. Every model is equivalent at the high-temperature ferromagnetic transition point
to an SK model with J0

A=1.15, and temperature variation is considered on the rescaled interval �C /�= �0.2,1.05�. Two stability exponents
are given for SK. The marginal stability at the paramagnetic-ferromagnetic transition point ��C /�=1� is with respect to a linear instability,
which is captured by the longitudinal instability exponent �SK�RS��, but not by the other nonlinear stability exponents. Properties of the
F-AF model display features of the VB model rather than the auxiliary model predictions �Fig. 5�. Trends also differ in AF-F model from Fig.
6, as instability is not realized until much lower than the predicted temperature, properties are again closer to the VB model.
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nent. The RS solutions are stable for the composite systems
and VB over the full temperature range presented.

VIII. RE-ENTRANT BEHAVIOR AND STRUCTURE
IN FINITE SYSTEMS

A. BP and Monte Carlo simulation

Some testing of thermodynamic results was undertaken in
samples of N=O�100�−O�8000� spins by sampling through
a Metropolis-Hastings algorithm �24� and estimating log-
posterior ratios by BP. These studies verified qualitatively the
outcomes of the thermodynamic analysis at high tempera-
ture. The paramagnetic phase was observed to transform
continuously into either a ferromagnetic, spin glass, or mixed
�unstable ferromagnetic� phase as temperature was de-
creased. The ferromagnetic state is assumed to be described
by a connected phase space up to finite-size effects. Stability
of the BP algorithm was measured through the mean-square
change in BP log-posterior estimates �Eq. �30��

��t� =
1

N
�
i=1

N

�Hi
�t� − Hi

�t+1��2, �57�

this being a new definition of � related to Eq. �56�, but dis-
tinguished by the algorithmic context.

Figure 11 demonstrates a simulation of an F-AF model
with 5000 spins. This demonstrates that the nonmonotonic
behavior seen in the RS solution of the F-AF model and
predicted by the leading-order expansion can be realized in
finite systems also. The second part of the figure demon-
strates the structure of the magnetic phase in the F-AF
model. The macroscopic magnetization is supported prima-

rily by spins coincident with the disconnected component in
the sparse substructure.

B. Structure of phases and transitions

In the F-AF model, the inhomogeneity in magnetizations,
with the disconnected component being the most strongly
aligned set of variables, seems an intuitive and necessary
feature in a model with such a stark contrast in coupling
types.

The disconnected component appears to play an even
more vital role in the AF-F model. In the magnetic phase of
this model, all the disconnected components are observed in
Monte Carlo and BP experiments to be anticorrelated with
the macroscopic magnetization, which is an intuitive result.
Whereas almost all other variables connected through the
sparse substructure take values aligned with the macroscopic
order. In the large system limit, there should be some dis-
crimination in the topology within the sparse substructure.
Some important topological features of sparse Poissonian
graphs are outlined in Fig. 1. In general, the highly con-
nected spins may take one alignment, the disconnected com-
ponent an opposite alignment, with other variables interme-
diate.

The inhomogeneity in the structure must also be vital in
allowing continuous transitions between various phases and
in the dynamics of models. The continuous emergence of a
magnetic phase as temperature is lowered in the AF-F model
is presumably by a nucleation process, whereas in the F-AF
model the ferromagnetic part can emerge first in the discon-
nected component and percolate inward to the core of the
sparse substructure. The absence of sufficient inhomogeneity
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FIG. 11. �Color online� Results in applying BP and Monte Carlo simulation to an F-AF model of size 5000 spins and �=1 for various
temperatures. Left figure: iteration of BP on a sample graph from various initial conditions is convergent for this sample of quenched
disorder at intermediate temperature only, as indicated by the exponential decay in the stability measure. Right: for the case where BP
converges �=1.5, the mean and variance in the field distribution are demonstrated as a function of variable connectivity in the sparse
substructure. Thick lines �circles� demonstrate the results of Metropolis-Hastings Monte Carlo simulation. Thin lines �crosses� demonstrate
the estimates of BP. These are in agreement except at a high variable connectivity. The magnetism of the system is supported by the
alignment of low connectivity variables, with variables of high connectivity in the sparse substructure being magnetized in the opposite
direction.
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in the regular connectivity models is responsible for the
metastability found in some parameter ranges.

IX. SUMMARY

We have investigated composite models that combine
well-studied disordered spin systems with densely and
sparsely interacting components with the expectation that the
combined model would exhibit features that have not been
observed in the original systems. Here we focused on the
case of competing interactions of ferromagnetic and antifer-
romagnetic natures and have explored the phase diagrams for
different interaction types and relative strengths. The equilib-
rium properties were examined through the replica method,
exhibiting a new re-entrant behavior from spin glass to fer-
romagnetic phases as temperature is lowered, and transitions
from replica symmetry broken to replica symmetric phases.
A discontinuous transition from the paramagnetic to ferro-
magnetic phases has been observed in regular connectivity
graphs.

While the models investigated here comprise classical and
well-understood models, they provide insight and under-
standing of simple complex systems that combine different
structures and different levels and interaction types. Such
systems have been increasingly the subject of interdiscipli-
nary research activities using methods of varying mathemati-
cal rigor. We believe that established methods of statistical
physics are highly suitable for understanding both macro-
scopic and microscopic properties of such systems and that
the current investigation paves the way for the study of simi-
lar complex systems.
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APPENDIX A: REPLICA CALCULATION

Carrying out the calculation via the replica method in-
volves a combination of sparse and dense quenched disorder

averages. It is convenient to define the sparse substructure in
terms of an adjacency matrix A: labeling each edge by � and
each variable k, A�k= �0,1	. With mean connectivity C, the
number of edges is CN /2 so that in the absence of other
constraints, the probability distribution is defined as

P�A� = 

�=1

CN/2 �
N

2
�−1

�
�
k

A�k − 2�� . �A1�

This is a microcanonical description of interactions, but for-
mulations with the number of edges not strictly fixed �to
CN /2� are possible. In the limit of large N, this describes a
Poissonian distribution in the variable connectivity. Both
Poissonian and regular connectivity are sufficiently de-
scribed in typical case analysis by

P�A� 	 

�=1

CN/2 �1

2
�
�

k

A�k − 2��
�


i=1

N � cf!

Ccf
�
�

�

A�k − cf��
cf



�,k

P�A�k� , �A2�

the average in cf being with respect to the marginal variable
connectivity distribution of mean C �25� and taking P�A�k�
to be a sparse prior

P�A�k� = 
1 −
2

N
��A�k

+
2

N
�A�k,1. �A3�

The Hamiltonian may be written in a form

H =
1

2�
�

J�
S�
�

k

A�k�k�2
− 2� + �

�ij�
J�ij�

D SiSj , �A4�

where the representation of the dense part is unmodified
from Eq. �1�, J�

S is the random sparse coupling sampled ac-
cording to ��x� in Eq. �7� but can be replaced by the inte-
gration variable x in the self-averaged expressions. The rep-
licated partition function is

�Zn�Q = 

�

��S�� ��

�
�exp��

2
x�

�
�
�

k

A�kSk
��2

− 2���
x
�

A


�ij�
�exp��J�ij�

D �
�

Si
�Sj

���
J�ij�

D

. �A5�

Since the Hamiltonian is factorized with respect to the sparse and dense quenched variables, these averages may be taken
independently.

In the sparse part, it is useful to linearize the squared components with a Hubbard-Stratonovich transform for each factor
node and replica-index pair

� ¯ �A =� 

�,�

�D��
���


�
�exp�− �xn	


k
�exp���x�

�

��
�Sk

���A�k�
x
�

A

, �A6�
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with

� D� =
1

�2�
� d� exp�−

�2

2
� . �A7�

The delta functions in the adjacency matrix probability
distribution �A2� can be represented by complex contour in-
tegrals

�
L� − �
k

A�k� = 

�
� D2Y�


k

Y�
A�k;

�
Ck − �
�

A�k� = 

k
� DCk

Zk

�

Zk
A�k, �A8�

using the notation

� DxX =
1

2�i
� dX

Xx ; � Dx�X� = 

z
� Dxz

Xz. �A9�

The contours can be taken around the origin in the complex
plane, so the identities are assured by Cauchy’s residue for-
mula.

Factorizing various terms �Eq. �A6�� becomes

� ¯ �A 	�� DC� Z�

�
�exp�− �xn	

�� D�� D2Y�

k
��

A�k

P�A�k�G��
x
�

C�
,

�A10�

where D��
�,�D�
�, G abbreviates a number of terms fac-

torized in k. Subject to three integrals and an average on
connectivities, the dependence on the adjacency matrix is
factorized in � and k, and the trace over A can be completed



k
��

A�k

P�A�k�G� = 

k
�
1 −

2

N
�

+
2

N
Y�Zk exp���x�

�

��
�Sk

��� .

�A11�

Taking the integral in Y� picks out only the residue, the
second term in the expansion, so that



k
��

A�k

P�A�k�G� 	 �
�ij�



l=�i,j	

� 1

N
Zl exp���x�

�

��
�Sl

��� .

�A12�

Introducing an identity

1 = �
�



�

���,�k
�, �A13�

and extracting the k dependence through the order-parameter
definition

1 =� 

�
�d
����

��� −

1

N
�

k

Zk��,�k�� , �A14�

all quenched variable dependence is factorized except in the
order-parameter definition. In principle, the identity applies
to the entire complex plane, but relevant part of the order
parameter is assumed to be real, the imaginary part takes a
value 0 in the final saddle-point formulation by assumption.
The results are self-consistent given this assumption, and the
necessity of real-valued order parameters can be demon-
strated in some special cases �see Appendix B�.

Having taken the average in A the Hubbard-Stratonovich
transform may be inverted to give up to ensemble-dependent
constants

� ¯ �A =� 

�

d
���

k
�Ck!

CCk
� DCk

Zk

�

�

�

��� −
1

K
�

k

Zk�Sk,���
Ck

�

�
��

�,�

���
����exp��x�

�

������
x
� ,

�A15�

where the average is with respect to the sparse coupling dis-
tribution �7�.

The dense part of the Hamiltonian can be expanded to
second order allowing averages in the quenched couplings,

� ¯ �JD = 

�ij�
�1 + �

J0

N �
�

Si
�Sj

� +
�2J2

2N
�

��1,�2�
Si

�1Si
�2Sj

�1Sj
�2� .

�A16�

Defining the dense order parameters,

q� =
1

N
�

i

Si
�; q��1,�2� =

1

N
�

i

Si
�1Si

�2, �A17�

the k dependence is extracted

� ¯ �JD = 

�

�
q� −
1

N
�

k

Sk
�� 


��1,�2�
�
q��1,�2�

−
1

N
�

k

Sk
�1Sk

�2�exp�N�J0

2 �
�

q�
2�

�exp�N�2J2

2 �
��1,�2�

q��1,�2�
2 � . �A18�

The definitions of q�, q��1,�2�, and 
, introduced as � func-
tions may be Fourier transformed introducing conjugate pa-
rameters, for the real part of 
���
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�

��� −
1

N
Zk�

k

��,�k� = �
i�

−i�

exp�− CN
̂���
̂	

�exp�− C�
k

Zk
̂��k�� .

�A19�

By either an explicit calculation of contour integrals, or by a
self-consistent assumption, the integral on the complex line
�the standard definition of the Fourier transform� might be
considered to be rotated onto the real line so that real-valued
conjugate parameters can be considered.

The scaling of the Fourier transform by N reflects an as-
sumption of extensive entropy and is also a necessary feature
in scalable solutions of the saddle-point method. With the
specific choice, the order parameter 
 is normalized. The
choice of an additional factor C in the sparse order-parameter

definition is chosen so that 
̂ and 
 are normalized.
The trace over replicated spins is finally taken to give an

expression for free energy �17�, composed of terms �18� and
�20�, and �G2� up to ensemble-dependent constant terms and
O�1 /N� corrections. The G2 term is Eq. �19� in the Poisso-
nian variable connectivity, and in general

G2 = − log��
S

�
̂�S��cfexp��
�

q̂�S�

+ �
��1,�2�

q̂��1,�2�S
�1S�2��

cf

, �A20�

where the average over cf is with respect to the marginal
variable connectivity distribution, uniform, or Poissonian.

Modifications to the saddle-point equations

The saddle-point equations can be written down for the
general case �A20�, the generalization of Eq. �21� in the
sparse order parameter is


��� 	 �cf�
̂����cf−1exp��
�

q̂���

+ �
��1,�2�

q̂��1,�2��
�1��2��

cf

. �A21�

The dense order parameters are determined through the re-
cursions

q� = �
�

��P���; q��1,�2� = �
�

��1��2P��� , �A22�

subject to a normalized distribution

P�S� = ��
̂�S��cfexp��
�

q̂�S� + �
��1,�2�

q̂��1,�2�S
�1S�2��

cf

.

�A23�

The conjugate saddle-point equations are unchanged in form
�23�.

APPENDIX B: ORDER-PARAMETER CONSIDERATIONS

An interpretation for some parameters can be gained by
consideration of derivatives of the free energy with respect to
� and simple random external fields z�. This may also be used
to prove the consistency of some method assumptions in the
case of replica symmetry. The choice of a random field is
primarily to allow a concise inclusion within the replica
method equations. It is equivalent to working directly with
fields that are conjugate to quantities such as ��ij��i� j or with
annealed random fields in some cases.

A derivative of �fE, with respect to � determines the en-
ergy density. It is well known that the entropy becomes nega-
tive in both the VB and SK models at low temperature if
incorrect symmetry assumptions are used; this is also ob-
served in some of the systems presented. Consider also a
perturbation on the Hamiltonian to include a nonzero exter-
nal field

�H���� = �
i

zi�i; zi = z�i, �B1�

where �i is either uniform or randomly sampled from a sym-
metric distribution, and z is small and positive. In the case
that �i is uniform, the derivative of the free-energy density
with respect to z in the limit of small z is easy to evaluate and
gives the magnetization, which is coincident with the sum
over first replica moments at the saddle-point in the self-
averaging case

m = � �

�n
��

�

q�
� =

1

N
�

i

��i� . �B2�

The derivative when �� = �1� ,−1�	 is coincident with the sus-
ceptibility and also the sum over 2-spin correlations at the
saddle-point

�Lin = � �

�n
�

n=0
�

��1,�2�
q��1,�2�

� =
1

N
�
�ij�

��i� j� − ��i��� j� .

�B3�

These are useful quantities in evaluating the emergence of
ferromagnetic order and in determining phase transitions.

1. Assumption of real-valued integration variables

An assumption of the saddle-point method used to evalu-
ate the exponential term describing the free energy is that
only real-valued integration parameters �order parameters�
need be considered. This appendix demonstrates that any
physical solution must be real valued in its first two mo-
ments; this is assumed to extend to higher-order moments in
the sparse order parameter 
.

A useful variation in Eq. �B1� for purposes of general
analysis are identified by a class of fields aligned with inter-
actions. Consider the factor graph representation of the
Hamiltonian �A4�. Each of O�N� sparse interactions also has
a unique label �= �ij�, with other ordered edges �ij� subject
to weak �dense� interactions. Therefore,

JACK RAYMOND AND DAVID SAAD PHYSICAL REVIEW E 80, 031138 �2009�

031138-20



zi = �i�
j\i

�zDJ�i,j�
D + zSJ�i,j�

S � + �
j\i

��i,j��zDJ�i,k�
D + zSJ�i,j�

S �

�B4�

is well defined and includes a component dependent on the
sparse substructure and one on the dense substructure. Each
of �i , ��i,j� are assumed to be 0 �a default for discussions�,
uniform �1�, or quenched variables sampled independently
from �−1,1	, with �zS ,zD	 being infinitesimal real positive
fields. Unordered matrices are used in Eq. �B4� to describe
their ordered counterparts, so that �i , j� is �ij� or �ji� as or-
dering dictates, for each ordered pair only one quenched pa-
rameter exists.

Physical interpretation for these fields is as follows when-
ever J0�0 and �k=1 derivatives with respect to zD give a
magnetization. When �k= �−1,1	 susceptibilities such as Eq.
�B3� are determined. When ��i,j�=1, the derivative probes
alignments of variables with couplings, again giving a mea-
sure that can distinguish an ordered phase from a paramag-
netic one. The more complicated physical quantities involve
a quenched random field ��ij�= �−1,1	, for example,

� �

����zD�2�
�

zD=0
fE = lim

N→�

1

2N�
��i,j� J�i,j�
D Si�2�

−
1

2N�
��i,j� J�i,j�
D Si��2

, �B5�

identifying a type of susceptibility.
The free energy in the replica formulation, with inclusion

of these infinitesimal fields involves a modification of the
factor-centric �G1� term �18� in the free energy. Following
Appendix A,

G1 = − �
�

1

2
�J0�q� + 2zD���ij���q�

−
1

2 �
��1,�2�

�2J2�q��1,�2� + 2�zD�2����ij��2��q��1,�2�

−
C

2
log�

S,S�


�S�
�S��� dx��x�

��exp�− �x�
�

�S� + zS��ij��S����
��ij�

. �B6�

The variable-centric term is also modified from Eq. �A20�,
following from Appendix A the averages over J�ij�

D are
straightforward, but the average over J�ij�

S is involved for the
general case, requiring additional order-parameter defini-
tions. Consider the case that J�i,j�

S =JS is uniform for simplic-
ity. The expression then becomes

G2 = − log��
S

�
̂�S��cfexp��
�

q̂�S� + �
��1,�2�

q̂��1,�2�S
�1S�2�

�exp���k�cfz
S + �J0 + �J�zD��

�

S���
cf,�k

. �B7�

with � a normally distributed parameter.

Quantities derived through the proposed choices for ��� ,�� 	
are necessarily real valued at a saddle point and may be
calculated in the replica framework given the self-averaged
free energy. The derivatives with respect to �� are particu-
larly transparent, for example, taking ��ij� to be a quenched
parameter from �1, the derivative at the saddle-point gives

� �

����zD�2�
�

zD=0
fE = � �

�n
�

n=0
J2 �

��1,�2�
q��1,�2�

� , �B8�

so that whenever J2 is nonzero the RS term, ���1,�2�q��1,�2�
�

must be real valued. In the case J2=0, the order-parameter
definition is in any case redundant and can be removed from
the free energy. A derivative with respect to zS can produce a
similar constraint on the second moment of the sparse distri-
bution �25�. Taking �i to be uniform demonstrates that first
moments of the order parameter must also be real.

2. Spin-glass susceptibilities

The quantity probed through the BP stability analysis is a
form of spin-glass susceptibility. Consider two sets of ran-
dom variables described by a joint probability distribution
determined by identical quenched disorder except in a weak-
field term

P��� ,��� =
1

Z2exp�− H��� � − H���� + z�
k

�k�z1�i + z2� j�� ,

�B9�

where z1, z2, and �k are quenched parameters sampled inde-
pendently from �−1,1	, and z is a small external field. As-
suming self-averaging, the limit z→0 ought to smoothly re-
cover the equilibrium description of a single system �as
evaluated using an RS assumption, for example�. An expan-
sion of the self-averaged free energy finds at O�z2� and O�z4�
constant terms and terms dependent on the macroscopic
magnetization and susceptibility. These terms are expected to
be well defined in the small z limit if the population dynam-
ics method converges, since they are coincident with the RS
order-parameter moments at the saddle point, and stability is
tested by fluctuations implicit in population dynamics. How-
ever, at O�z4� there is also a dependence on spin-glass sus-
ceptibility

�SG =
1

N
�
�ij�

���i� j� − ��i��� j��2. �B10�

The spin-glass susceptibility, as opposed to linear suscepti-
bility �B3�, probes a symmetric local instability, symmetries
which might allow the linear susceptibility to be convergent
are absent. In the replica formulation, nonconvergence of the
spin-glass susceptibility in the limit of small z provides suf-
ficient criteria for failure of the RS assumption.

Nonconvergence can be tested by a local stability analysis
of the order parameters in a single �uncoupled� model under
iteration of the saddle-point equations. The form of spin-
glass susceptibility tested in the BP framework is not exactly
�B10�; one must consider an external field reweighted by
interaction strengths to determine an appropriately re-
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weighed set of perturbations �Eq. �B4��. The site factoriza-
tion is then only achieved by the definition of new order
parameters, and it is the linear stability of the original order
parameters toward this new description at z=0 that is a suf-
ficient test of divergence and comparable to stability of BP

fields under iteration. However, asymptotic divergence of the
BP equations as presented is expected to be sufficient criteria
for divergence of the standard spin-glass susceptibility in the
equilibrium analysis, accurate as a predictor of trends and
parameter dependence.
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