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The Brownian dynamics of a single microorganism coupled by chemotaxis to a diffusing concentration field
that is secreted by the microorganism itself is studied by computer simulations in spatial dimensions d
=1,2 ,3. Both cases of a chemoattractant and a chemorepellent are discussed. For a chemoattractant, we find a
transient dynamical arrest until the microorganism diffuses for long times. For a chemorepellent, there is a
transient ballistic motion in all dimensions and a long-time diffusion. These results are interpreted with the help
of a theoretical analysis.
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I. INTRODUCTION

Chemotaxis �1–3� and Brownian motion �4–6� belong to
the key processes that govern the motility of microorganisms
�e.g., bacteria, amoeba, and endothelial cells� �7�. In the sim-
plest approach, the microbe “smells” a chemical and moves
along the gradient of the concentration field of the chemoat-
tractant in order to reach efficiently the secretion source of
the chemical. The opposite case of negative chemotaxis is
realized in case the microbe intends to avoid another object
that is secreting the chemical �8�. This chemotactic drift is
superimposed to stochastic motion due to fluctuations asso-
ciated with the active process of self-propulsion of the mi-
croorganism �9�. Chemotaxis can lead to clusters of aggre-
gated bacteria �10,11� that are still emitting chemoattractant.

Here, we study the self-coupled situation where the mi-
croorganism smells itself, i.e., it reacts chemotactically to its
own secreted chemical. This “autochemotaxis” is realized in
aggregated clusters of different bacteria if the aggregate is
considered as a net particle. Another realization is a single
bacterium which has both an emitter and a sensor of the
same chemical. Tsori and de Gennes �12� have studied a
simple model for this situation in different spatial dimensions
d and find self-trapping of the bacterium in its own chemoat-
tractant cloud for d=1,2 but not for d=3. This means that
for low dimensionality the bacterium is fooled by its own
secretion such that it is getting localized for long times. In a
subsequent numerical study of a model microbe coupled to
its own chemoattractant secreted at constant rate, Grima
�13,14� calculated the long-time dynamics in various dimen-
sions d and found long-time diffusive behavior even for d
=1,2 in contradiction to Ref. �12�. Grima also studied the
case of negative chemotaxis and finds in all dimensions long-
time diffusion or ballistic motion depending on the strength
��0 which couples the microbe’s driving force to the gra-
dient of the chemical concentration field. Grima predicts that
if ��� exceeds a critical value �c, then the long-time motion is
super-diffusive.

In this paper, we revisit autochemotaxis by studying a
model which is similar but not identical to that proposed by
Grima �13�. In the model of Grima, a finite global extinction
rate ��� of the secreted chemical is present. Here, we focus
on the case �=0, which can be realized in experiments �see,
e.g., Ref. �8��. By extensive computer simulations, we study

different spatial dimensions d=1,2 ,3 and both cases of posi-
tive and negative chemotaxis. Our results are summarized as
follows: consistent with Grima �13�, we find for positive
chemotaxis �i.e., for a coupling parameter ��0� long-time
diffusive motion. In addition we find dynamical transients
before reaching the long-time diffusive limit. During the
transients, the dynamics of the microorganism is strongly
reduced resulting in almost dynamical arrest. The crossover
time from intermediate arrest to long-time diffusion grows
strongly with the coupling �. Therefore the idealized analysis
of Tsori and de Gennes who predicted self-trapping �i.e., a
complete dynamical arrest� is manifested by long transients
for very strong couplings �15�. The averaged mean-square
displacement as a function of time does not exhibit a univer-
sal slope in this transient regime, but the actual mean slope is
decreasing with an increase in the coupling �. The transient
behavior is most pronounced in one dimension but weakened
considerably in three dimensions.

For negative chemotaxis �i.e., dynamical self-avoiding of
the microbe�, on the other hand, we find transient ballistic
motion in all dimensions. In d=2,3 we observe a long-time
diffusion for all coupling strength. Such long-time diffusive
motion in d=1, though not directly observed in the simula-
tion, is possible by finite probability of changing the direc-
tion of motion �left to right� at long-time scales for nonzero
temperature. According to Ref. �13�, the critical coupling �c
above which ballistic long-time behavior is found depends
on the global extinction rate � but stays finite when �→0.
One reason for the discrepancy is because noise has not been
completely included in the earlier treatments �13�, while
solving for the integrals concerning the non-Markovian
chemotactic force. We take note of the effect of noise on the
microbe’s trajectory in an appropriate place in this paper �for
another example demonstrating the importance of noise, see
Ref. �9��. Again we address the transient behavior and find
an intermediate time window where the super-diffusive mo-
tion is found between a short-time and long-time diffusive
behavior. This motion we observe is similar to persistent
random walk of a microbe which can be mapped to the
wormlike chain model �7,16�. In the particular case we con-
sider, the persistence length is seen to depend on the mi-
crobe’s coupling with the repellent.

Our predictions can in principle be verified in experiments
on aggregates of bacteria. For many bacteria our model re-
duces to particles interacting via gravitation-kind potentials
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for d=3. Therefore, our analysis might have applications for
Brownian dynamics of gravitational matter �17–19�. Further
generalizations of our model are to predator and prey models
possibly leading to interesting spatiotemporal delay effects,
see, e.g., �20�.

Our paper is organized as follows: in Sec. II, we propose
the model of a microorganism coupled to its own
chemoattractant/chemorepellent, provide the simulation de-
tails and point out experimental situations to compare typical
estimates of parameters used in the model. In Sec. III we
present the results of our investigation. In Sec. IV we explain
our findings with simple theoretical analysis. We conclude
the paper in Sec. V by discussing the main points of our
findings, comparisons of our results with relevant practical
cases of self-propulsion, and future directions of our re-
search.

II. MODEL AND SIMULATION DETAILS

Model: The microorganism is modeled as a point particle
which undergoes completely overdamped Brownian motion
with an effective temperature �−1 in a medium with viscosity
coefficient �. This “particle” is assumed to emit a chemical,
with which it is self-coupled, continuously in time. In this
context, the word ‘‘particle’’ is thereby taken to represent the
chemotactic agent of interest–an idealized microorganism
coupled with a self-emitted chemical field. Fluctuations as-
sociated with the active process of self-propulsion of the mi-
crobe is modeled by the effective temperature parameter �−1

in our system. The time evolution of the density field ��r , t�
of the continuously emitted chemical is thus governed by a
diffusion equation with a source term that depends upon the
instantaneous position rb�t� of the moving microbe

���r,t�
�t

= Dc�
2��r,t� + �e	�r − rb�t�� . �1�

Here, the constants �e and Dc are the rate of emission of the
chemical and the diffusion constant of the chemical in the
medium, respectively.

In the absence of chemical, the microbe diffuses
nonchemotactically in the medium with an effective free dif-
fusion constant D=1 / ����. However, with the presence of
the emitted chemical, the resulting “chemotactic” behavior
depends on the nature of the self-coupling of the microorgan-
ism to its chemical field, i.e., whether it moves “up” or
“down” the chemical density gradient. We study both cases
by simply modeling the self-coupling “force” to be propor-
tional to the gradient of the chemical density field ���r , t�,
and the proportionality constant � determines the strength as
well as the nature of the coupling. In reality, of course,
chemotaxis can be more complex involving temporally sam-
pling of the concentration field and a biased random walk
�7,21,22�. In this context, we note that the “chemotactic
force” imitates the net effect of chemotactic movements on a
phenomenological level. The details of the actual propulsion
mechanism �23� of the chemotactic agent and the effect of
the solvent flow field on the diffusing chemical are not taken
into account. Within our simple model, positive and negative
� naturally generate the cases of positive and negative

chemotaxes, respectively. We are thus led to the following
idealized model of a chemotactic agent:

�ṙb�t� = F�rb,t� + ��t� . �2�

Here, ��t� is an effective noise specified by ���t��=0 and
�
i�t�
 j�t���=2��−1	ij	�t− t��, with i and j referring to the
spatial components of the noise vector. This noise term is
assumed to effectively take care of all nonequilibrium fluc-
tuations that may be associated with the active process
�24,25� of self-propulsion, in absence of the chemical.
F�rb , t� denotes the model chemotactic force taken to imitate
the systematics of the effective chemotactic movement of the
microbe at the position rb at time t due to the chemical
secreted all along the trajectory traversed in the past. It is
obtained by analytically solving Eq. �1� for the density field
��r , t� by the method of Green’s function, and subsequently
calculating the gradient ���r , t�. The “force” at a time instant
is dependent on the entire previous path history of the mi-
croorganism, thereby generating a strongly non-Markovian
dynamics. However, owing to a physical memory time �t0�
associated with the microbe to sense its chemical, the part of
the trajectory in this most recent time t0, i.e., for all rb�t��
with t− t0� t�� t, does not contribute. The physical import of
this is that there is a finite time delay t0, however small,
between the act of secreting chemical by the microorganism
and the act of responding to it, during which the sensor gets
to activate. With the introduction of the memory time, t0, the
chemotactic force at time t and at position r becomes

F�r,t� = − 2��e�
0

t−t0

dt�
�r − rb�t���
4Dc�t − t��

exp	− �r − rb�t���2

�4Dc�t − t��� 

�4�Dc�t − t���d/2 ,

�3�

where d is the dimensionality of the embedding space. Evi-
dently form Eq. �3�, for the mathematical case of t0=0, the
‘‘force’’ becomes divergent.

Simulation details: We performed extensive Brownian dy-
namics simulation �26� for this non-Markovian process of a
microorganism moving by autochemotaxis. We measured
time in units of 0=�e

−1, all lengths in units of l0
= ��DDc /�e�1/2 and energies in units of �−1. The coupling
strength � is measured in units of �−1l0

d. Thus, we set �e=1,
l0=1 and �=1 for convenience. Further we considered the
physical situation when the microorganism diffuses at a
much slower rate compared to the emitted chemical in the
medium �27,28�, taking D=0.1 l0

2 /0 and fixing the ratio
D /Dc=0.01. In our Brownian dynamics simulations we used
t0=0.0010. The Langevin equation �Eq. �2�� is solved with a
discrete time step �t=0.00010. Space is, however, continu-
ous.

Connection to experiments: In order to get an estimate for
the coupling strength � in our units, we note that the typical
value of the ejection rate of chemical from a microorganism
is �e�103 molecules /s �12,29�, and usually D /Dc
�10−1–10−2 �27,28�. In three spatial dimensions, for ex-
ample, the chemotaxis of Dictyostelium to shallow cAMP
gradients �30,31� with typical values of ���0.01 nM /�m,
Dc�300 �m2 /s, D /Dc�10−2, and moving with steady-
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state velocity v�0.2 �m /s, yields ��104�−1l0
3.

Chemotactic Microglia cells �28� move at a speed of v
�2 �m /min in a spatial gradient ���0.003 nM /�m of a
chemoattractant �IL−1��, which is secreted at a rate of �e
�200 molecules /min and diffuses with Dc=900 �m2 /min.
The coupling strength in this case is ��10�−1l0

3 for an ef-
fective nonchemotactic diffusion constant D�33 �m2 /min
of microglial cells, due to random motility in the tissue. The
chemoattractant has a low decay rate of �
�0.003–0.03 min−1. Microglial cells are also known to re-
spond to a chemorepellent �TNF−�� they produce, with
similar production, diffusion and decay rates as the chemoat-
tractant. Our estimate of the chemoattractant gradient was
based on the value of the chemotactic coefficient
�780 �m2 nM−1 min−1, a ratio between cell velocity and
chemical gradient, used in Ref. �28�. The corresponding
value for the repellent is not known.

Again, for E. coli of size �1 �m, swimming at v
�20 �m /s in the spatial gradient ���0.1 �M /�m of a
chemoattractant diffusing with Dc=10−5 cm2 /s, in a medium
of viscosity 10−3 Pa.s �32,33�; the coupling strength is �
�10−1 �−1l0

3. The nonchemotactic diffusion coefficient of
the bacterium is D=6.6�10−6 cm2 /s. The time required by
the chemical in this case, to diffuse a length equal to the size
of the bacterium, is on the order of 0.1 0. The memory time
t0, needed by the bacterium to respond to the chemical stimu-
lus, can be much smaller than this time.

In all the above calculations, the effective nonchemotactic
diffusivity D was used to express the energy unit �−1=�D.

III. RESULTS

We now investigate the nature of the dynamics in all the
dimensions and for both cases of positive and negative �,
examining the model microorganism from some initial refer-
ence point taken as the origin, i.e., rb�t=0�=0. For this pur-
pose, we computed the mean-square displacement of the mi-
crobe as a function of time and averaged over 103

realizations for each case. We checked that the system is in a
steady state, and have also performed a steady state averag-
ing of the mean-square displacement. We illustrate our find-
ings below.

A. Positive autochemotaxis

Upon examining the motion of the microbe in a chemoat-
tractant ���0� in one dimension �d=1�, we found signatures
of long-time diffusion ��rb�t�−rb�0��2�� t� with a modified
diffusion constant Dl. The value of Dl depends on the
strength of the coupling �, and decreases with increasing �.
For very high � values, it is computationally difficult to ob-
tain the long-time diffusive behavior; but we obtained an
upper estimate of the diffusivity for lower � values from a fit
to the obtained data. In the opposite limit, i.e., at very short
times, the microbe’s dynamics is also diffusive with the
nonchemotactic diffusion constant D. The departure from
this behavior occurs at times dependent on the coupling
strength: the stronger the coupling, the dynamics becomes
markedly history dependent and the microorganism deviates

from the nonchemotactic diffusion faster. At intermediate
times, we find long period of subdiffusive crossover regime,
showing signatures of a transient dynamical arrest at high �
values. The crossover time also increases with the coupling
strength. Figure 1�a� shows the mean-square displacement as
a function of time in d=1, for three values of � and com-
pared with the nonchemotactic diffusion.

In d=2, we find similar long-time diffusive behavior. The
crossover times from early-time nonchemotactic diffusion to
the long-time modified diffusion is greatly reduced for a
given � value as compared to the one-dimensional case. This
feature is attributed to the effect of fluctuations. The cross-
over time to the final long-time diffusion, however, increases
with coupling strength. The intermediate subdiffusive regime
is also diminished in time. The mean-square displacement as
a function of time, in this case, is shown in Fig. 1�b�.

In Fig. 1�c�, we show the case for d=3, and in consistence
with our expectation, we find similar long-time diffusion
with a further reduced crossover time as compared to the
low-dimensional cases. Thus, the transient dynamical arrest
becomes more prominent at lower dimensions and at stron-
ger couplings. The � dependence of the modified diffusion
constant Dl, is shown in Fig. 1�d�, for all dimensions, relative
to the corresponding nonchemotactic diffusion constant D.

B. Negative autochemotaxis

For the repulsive case, when the model microorganism
gets repelled by its ejected chemical ���0�, we found a
short-time nonchemotactic diffusive motion with a crossover
to a ballistic behavior ��rb�t�−rb�0��2�� t2� in one dimen-
sion, for all values of the coupling strength �Fig. 2�a��. The
time of commencement of the ballistic behavior, however,
depends on �. For weak coupling �i.e., low ����, the dynamics
resembles the nonchemotactic diffusion for longer times be-
fore finally going over to the ballistic dynamics. The velocity
of this ballistic motion is given by the time derivative of the
root mean-square displacement, �

�t
���rb�t�−rb�0��2�, and this

velocity is seen to increase with increase in the coupling
strength ���. We argue that the microorganism can change the
direction of its motion in one dimension due to a nonvanish-
ing finite barrier crossing probability. Under such circum-
stance, the motion will be diffusive at very long times �not
seen in the simulation�, with higher diffusion constant.

In higher dimensions d=2 �Fig. 2�b�� and d=3 �Fig. 2�c��,
we observed a crossover from the nonchemotactic diffusion
to a long-time diffusion for all coupling strengths, with a
ballistic transient dynamics at intermediate times for high ���.
The velocity of the transient ballistic motion increase with
increasing coupling strength. The time duration of this bal-
listic transient as well as the modified long-time diffusion
constant are also �-dependent, both increase with increase in
���. In Fig. 2�d� we show this modified diffusion constant for
the repulsive case relative to the nonchemotactic diffusion
constant as a function of ���, in d=2,3.

IV. THEORY

Our findings can be understood qualitatively and partly
quantitatively by relatively simple theoretical considerations,

DYNAMICS OF A MICROORGANISM MOVING BY… PHYSICAL REVIEW E 80, 031122 �2009�

031122-3



which are presented in the current section. In Sec. IV A, a
scaling law for the diffusion constant for the case of positive
chemotaxis Dl�Dc

d+2t0
d−2 /�2, is derived based on a simple

rate theory. The same scaling Dl��−2 had been predicted for
the slightly different model, which includes evaporation, by
Newman and Grima �34� and Grima �13�. In Sec. IV B, we
present a theory, which quantitatively predicts the long-time
diffusion constant in the case of negative chemotaxis for all
coupling strengths.

Both approaches, for negative and positive chemotaxis,
attribute the long-time diffusion to small fluctuations about
the respective steady states in the case of zero noise. In each
subsection, we therefore first present the solutions to the
equation of motion �2� without fluctuations �i.e., at zero tem-
perature or infinite coupling strength ��, before discussing
the influence of small fluctuations on the long-time dynam-
ics.

A. Positive autochemotaxis

In the case of strong positive autochemotaxis, the model
microorganism is trapped within its own secretion, which
effectively provides an attractive external potential at the mi-
crobe’s location rb�t�. For zero noise, the microbe is at rest,
i.e., rb�t�=rb, and does not experience any force. If, on the
contrary, the microbe was at time t instantaneously placed a

distance r−rb away from the location, which it occupied at
all earlier times t�� t, it would feel a force Fs�r�, which is
obtained analytically by evaluating Eq. �3� �see also Fig. 3�

Fs�x� =�
−

�

2Dc
erf�x�

x

x
, d = 1

−
�

4�Dc
2t0

�1 − e−x2
�

x

x2 , d = 2

−
�

4�3/2Dc
2t0
	��

2x
erf�x� − e−x2
 x

x2 , d = 3.
�

�4�

Here, x= �r−rb� / �2�Dct0� is the dimensionless distance from
the former position rb of the microbe and x= �x� is its abso-
lute value. Locally, i.e., for distances �r−rb��2�Dct0, the
force is linear in the distance and given by

�Fs�r�� � ��2��Dc
3t0�−1���r − rb�� , d = 1

�8�Dc
2t0�−1���r − rb�� , d = 2

�24��3Dc
5t0

3�−1���r − rb�� , d = 3.
� �5�

Without fluctuations, the microbe never experiences the
described force field. However, if the noise is nonzero but
small, the microbe eventually walks up the locally parabolic
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FIG. 1. �Color online� Mean-square displacement ��rb�t�−rb�0��2� of the microorganism as a function of time t with chemoattractant in
�a� d=1 with �=20,500,5000; �b� d=2 with �=1000,10000,40000; �c� d=3 with �=1000,10000,40000. The nonchemotactic diffusion
reference lines are also indicated as 2Dt, 4Dt, and 6Dt correspondingly for d=1,2 ,3. Reference lines �thick dotted� are used to indicate the
long-time diffusive behavior ��t� wherever possible. The relative long-time diffusivity Dl /D is shown as a function of � in �d� for d
=1,2 ,3. The reference line �thick dotted� shows a power-law scaling behavior �1 /�2 �see text�.
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walls of its self-generated potential for a short time , which,
in turn, might lead to a shift in the position of the minimum
r0 of the self-generated attractive potential by a distance
�r0=r0�t+�−r0�t�. Clearly, the minimum is only displaced,
if the duration of the excursion  is larger than the memory
time t0 and if the microbe excurses predominantly in one
direction. After time t+ the microbe position might relax to
the new minimum, rb�t�� t+�→r0�t+�. By such a fluctua-
tion, the microorganism effectively manages to move a dis-
tance �r0 within the time .

Most relevant for the long-time diffusion are those fluc-
tuations, which yield a large displacement �r0 and still occur
at a high-rate �R�1 /. These fluctuations are regarded to
constitute the relevant mean steps in an effective continuous
time random walk with the desired diffusion constant Dl
��r0

2 /.
In this subsection, we only attempt to obtain a scaling law

for the long-time diffusivity. We therefore restrict our con-
sideration to a subset of very simple fluctuations, which are
believed to be representative for all fluctuations relevant for
diffusion. In particular, we consider a “jump” process at time
t=0: at all earlier times, t�0, the microbe is resting at the
location of the self-generated potential’s minimum at the ori-
gin, i.e., rb�t�0�=r0�0�=0, before it undergoes an excursion
to a new location rb��� t��=�rb within a time �; the latter

time scale is assumed to be small with respect to the resi-
dence time . During the latter time span , the microbe stays
at the new position, where it resists the force due to the
secretion from earlier times. In the case of a large coupling
strength �, the process of getting to the new location during
the time span of duration � is irrelevant. After time , the
position of the model microbe is deterministically relaxing
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times t�� t, plotted as a function of x= �r−rb� / �2�Dct0� for all di-
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t0=0.01, and �=104.
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FIG. 2. �Color online� Mean-square displacement ��rb�t�−rb�0��2� of the microorganism as a function of time t with chemorepellent in
�a� d=1 with �=−100,−300,−50000; �b� d=2 with �=−1000,−40000,−100000; �c� d=3 with �=−1000,−40000,−100000. The
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diffusivity Dl /D is shown as a function of ��� in �d� for d=2,3. The points represent the actual data obtained from simulations, the lines
correspond to a semiquantitative theory �see text�.
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toward the new minimum of the chemoattractant at
�r0� ,�rb���rb, which is a function of the parameters 
and �rb, only. Summarizing, the simple pathway is described
by

rb�t� = �rb�0� = 0 , t � 0

�rb, � � t � 

�r0�� , t �  .
� �6�

The probability of the described fluctuation is proportional to
the Arrhenius factor �35�

p�,�rb� � exp�− S�,�rb�/4� , �7�

with �rb= ��rb� and S� ,�rb� the Onsager-Machlup action

S�,�rb� = ��
0



dt�ṙb�t� − �−1F�t��2. �8�

Neglecting the initial process of moving the distance �rb and
also ignoring the relaxation of the chemoattractant during the
time  the action is approximately given by

S�,�rb� � �−1�Fs��rb��2, �9�

which, together with Eqs. �4� and �5�, yields

S�,�rb� � �
�2�rb

2

�Dc
2�Dct0�d , �rb � 2�Dct0

�2

�Dc
2�rb

2�d−1� , �rb � 2�Dct0.� �10�

According to Eq. �7�, a minimum requirement for the de-
scribed fluctuation to occur frequently is that S� ,�rb� does
not exceed a value on the order of 1, i.e., S� ,�rb��1. As
Eq. �10� is a strictly monotonically increasing function of 
and �rb, this constraint is equivalent to the equality

S�,�rb� = 1. �11�

Diffusion is believed to be governed by those random dis-
placements of the microorganism, which maximize the shift
in the potential’s minimum �r0� ,�rb�= ��r0� ,�rb�� subject
to this constraint.

We will shortly see that for large coupling constants �2

�Dc
d+1t0

d−2�, small excursions �rb�2�Dct0 are most rel-
evant. In this latter limit, �r0 is obtained analytically as

�r0�,�rb� � �1 − �t0/�d/2��rb. �12�

The maximum of �r0 subject to the constraint of Eq. �11� is
given by

�r0
� �

d

d + 1
�rb

�, �13�

at an optimum displacement of the microbe and an optimum
residence time

�rb
� � a��Dc

d+2t0
d−1/� ,

� � bt0, �14�

with prefactors a=2−1 ,3−1/2 ,2−2/3 and b=4,3 ,24/3 in one,
two, and three dimensions, respectively. Clearly, Eq. �14�

fulfills the before-mentioned assumption of small excursions
in the limit of large �2�Dc

d+1t0
d−2�. Equation �14� yields the

desired scaling behavior for the long-time diffusivity Dl
��r0

2 /,

Dl �
�Dc

d+2t0
d−2

�2 . �15�

In conclusion, the simple theory predicts an inverse quadratic
dependence of Dl on � in the strong-coupling limit, which
has also been observed in the computer simulations �see Fig.
1�d��. The same scaling had already been predicted for the
slightly different model, which includes evaporation, by
Newman and Grima �34� and Grima �13�.

B. Negative autochemotaxis

First, we consider the microorganism’s motion with no
fluctuations present. In this case, the swimmer reaches a
steady state at infinite time, which is determined by a con-
stant swimming speed ṙs�t→��=vs, where the index s de-
notes the steady-state configuration. Under this condition, the
drag force induced by the solvent, �vs, equals the driving
force due to the chemical, −���. Figuratively, the microor-
ganism surfs down its own chemorepellent, which it excreted
at times t�� t− t0. Using Eq. �3�, the steady-state velocity vs
is determined by the self-consistent equation

�vs = −
�vs

2Dc
�

t0

�

dt�
exp�− vs

2t�/�4Dc��
�4�Dct��d/2

= � vs

4�1/2Dc
�d2�

vs
��1 −

d

2
,
vs

2t0

4Dc
� , �16�

where ��a ,z� denotes the incomplete gamma function. Equa-
tion �16� has nonzero solutions vs�0 for any value of � in
one and two spatial dimensions, whereas there is a dynami-
cal phase transition at a lower critical value of ��=
−8�3/2Dc

5/2t0
1/2� in three dimensions, below which the mi-

crobe comes to a rest. The latter is obtained analytically by
expanding Eq. �16� up to second order in vs. For the param-
eters used in the simulations reported above, Dc=10, �=10,
and t0=0.001, the transition occurs at ���−4450. The
asymptotic solutions for small ��� in one and two dimensions
or for small ��−��� in three dimensions, respectively, are
given by

vs��� � �
�2Dc��−1��� , d = 1

2�Dc/t0�1/2exp	−
�E

2
−

4�Dc
2�

��� 
 , d = 2

�4�2Dc
2�t0�−1��� − ���� , d = 3,

�
�17�

where �E�2.7183 is Euler’s constant. The steady-state ve-
locity as a function of ��� is shown in Fig. 4 for all three
spatial dimensions. For high coupling constants, ��104, the
steady-state velocities vs agree well with the square root of
the slope of the mean-square displacements vs

�����rb�t�−rb�0��2� /�t, as obtained from the simulations
with noise in two and three dimensions �see also Fig. 4�.
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If noise is put on, again, the microbe is eventually dis-
turbed in its steady-state motion. In one dimension, the mi-
crobe needs to overcome a barrier in order to change the
direction of motion from left to right or vice versa, which
renders the steady state very stable. As we were not able to
observe long-time diffusive motion in one dimension for any
coupling constant but always found ballistic motion within
the time window accessible in computer simulations, we do
not attempt to give a theoretical estimate of the diffusivity. In
two or three dimensions, the picture is very different: the
microorganism is only constrained in its motion parallel to
its current trajectory, whereas it is free to move perpendicular
to the same. During such transverse fluctuations the direction
of the microbe’s motion changes with the gradient of the
chemical field.

In the following, we give a theoretical estimate of the
microbe’s long-time diffusivity in d=2,3 under the assump-
tion of a fast relaxation of the chemical field, which is justi-
fied for Dc�D. In this case, the change in orientation is
determined by the local, time-independent curvature �0��� of
the isodensity line �in two dimension� or surface �in three
dimension� at the steady-state position rs�t�; the isodensity
planes are defined by r��t� ���r��t� , t�=��rs�t� , t��. Locally,
they have the form of a parabola �in two dimension� or of a
paraboloid of revolution �in three dimension� and they move
with the microorganism at the microorganism’s velocity; this
can be seen in Fig. 5, where a typical trajectory and the
according chemical field at time t is plotted for a microor-
ganism in two dimensions.

Fluctuations transverse to the direction of motion lead to a
mean transverse displacement �r�

2 �t��=2�d−1�Dt, which, in
turn, leads to a change in orientation of the velocity director
vb by a mean-square angle

��2�t�� = �0
2�r�

2 �t�� = 2�d − 1�D�0
2t . �18�

Exploiting that � is Gaussian distributed, the average, nor-
malized, and on the initial orientation vb�t=0� projected ve-
locity vector vb�t� is given by

�vb�t� · vb�0��
vs

2 = �cos���t��� = exp	−
��2�t��

2

 . �19�

Replacing time by arc length s=vst, the problem under study
can therefore be mapped to the wormlike chain �WLC�
model �4,16,36� of a polymer of a total arc length L=vst and
a persistence length, which is defined implicitly by
�cos���t���=exp�−vst / lp�. Making use of Eqs. �18� and �19�,
the latter therefore reads lp=vs / ��d−1�D�0

2�. The mean-
square end-to-end distance of the WLC for long chains L
� lp is well-known �4,36� to be given by

�rb
2�t�� � 2Llp =

2vs
2t

�d − 1�D�0
2 . �20�

The long-time diffusivity of the microbe is then obtained as
the time derivative of the mean-square end-to-end distance,

Dl��� =
1

2d

��r�
2 �t��
�t

=
vs

2���
d�d − 1�D�0

2���
, �21�

where we point out the � dependence of the steady-state
velocity and the steady-state curvature. Dl��� is plotted in
Fig. 2�d� and compared to the results of the simulation.

It is ascertained from Fig. 2�d� that, in the limit of large
��105, the theory overestimates the diffusivity by a factor
of �3, both in two and three dimensions, for the parameters
D=10 and t0=0.001, almost independent of �. This discrep-
ancy is attributed to the strong assumption of a constant,
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FIG. 4. �Color online� The steady-state velocity vs��� as a func-
tion of coupling constant ��� for one, two, and three spatial dimen-
sions, determined theoretically �lines�, compared to the square root
of the slopes of the mean-square displacements at early times,
����rb�t�−rb�0��2� /�t, for two and three dimensions �symbols� �cf.
Figs. 2�b� and 2�c��. Inset: the asymptotic solution of vs for small
values of ��−���, where we set ��=0 for d=1,2.
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FIG. 5. �Color online� �a� Snapshot of the instantaneous density

profile ��x ,y� of the chemorepellent released by the microorganism
moving in two dimensions, obtained from simulation, at time in-
stant t=10.0 �in units of �e

−1�. �b� The entire trajectory, shown as the
red �thick� curve, of the microorganism. The current position of the
microorganism rb�t� is indicated by the blue �black� dot in both the
figures, and the direction of motion is indicated by arrows along the
trajectory. The corresponding coupling strength being ���=10000.
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nonfluctuating curvature �0��� in Eqs. �18� and �21�. Relax-
ing this assumption to fluctuating curvature with first and
second moments ���=�0 and ���−�0�2�=��2, which is fur-
ther uncorrelated with the transverse displacement, i.e.,
���t�r��t���=0, the diffusion constant reduces to Dl
→Dl / �1+ ��� /�0�2�. Therefore, although we do not attempt
to give an estimate of �� here, the long-time diffusivity is
expected to be smaller than in the “zeroth order” theory, Eq.
�21�, in agreement with the simulation results.

V. CONCLUSION

In conclusion, we have explored the dynamics of au-
tochemotaxis: a model microorganism is ‘‘smelling’’ its own
secretion that is diffusing away. The microorganism follows
the gradient �30� of its secreted chemical. For the attractive
case, the mean-square displacement of the microorganism
reveals a transient dynamical arrest, most pronounced in low
spatial dimensionality. In the opposite case of chemorepul-
sion, there is a transient ballistic behavior, which crosses
over to ultimate diffusion �37,38�. A simple theoretical analy-
sis for large coupling strengths � reveals a scaling law for the
long-time diffusion in the case of a chemoattractant, by re-
garding small excursions of the microbe’s position about the
bottom of an effective, time-dependent trapping potential. In
the case of chemorepulsion, the microbe’s trajectory was
mapped to the contour of a wormlike chain, which gives a
semiquantitative agreement with our computer simulations.
The ranges of the coupling strength reported here are also
easily obtainable in real experimental situations ��
�10−1–104�, as estimated earlier in the text. We note that
though the mechanism of temporal sensing �22,32,33� of
chemoattractant or chemorepellent, which we do not con-
sider here, is found in many small fast moving bacteria like
E. coli; the direct gradient sensing mechanism is also present
in microorganisms like the amoeba Dictyostelium discoi-
deum, the yeast cell Saccharomyces carevisiae, lymphocytes,
glial cells, and myxobacteria �28,30,31�.

Chemotaxis in the gliding bacterium M. xanthus was
demonstrated to be in response to self-generated signaling
chemicals �39�. However, the diffusivity of the chemoattrac-
tant is significantly lower compared with the bacterial motil-

ity in this peculiar case. A numerical investigation �40� of a
simple model case in one dimension compared the interplay
between chemotaxis and chemokinesis mechanism with a
concentration-dependent switching rate, showing crossover
from suppressed to enhanced diffusion in the parameter
space. This mean-field approach, studied in the limit of van-
ishing chemical diffusivity and chemical degradation rate,
was based on the simplifying assumption that the chemical
coupling only affects the frequency of direction reversal of
the cell, keeping the cell speed unaltered.

Models of active colloids using surface reactions as a po-
tential mechanism for self-propulsion have been proposed
�see, e.g., Refs. �41,42��. In Ref. �41�, the model molecular
machine is a spherical colloid which reacts with the substrate
at a specific site on its surface and self-propel by asymmetric
release of the reaction product. The time evolution of the
product particles is similar to that of chemical molecules
emitted by a microorganism. Though the exact way of im-
parting a biased motion to the colloid by the emitted particles
is very different from chemotactic coupling, such systems
may also provide interesting situations to compare with our
results. In fact, in Ref. �42�, active colloids interacting with a
self-generated cloud of solute were shown to have distinct
propulsive and anomalous super-diffusive regimes preceding
a final long-time effective diffusion. This is worth comparing
with the ballistic to a modified diffusion crossover in our
study on negative autochemotaxis.

Future work should focus on generalizing the model to a
collection of model microorganisms �11�, where hydrody-
namic flow effects can play an important role �23,43,44� and
steric repulsions can lead to aggregation and clumps �45� as
known from active particles �24,46�. It would further be in-
teresting to study the case of a geometric confinement of the
particles �47–49� and the chemoattractant/repellent in order
to see effects of a dimensional crossover. Finally, improving
the theoretical approaches toward full quantitative agreement
will be an important task for future research.
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