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Finite-size effects in presence of gravity: The behavior of the susceptibility in 3He and “He films
near the liquid-vapor critical point
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We study critical-point finite-size effects on the behavior of susceptibility of a film placed in the Earth’s
gravitational field. The fluid-fluid and substrate-fluid interactions are characterized by van der Waals type
power-law tails, and the boundary conditions are consistent with bounding surfaces that strongly prefer the
liquid phase of the system. Specific predictions are made with respect to the behavior of 3He and *He films in
the vicinity of their respective liquid-gas critical points. We find that for all film thicknesses of current
experimental interest the combination of van der Waals interactions and gravity leads to substantial deviations
from the behavior predicted by models in which all interatomic forces are very short ranged and gravity is
absent. In the case of a completely short-ranged system exact mean-field analytical expressions are derived,
within the continuum approach, for the behavior of both the local and the total susceptibilities.
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I. INTRODUCTION

In the case of the liquid-gas critical point, gravitational
effects become important as the isothermal compressibility
(i.e., the susceptibility) increases to a large value in the vi-
cinity of that point and, indeed, diverges as that point is
approached. This leads to a vertical gravity-induced density
gradient that grows as the critical point is approached. Even
in a relatively small experimental cell with a vertical dimen-
sion of 0.5 mm, filled with *He at its critical density, the
density stratification between the cell top and bottom is ap-
proximately 6% at a reduced temperature of r=107> [1].
Only the density at the middle of the cell remains at its
critical value. In order to interpret precision critical-point
measurements, one must develop models that incorporate the
effects of gravity. A number of theoretical studies has been
performed on the effect of gravity on measurements near the
superfluid transition in “He. Models of the “He specific heat
in bulk and finite-size samples near the superfluid transition
have been successfully tested by high-precision measure-
ments in ground-based laboratories [2,3] and in microgravity
[4,5].

In a previous article [6], the authors of this paper reported
the results of a theoretical calculation of the expected finite-
size effects on the isothermal susceptibility near a liquid-gas
critical point in a zero gravity environment. That investiga-
tion was performed for a thin film between surfaces that both
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strongly prefer the liquid phase. It is hoped that predictions
of this study will be tested by future experimental studies in
space [7]. In the present paper, we extend those calculations
including the effects of gravity. The He and “He liquid-gas
critical points were chosen for this theoretical investigation
because these systems are devoid of impurities and many
bulk thermophysical properties have been measured near
their liquid-gas critical point.

In this article we will discuss the behavior of the suscep-
tibility of a film of a nonpolar fluid of, say, *He or 4He,
having a thickness L in which the intrinsic interaction J/ is of
the van der Waals type, decaying with distance r between the
molecules of the fluid as J'~ r~@*?_ Here d is the dimen-
sionality of the system while o>2 is a parameter character-
izing the decay of the interaction. The film is bounded by a
substrate, say, Au plates, that interacts with the fluid with
similar van der Waals type forces, i.e., of the type J»* ~ 7%,
where z is the distance from the boundary of the system
while o,>2 characterizes the decay of the fluid-substrate
potential. For realistic fluids d=o=0,=3.

According to finite-size scaling theory [6,8,9], the behav-
ior of the susceptibility in a film of a fluid placed in an
external gravitational field, governed by dispersion forces
and subject to (+,+) boundary conditions, i.e., conditions
that strongly favor the liquid phase of the fluid over the gas
one, is

X(t’A/-L’L) - Xbulk(t9AM) - L_I[X;(L;eface(tsAM) + XES;F;S;(LAM)] = Ly/vX(L/gz’aM(BAIU“)LA/V’ag(ﬁg)LHNv’ hw,sL_wS’bL_wb’aa)L_w) ’

where Xuux(f,Aw) is the bulk susceptibility, X% .(f,Au)

and x"°UM (¢, Ay) are the surface susceptibilities—the result
of the existence of two surfaces bounding the

system—&(T)=E(T— TF,Ap=0)= &|#|™" is the bulk corre-
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(1.1)

lation length, r=(T-T,)/T, is the reduced temperature, T, is
the bulk critical temperature, Au=pu—pu,. is the excess
chemical potential, while . is the bulk critical chemical
potential, g is the external gravitational field, &,
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TABLE 1. Material-specific characteristics for 3He and *He used
to estimate parameters of the model investigated in the article.

aQO TC ﬁc p Pe

A (K () (g/em’)
He 49 33 22x102%  3u/ap 0.041
‘He 42 5.2 14X102  4dula] 0.069

a,.a,,h, b, and a, are nonuniversal metric factors, and

(1.2)

uor%go

w,=0,-(d+2-1)/2, w,=c+n-2.

The quantities v, A, 7, and w are the universal critical expo-
nents for the corresponding short-range system.

With respect to their bulk critical behavior, the nonpolar
classical fluids belong to the so-called Ising, or O(1), univer-
sality class. When d=3 this universality class is character-
ized by critical exponents [10]

7=0.034, y=12385, v=0.631, (1.3)

and

a=0.103, 5=0.329, 6= wr=0.53. (1.4)

As we have already stressed, the methods and ideas to deter-
mine the behavior of the susceptibility if thin films of non-
polar fluids used in the current article are general and can, in
principle, be applied to any nonpolar fluid; however, we will
exemplify these methods via the study of *He and *He films.

A central question pertains to the extent to which the criti-
cal exponents listed above describe the experimentally ob-
served behavior of these substances near their respective
liquid-vapor critical points. In the early years of the devel-
opment of critical behavior, there were attempts to experi-
mentally measure the critical exponents of the He isotopes to
be compared with theoretically predicted values; see, e.g.,
[11]. However, it became clear that the asymptotic power-
law region is very limited in ground-based measurements
and accurate analyses must take into account correction-to-
scaling terms as well as gravity effects; see, e.g., [12]. These
issues are particularly important in the case of the He iso-
topes, which have the largest gravity effect (see, e.g., the
discussion of Table I in [7]). Because of these problems,
most recent experimental measurements, particularly those in
the He isotopes, have been compared to models using the
theoretical critical parameters obtained from those models;
see [13]. In light of this history, we will utilize theoretically
derived values of the relevant critical exponents.

From Eq. (1.2) and with o=0,=3, as in physical van der
Waals interactions, one has w;=0.52 and w,=1.03. Since
w;>w>w,>0, for L large enough, one can expand the
right-hand side of Eq. (1.1) with the result that the leading
finite-size behavior of the susceptibility near the bulk critical
point is given by the properties of the corresponding short-
ranged system. This is true because all the dependences on
the long-ranged tails of the van der Waals interaction in Eq.
(1.1) are reflected via the factors b, h,,;, and a,,: b is propor-
tional to the strength of the fluid-fluid interaction J' [14,15],
h,, reflects the contrast between the fluid-fluid J' and the
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substrate-fluid J"* effective interaction at 7, [6,8] (see be-
low), while the field a,, associated with the Wegner-type
corrections to scaling, in general incorporates contributions
due to the long-ranged tails of the interaction [16]. In [6,8] it
is demonstrated that such an expansion is admissible only
when L is much larger than some critical thickness L, i.e.,
when

L3 Loy = 27 )" = 20081, [ A.
(1.5)

For most systems &) is of the order of 3 A and h,, is of
order of 1. For some systems, e.g., like *He and “He
bounded by Au the dimensionless constant A, can be as
large as 4 [6,8]. The constraint (1.5) represents the
“relevance-irrelevance” criterion for the van der Waals
forces with respect to the behavior of finite-size quantities in
van der Waals thin films; when L>L_; such forces can be
neglected, while when L<<L_; they must be taken into ac-
count in, say, the determination of the behavior of the finite-
size susceptibility. One can also formulate a criterion for the
relevance of gravity. From Eq. (1.1) it is clear, that gravity is
a relevant variable. If, however, (,Bg)LA/ v+l <1 the influence
of gravity can be neglected and will play no essential role in
the behavior of any finite-size quantity. In the opposite case
its role is crucial and must be taken into account. Note that
this criterion also connects the relevance of gravity to the
thickness L of the films; for thin films it is negligible, while
in the case of sufficiently thick films it is not. In the case of
He and *He we will discover that films with L= 1000, 2000,
or 4000 liquid layers are, in this sense, thin films, while a
film with, say, L=8000 layers can be considered thick for the
purposes of assessing the influence of gravity on critical-
point behavior.

In this article we discuss the finite-size behavior of the
susceptibility of van der Waals fluid films bounded by two
flat substrate plates situated perpendicular to the Earth’s
gravitational field (i.e., horizontal), both of which strongly
prefer the liquid phase of the system. The schematic phase
diagram of such a system in the (7,Aw) plane is shown in
Fig. 1. The solid line Au=0, T<T, represents the bulk gas-
liquid phase coexistence line. The liquid-gas coexistence
curves Aug,, correspond to capillary condensation transi-
tions for L=L,, L=L,, and L=Ls;, where L;<L,<<L;. The
case g=0 has been extensively studied, and the picture pre-
sented here is in accord with the results of Refs. [17-20].
When no gravity is present within the system, the fact that
A/J,C’Li<0 simply expresses the preferences of the identical
walls (see the cases L, and L,). In the presence of a gravita-
tional field orthogonal to the bounding plates, the action of
gravity pulls the molecules of the fluid away from the upper
plate, leading to a more gaslike phase near that plate and a
more condensed liquidlike phase region near the lower one.
The larger L and g, the stronger this effect. Thus, for L large
enough (see the case with L=Ls) the critical point of the
finite system lies above the Au=0 line, i.e., at Ay, ;>0,
which stabilizes the liquid phase of the fluid. Away from the
critical region, the shift in the phase boundary relative to the
bulk coexistence line Au=0 is proportional to L~', while
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FIG. 1. (Color online) The schematic phase diagram of a
d-dimensional film system for various thicknesses L in the presence
of a gravity subject to boundary conditions that strongly favor the
liquid phase at the plates bounding the fluid.
within the critical region it is proportional to L™2'”, where A
and v are the standard bulk critical exponents. The lines of
first-order phase transitions end at (d—1)-dimensional criti-
cal points T.(L;) with coordinates (Tc,Li,A,u,C,Li), i=1,2,3,
the positions of which vary with L and depend on the pres-
ence of gravity g, as well as on the presence and on the
strengths of the fluid-fluid and the substrate-fluid interac-
tions.

For large L these points are located close to the bulk criti-
cal point 7, with coordinates (7.,Au=0):T.,-T.~L""
and A,U,C,L—%,BgLva‘A/ V. Since the fluctuations in systems
of reduced size are stronger, one typically has T, <T.In
part, the structure of this phase diagram is reflected in Fig. 2,
where the behavior of the finite-size susceptibility in thin
films with thickness L=1000, 2000, 4000, 6000, and 8000
layers is shown as a function of the scaling variable
x#:(,BA,u)LA/ v at the bulk critical temperature 7=T, of the

0.07 |
T=Te,v#0,g%0
0.06 —— L=1000
0.05 [ —— L=2000
< —a— L=4000
T 0.04
- L=8000
= 0.03
0.02 |
0.01 |
0 100 200 300 400 500 600
A
(B Ap) LA

FIG. 2. (Color online) The behavior of the finite-size suscepti-
bility yx in thin films with thickness L=1000, 2000, 4000, 6000, and
8000 layers at the bulk critical temperature 7=T, of the correspond-
ing infinite system as a function of the scaling variable
xM=(BAM)LA/ V. The corresponding scaling variable that governs the
dependence on the gravity is proportional to xg~(,8g)LA/ v+l and,
thus, the gravitational effects gradually set in with increase in L in
the behavior of the finite-size susceptibility.
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FIG. 3. (Color online) The behavior of the finite-size suscepti-
bility x at 7=T7, in thin films with short-ranged interaction and with
L=1000, 2000, 4000, and 8000 layers. Note that the maximum of
the susceptibility is at negative values of X/_L=(BA,U,)LA/ Y. Note the
excellent scaling in the behavior of the curves for the different L’s,
contrary to the behavior of the same system but with gravity and
van der Waals interactions with the bounding the system plates
taken into account—see the previous figure.

corresponding infinite system (with g=0). Both the presence
of the van der Waals interaction between the fluid particles
and between the substrate and the fluid, as well as the gravi-
tational field of the Earth are taken into account. One ob-
serves a clear lack of data collapse. For relatively thin
films—with L=1000, 2000, and 4000—this is due to the role
of the van der Waals interaction, while for relatively thick
films with, say, L=8000 the absence of data collapse is due
to the presence of gravity. The L=6000 case illustrates the
intermediate situation when the influence of van der Waals
interactions fades away and the gravity steps in as a factor
mainly responsible for the lack of data collapse. When nei-
ther gravity nor van der Waals type interactions are present, a
perfect data collapse can be achieved, see Fig. 3, where the
data are plotted in the same way as in the current figure. Note
also that both the van der Waals interactions and the presence
of gravity reduces the magnitude of the susceptibility. This is
due to the ordering effect of the van der Waals interactions
and gravitational field. In the cases L=1000, 2000, and 4000,
the van der Waals interactions constitute the important influ-
ence leading to the effect, and this reduction is approxi-
mately given by a factor of 2. On the other hand, when L
=8000 the reduction in the maximum value of the suscepti-
bility is by a factor of 3 times and is primarily due to the
influence of gravity. We also note that the maximum of the
susceptibility as a function of Ay also changes its location;
while for L=1000, 2000, and 4000 the maximum occurs
when Au <0 with xi‘"‘x =(BAw)LY"=0(1), for L=6000 and
8000 the maximum is at Au>0 with x,;* ~ 8.gL/2> 1. One
of the aims of the current article is to explain how the above
curves have been obtained and to elucidate why, as we be-
lieve, these curves ought to resemble the ones obtained in
experiments with real liquid-gas systems. In order to facili-
tate contact with experiment we will, in addition to present-
ing the behavior of y in the (T,Au) plane, derive the corre-
sponding dependence of y in the (7,Ap) plane, where
Ap=p-p,, with p,. the critical density of the fluid.
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The structure of the article is as follows. First, in Sec. II
we present a precise formulation of the model of interest.
The corresponding simplification of the model in the case of
a film geometry and the analytical expressions needed for its
numerical treatment are presented in Sec. III. The results for
the behavior of the finite-size susceptibility at the critical
point as a function of u, L, and g are presented in Sec. IV,
while the corresponding results for 7>T7, and T<T, are
given in Sec. V. The article closes with a discussion and
concluding remarks.

II. MODEL

Following Refs. [6,8] we consider a lattice-gas model of a
fluid confined between two parallel flat plates at a distance L
with a grand canonical functional Q[ p(r)] given by

Qlp(r)]= ksT 2, {p(r)In[p(r)]+[1 - p(r)]In[ 1 - p(r)T}

rel

£33 pE e )plr)

rr'el

+ 2 [V)(@) + gz — ulp(r).

rel

(2.1)

This expression is to be minimized with respect to the local
number density p(r). The functional (2.1) is the simplest
model that captures the basic features of systems with both
van der Waals interactions and gravity taken into account. It
can be viewed as a modification of the model utilized by
Fisher and Nakanishi in their mean-field investigation of
short-range systems [17,18] and in the absence of gravity.

In Eq. (2.1) w(r-r")=-4J"(r-r") is the nonlocal cou-
pling between the constituents of the fluid, while £ is a
simple-cubic lattice in the region occupied by the fluid. We
consider a fluid system with geometry ! X[0,L], where
the region 0=z=L is occupied by fluid. Here and in the
remainder of this paper, all length scales are taken in units of
the lattice constant a, which is of the order of a molecular
diameter—which means that length is expressed as a dimen-
sionless quantity—so that the particle density p(r) is dimen-
sionless and varies within the range [0,1]. In Eq. (2.1), the
terms in curly brackets correspond to the entropic contribu-
tions, while the other terms are directly related to the inter-
actions present in the system. The term proportional to g
reflects the presence of gravity. It is assumed that the gravi-
tational field is along the z direction, i.e., is perpendicular to
the planes bounding the fluid. The external potential V(*)(z)
reflects the interaction between the molecules of the fluid and
of the constituents of the two substrates bounding it. For an
individual wall V¢9)(z—)~z"" with o=3 for a genuine
van der Waals interaction. In the current treatment we will
assume that the bounding substrates are identical on both
sides of the film and that they strongly prefer the liquid phase
of the fluid. In Eq. (2.1), u is the chemical potential.

The variation in Eq. (2.1) with respect to p(r) leads to the
equation of state for the equilibrium density p*(r),
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2p"(r)-1= tanh|:_ gZ w(r —r")p(r')

B

+ (- VI9)(z) - gz)] - (2.2)

The advantage of this equation is that it lends itself to nu-
merical solution by iterative procedures. For a particular ge-
ometry and surface potential V9(z) the solution determines
the equilibrium order-parameter profile p*(r) in the system.
Inserting this profile into Eq. (2.1) one obtains the system’s
grand potential. To avoid the double sum in Eq. (2.1), which
is inconvenient in a numerical treatment, we make use of the
relationship below, which is easily derived from Eq. (2.2),

S w0 )

rr' el

LS - v - el )

2re[,

—kgT >, p*(r)arctanh[2p*(r) = 1],  (2.3)
rel

which, when inserted in Eq. (2.1), yields
Ap'(r)]= X [kBT{p*<r)1n[p*(r)]
rel
+[1=p*(r)JIn[1 - p*(r)]
— p*(r)arctanh[2p™*(r) — 1]
1 .

- E[M - V(z) - gz]p*(r) ] . (2.4)

Note that in Eq. (2.4) p*(r) is no longer a free functional
variable, but is the solution of Eq. (2.2).

Denoting ¢*(r)=2p"(r)-1 and Au=p—pu, where
M= %Errw(r—r’), the equation of state (2.2) can be rewritten
in the standard form

r

¢*(r) = tanh ﬁz Jr,r")¢*(r") + g(A,u -AV(z) - gz)] ,

(2.5)

where J(r—r’)=-w(r—r’)/4. The bulk properties of the
model are well known (see, e.g., [21,22] and references
therein). We recall that the order parameter ¢* of the system
has a critical value ¢*=0 which corresponds to p.=1/2 so
that ¢*=2(p*—p,). The bulk critical point of the model is
given by (8=8.=[ZJ(r)]"", u=u.=—-23,J(r)) with the sum
running over the whole lattice. Within the mean-field ap-
proximation the critical exponents for the order parameter
and the compressibility are S=1/2 and y=1, respectively. As
has been shown in [6,8], the surface potential AV(z) is

AV = [(z+ 1)+ (L+1-2)"7], (2.6)

where 1 =z=L-1, and where contributions of the order of

77771, 77772, etc. have been neglected, the quantity
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(stl’s - pc‘][) (27)
d+ 0')

Svy=—4qid-1)2

ol'\ —
2

is a (T- and u-independent) constant, the quantity

J(r) = JU(1 + |r|[¢) (2.8)

is a proper lattice version of —w(r)/4 as the interaction en-
ergy between the fluid particles, and

JHS(x) = JHS/|r| e (2.9)

is the interaction between a fluid particle and a substrate
particle. Here p, is the number density of the substrate par-
ticles in units of a~?. Note that the effective potential dv, is
the result of the difference between the relative strength of
the substrate-fluid interaction for a substrate with density p,
and that of the fluid-fluid interaction for a fluid with a density
p.. In Eq. (2.6), the restriction z=1 holds because we con-
sider the layers closest to the substrate to be completely oc-
cupied by the liquid phase of the fluid, which implies that we
consider the strong adsorption limit, i.e., p(0)=p(L)=1;
therefore the actual values of AV(0)=AV(L) will play no
role.
In terms of the quantity ¢ the functional (2.1) becomes

O[p(n)]=k,TS { L+ lr) m[ L "5(”}

rel 2 2
1= ¢(r) {1—¢(r)“
+ 111
2 2
_%z [Ap—AV() - gl(r)
rel

3 3 RO+ Oy (210)

rr' el
where

1

Qreg=__2 A,u.—AV(z)—gz— E J(r,r’)] (211)

2re£ r'el

does not depend on ¢ and therefore is a regular background
term. An expression similar to the one in Eq. (2.4), which
avoids the double sum and thus is more convenient for nu-
merical procedures, can also be obtained. With the identifi-
cations ¢(r) <> m(r) and

1
H(z) = E[A,U«—AV(Z) - g8z], (2.12)
one can rewrite the above expression for [ ¢(r)] as a func-
tional of the effective magnetic density m(r),

Flm(r)] = (Q-Qy,), (2.13)

which defines the free energy of a magnetic system at tem-
perature 7 and in the presence of an external local and spa-
tially varying magnetic field H(z). Explicitly, one has
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l+m(r)1n{ 1 +m(r)}

prim(r)) = 2{ ; ;

+ - m(r)ln[ L= m(r) ]} - 2 h(z)m(r)

2 2

B %E K(r,r")m(r)m(r'),

r,r’

(2.14)

where K(r,r')=8J/(r,r’) is the nonlocal coupling between
magnetic degrees of freedom, h(z)=BH(z) is an external
magnetic field, and the magnetization m(r) is to be treated as
a variational parameter.

In the remainder of this article we shall make use of this
connection between the fluid and magnetic systems in order
to exploit existing theoretical results for both of them.

II1. FINITE-SIZE BEHAVIOR OF THE MODEL
IN A FILM GEOMETRY

We will be interested in a system with a film geometry.
Because of the symmetry of the system one has ¢(r)
= ¢(r,z2)=p(z), where r={r),z}, i.e., the order-parameter
profile {¢(z),0=z=L}, with ¢(0)=¢(L)=1, depends only
on the coordinate perpendicular to the plates bounding the
van der Waals system. In this case Eq. (2.5) becomes

L
¢*(z) =tanh| B C7<z—z'>¢*(z')+h(z)], (3.1)
7'=0

where

T2) =2 J(ry-1,2) = 2 J(r,2).

T T

(3.2)

In [6] it has been shown that the function J(z) can be written
in the form

T2) =Jeq18z) + i [8(z = 1) + 8z + 1))+ Gy(2) 0z - 2)],
(3.3)

where 8(z) is the discrete delta function, while 6(z) is the
Heaviside function. Explicitly, for d=o=3 one has [6]

= D ——— =3.602, (3.4)
’ nEZ2 1+ |n|6
8 -
[ 1)K, (V2 - 2i\3m)
— (- DPKR(2+203m)]+ g(% —In 2) ~1.183,
N
(3.5)

and
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(il VE 1
Gs(x) = 3 V3 arctanzx2 0 —1n<1 + —2)

1 1 1
+Eln1—;+)? s

where Kj(x) is a modified Bessel function of the second
kind. Following [6] and taking into account the presence of
gravity in the system we study, the layer magnetic field h(z)
is

(3.6)

1 1 h,, h
h =—BAu-— + WS + Lzt s
T A P T A I
1=z=L-1, (3.7)
where
1
hys=— Eﬁﬁvs (3.8)

reflects the relative strength of the fluid-wall and fluid-fluid
interactions, respectively. The above expression takes into
account the fact that the substrate occupies the region
R'X[L+1,0]UR4 ! X[=(L+1),-%]. For *He and “He
bounded by Au surfaces in [6] it has been shown that
hys=4. Note that Eq. (3.7) is derived for a system with
o=0,. According to finite-size scaling theory the finite-size
effects due to the surface field h,, , are controlled by
h,, L@*2=712=%_ For d=o=0,=3, an Ising-like system, this
leads to h,, / VL, where the value of 17=0.034 has been ne-
glected, i.e., 7=0 was used. Let us recall that within a mean-
field treatment with respect to the critical behavior, the effec-
tive spatial dimension is d=4 irrespective of the actual
spatial dimension of the model under consideration. In order
to have within the current mean-field model the same order
of the finite-size effects due to h, ; as in real systems, we
take in our model calculations o,=3.5. This value will be
used in the remainder of the article whenever the substrate-
fluid interaction is taken into account.

With respect to the behavior of the total susceptibility y of
the system per unit particle it was shown in [6] that

x=—2( R, ., (3.9)

L+1

where R7! is the inverse matrix of the matrix R with ele-
ments

-BIz-2"), (3.10)

Rt =T~

while the “local” susceptibility, which reflects the response
of the system from a given layer is

x(2)=2 R, -,

s
Z

(3.11)

with
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> Gz, = E<S(o,z>5(r”,z ) = (S(0,2)X(S(x],2)).

Z r

xi(z) =
(3.12)

Obviously, x=2_x,(z)/(L+1).

For a fluid confined to a film geometry the natural quan-
tity to consider is the excess grand potential normalized per
unit area A:Aw=lim,_.,(Q-,)/A. From Egs. (2.10) and
(3.1) one obtains

1+ ¢(2) [1+¢(z>]

Aw[¢(z)]= kBTE { 5 5

1-¢() [1-9@ ]| 1<
) ln[ 5 ]}—ZE[AM—AV&)

E 2 Tz,2" ) p2) (2).

ZO 72'=0

- gz]¢p(z) - (3.13)

The order-parameter profile of the system is the one that
provides the minimum of the above functional. For such a
profile {¢*(z),0=z=L}, which is a solution of Eq. (3.1), the
above expression can be simplified to

L " .
S JIEEN (V)

=0 2 2

+ - Z)*(Z) ln[ - f(z)} - %h(z)¢*(z)

- é(b*(z)arctanhw*(z)]}, (3.14)

which is much more convenient for numerical evaluation
since it does not involve the double summation present in
Eq. (3.13).

Equations (3.1)—(3.10) and (3.14) provide the basis for
our numerical treatment of the finite-size behavior of the
susceptibility of a system in which both the van der Waals
interaction between the molecules of the fluid and between
the fluid and the constituents of the substrate, as well as the
Earth gravity are taken into account. The procedure is as
follows. First, we determine the order-parameter profile
{¢*(z),0=z=L} by solving iteratively, using the Newton-
Kantorovich method, Eq. (3.1). However, the solution of this
equation depends, for a given range of parameters 7 and Apu,
on the choice of the initial state of the order-parameter pro-
file. The two basic initial states of the profile are (i) a liquid-
like state in which all the sites of the lattice are occupied by
a particle, i.e., the state {¢p(z)=1,0=z=L}, and (ii) a gaslike
state {p(0)=1,(L)=1,¢(z)=0,1=z=L-1}. Thus one
needs to calculate the profile starting from both of the two
initial states. If the two final states coincide they provide the
unique minimum of the functional (3.13). If they differ one
has to check which one provides the absolute minimum of
the grad canonical potential. The simplest way to clarify that
question is to calculate BAw via Eq. (3.14).
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The standard Ginzburg-Landau equation follows from Eq.
(3.1), for small ¢, after taking into account that
arctanh(¢) = ¢+ ¢*/3+0(¢). A continuum version of the
equation follows from the replacement ¢(z—1)+p(z+1)
—2¢(z)+@"[z]. Obviously such a continuum version can
also be constructed for the long-range system by adding the
terms contributed by the function G(x), which is, in this case,
a continuous function. Note that the function G(x) is well
defined everywhere for x=0 and not only for x=1 as we
actually need it in the lattice formulation of the theory. Thus,
in the continuum formulation of the theory the integration
can be extended over the region z €[0,L]. This does not
change the long-range behavior of the magnetization pro-
files. Thus, in the continuum case the equation for the order-
parameter profile reads

T+ ST’

dz?

2 g
=h[z] + K{ c, ¢ (z) + cg"|:2¢*(z) + aé (Z)]

L
+f g(|z—z'|2)¢*(z')dz’}, (3.15)
0

where K=pJ' and h(z), for 0<z<L, is

1 1
h(z) = EBAM 5 Bge+ hy, [27%+ (L —2)"%]. (3.16)

In continuum theory one defines the (+,+) boundary condi-
tions via ¢*(0)=¢*(L)=c0.

Model with purely short-range interactions
for Apu=0 and g=0

In the case in which all the interactions in the system are
short ranged and in the absence of gravity the Eq. (3.15) for
the order-parameter profile in a continuum system can be
written in the standard form

2

—d—Z2+d¢+u¢3=h, (3.17)
where
R 1 K 1 A
a=——\1-—|, u=——, and h=—_—,
'K K. 3c5'K cy' K
(3.18)
with
K.=1/(cy+25"). (3.19)

The equations for the layer response function x;(z), where

dp(z)
oh

xi(2) = (3.20)

=0

then reads
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2

d
—d—’§’+(d+3u¢2)x,=1. (3.21)
Z

Because conditions are identical at both bounding surfaces of
the system, the solutions of the above equations have to sat-
isfy ¢'(L/2)=0 and x'(L/2)=0. Under the (+,+) boundary
conditions envisaged here (strong adsorption) one has, in ad-
dition, ¢(0)=¢(L)=+, and x(0)=x(L)=0.

When h=0 the magnetization profile is known exactly
[23],

(a) when x,=dL*= -7

R o P k(141
Px)=L"" \/;{ 2K (k) sn[2K (k) ;K] }

2 dn[2K (k) ;K]
=7 \/; {ZK(k)g—sn[ZK(k)g;k]}, (3.22)

where k=0 is to be determined from

x,=[2K(k)JP(2k* - 1), (3.23)
and {=z/L,ie., 0={=1.
(b) when x,=-7*
PENEING g .
u | sn[2K(k)¢;k]
=7 \/Z —2K(lf)§ — 0, (3.24)
U\ sn[2K(k)¢3k]
where k2=0 is to be determined from
x,=—[2K() (- +1), (3.25)

and {=z/L,ie., 0={=1.

Here K (k) is the complete elliptic integral of the first kind,
dn(; k) and sn({; k) are the Jacobian delta amplitude and the
sine amplitude functions, respectively. The bulk critical point
T=T, corresponds to k’=1/2. The above expressions are
consistent with the following scaling form for the order pa-
rameter:

$(z) =LPX y(z/L L"), (3.26)

with B=v=1/2. Note, however, that within the mean-field
theory the magnitude of the scaling function X is not uni-
versal, in that it is multiplied by the nonuniversal factor
V2/u=1.091. Finally, we stress that the choice of two pa-
rameterizations [see Egs. (3.23) and (3.25)] of the scaling
functions in Egs. (3.22) and (3.24) is just for convenience; it

allows one to avoid using imaginary values of k and k. In-
deed, one can transfer any of the set of equations into the

other. For example, defining k as

_ .k
k=i—, where

o K?=1-k,
k

(3.27)

and taking into account the following properties of the ellip-
tic functions [24,25]:
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FIG. 4. (Color online) The scaling function of the total suscep-
tibility X(x,).

K(k) =k'K(k), (3.28)
and
dn(u;ik) V1 + k2
— = —_— , (3.29)
sn(usik  sn(uN1 + k2 kN1 + &%)

one can easily check that the pair of Egs. (3.22) and (3.23) is
equivalent to the pair of Egs. (3.24) and (3.25).

In the this article—see Appendix B—we report the deri-
vation of exact mean-field expressions for the behavior of the
local and of the total susceptibilities. We demonstrate that,
when A=0, one has

xi(zlx) = L2X (z]x,), (3.30)

and
x(x) =L?X(x,), (3.31)

for the local and the total susceptibilities, respectively. The
scaling functions of the total susceptibility X(x,) is

_ ¢y (x,)/K(k) + K(k) — 2E(k)
X(x,) = 4K3(k) >

(3.32)

where

4k"*k*K (k)
k"2 K(k) + (K> = k")E(k)

oolx) = (3.33)

Here E(k) is the complete elliptic integral of the second kind.
The behavior of X(x,) is illustrated in Fig. 4. For the scaling
function X, (z|x,) of the local susceptibility one has

X (Zx) = i llx,) + can(Exy), (3.34)

where

12 2
z/fi(zlx,>=—§7{l—Mn{i)%g;k'] } (3.35)

m,0

and
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FIG. 5. (Color online) Plot of the function X, ({ |x,=0).

k, .Xm,O ’ .Xm,O ’
¢2(§|xt)=—k27;’0 dn 175;/6 sn t7§;k

X,
x{k’(l - 2k’2)E{am(ikl,’°§;k’> ;k’]

Xm
- ik2xm,0g} + k' cn<ik—;"g;k’)

X
X [k’z +(1- 2k'2)dn<ik—m;°§;k’)2] }

(3.36)

with £ € [-1/2,1/2], am(x) being the Jacobi amplitude func-
tion, and

X, 0= 2k'K(k) = 2K (k). (3.37)

The behavior of the scaling function X, at T=T, is shown on
Fig. 5.

As we will see in Appendix B, under proper rescaling of
the abscissa and the vertical axes that follows from the map-
ping of the lattice onto the continuum model, there is perfect
agreement between our lattice model results for the total sus-
ceptibility and the analytically derived ones in the case of a
short-ranges system without gravity. The comparison is pre-
sented in Fig. 6, where ¢,=(3¢3"K,)™'=0.198.

IV. BEHAVIOR OF THE SUSCEPTIBILITY AT T=T,

Our analysis of the finite-size behavior of the system at
T=T. is summarized in Figs. 7-11. Specifically, Fig. 7 pre-

0.05

-60 -—-40 =20 0 20 40 60
(1-K/K.) L'

FIG. 6. (Color online) The scaling function of the total suscep-
tibility yL~”"”, calculated via the lattice model, compared versus the
scaling function X(x,) of the same quantity as derived analytically
within the continuum approach.
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T=T.,v#0,g#0
—+— L=1000
0.05 | | —— L=2000
—=— L=4000

—a— L=8000

=75 =5 -2.5 0 2.5 5
ApxLAY—3.2 log(L)

FIG. 7. (Color online) The behavior of the finite-size suscepti-
bility y at 7=T.. as a function of xpzApLﬁ/ ¥—3.2 In L for films with
thickness L=1000, 2000, 4000, and 8000 layers. Both van der
Waals forces and gravity effects are taken into account.

sents the behavior of the normalized susceptibility yL™"'" in
an experimentally realistic system in which both gravity and
van der Waals interactions are taken into account, while Fig.
8 shows the behavior of the susceptibility in one idealized
system in which only short-ranged interactions are taken into
account. In both figures the behavior of the finite-size sus-
ceptibility is shown as a function of xp=ApLB/ V—cInL,
where ¢=2.182 for the short-ranged systems and ¢=3.2 for
systems with van der Waals interaction present. Films with
thickness L=1000, 2000, 4000, and L=8000 layers are con-
sidered, and

L
Ap= %20 B(2). (4.1)

The appearance of the In L corrections in the scaling vari-
able x, is a specific feature of the mean-field systems due to
the degeneracy of the critical exponents 8 and v, which be-
come equal in mean-field approximation. The numerical
value of the constant ¢ can be analytically predicted: at the

bulk critical point K=K,=(c,+2c5") ™ = 0.168,/7=0 one has

T=T,v=0,g=0
0.12 | —— L=1000
—+— L=2000
—=— L=4000
—a— L=8000

-4 -2
ApxLA-2.182 log(L)

FIG. 8. (Color online) The behavior of the finite-size suscepti-
bility x at T=T, as a function of xpzApLB/V—2.182 In L for films
with thickness L=1000, 2000, 4000, and 8000 layers for systems
with only short-ranged interaction present.
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FIG. 9. (Color online) The behavior of the finite-size suscepti-
bility x at T=T. as a function of Ap as obtained within the mean-
field-like treatment of the model. All the curves are for L=1000 or
L=8000 layers thick film but with gravity and/or van der Waals
interaction neglected or taken into account. One observes that both
van der Waals interactions, as well as gravity, suppress the diver-
gence of the susceptibility.

a=0, u=1.681 and Eq. (3.17) possesses a solution, see Eq.
(3.22), where the leading behavior near the boundary, when
[—0, is

B(z) = 77\2/u = 1.091/z. (4.2)

Integrating over z and having in mind that the system is
bounded by two substrate planes, one immediately obtains a
In L contribution in Ap, which is proportional to ¢=2.182,
i.e., exactly the same constant as given in Fig. 8. The pres-
ence of a van der Waals type interaction changes the con-
stants of the model, e.g., the critical coupling K., as well as
the effective constant in front of the second derivative of the
order-parameter profile. The last does not change the leading
z dependence of the order-parameter profile but leads to a
different constant ¢, which turns out to be ¢=3.2 in our
model. One observes that when both van der Waals forces
and gravity effects are taken into account, see Fig. 7, but L is
not very large, the gravity effects are negligible—as for
L=1000, 2000, and 4000; the corresponding curves are close
to each other and one can speak about (some) data collapse
for them. However, the curve for a system with L=8000, for
which the gravity effects are essential, differs essentially
from the others with the maximum of the susceptibility
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FIG. 10. (Color online) The same as in Fig. 9 but now the
behavior of the finite-size susceptibility y is considered as a func-
tion of the scaling variable (BAw)LA".

strongly suppressed. Furthermore, note that in the presence
of van der Waals interactions and gravity the maximum of
the curve for L=8000 shifts to higher values of x, in com-
parison with systems with short-ranged interactions only and
no gravity; see Fig. 8. In the last case one observes a reason-
able data collapse for all values of L considered. We stress
that Ap contains contributions due to the role of the bound-
aries which are not, in fact, critical. These are, e.g., the con-
tributions which are due to the layers very near the bound-
aries, which layers are, independently on the value of x,,
always liquid like and almost fully occupied (i.e., densely
packed) by the molecules of the fluid. Thus, in terms of Ap
one expects larger corrections to scaling than when y is con-
sidered as a function of Au (see Fig. 3). The behavior of the
finite-size susceptibility xy at T=T. as a function of Ap, as
obtained within the mean-field-like treatment of the model, is
shown in Fig. 9. All the curves are for L=1000 or L=8000
layers thick film but with gravity and/or van der Waals inter-
action neglected or taken into account. One observes that
both van der Waals interactions, as well as gravity, suppress
the divergence of the susceptibility. Figure 10 shows the
same as Fig. 9 but now the behavior of the finite-size sus-
ceptibility y is considered as a function of the scaling vari-
able (BAw)L™". One observes the different importance of
the van der Waals substrate-fluid interactions and of the grav-
ity within “thin” films, exemplified by L=1000, and “thick”
films, represented by the case L=8000. While for L=1000
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the curves group together depending on the presence or ab-
sence of van der Waals substrate-fluid interactions, for
L=8000 they do this, at least with respect to the position of
their maximum, depending on the presence of gravity in the
system. Furthermore, one observes that in thick films when
g=0 the maximum of the susceptibility is at Au<<0,
contrary to the case with g# 0, when the maximum is at
Ap>0. In thin films the position of the maximum does not
depend on g and always is at Ax<0. Finally, Fig. 11 shows
the density profiles of systems with L=1000 and L=8000
layers both for x,=0, as well as for the corresponding x,, for
which the susceptibility has a maximum. More precisely, the
part (a) of this figure shows the density profile for a system
with L=1000 layers at T=T, and pu=pu.. Note that Ap>0
everywhere, i.e., the equilibrium state of the film is liguid
like. For L=1000 the effect of gravity is negligible, i.e., this
profile is similar to the one with for L=8000 when g=0. Part
(b) of Fig. 11 shows the density profile for a system with
L=1000 layers at T=T,. and Apu=Apu,,, for which the sus-
ceptibility reaches its maximum. Note that Au,,,,<0. Next,
part (c) of Fig. 11 presents the density profile for a system
with L=8000 layers at T=T, and p= .. Note that, due to the
gravity, the profile is with Ap>0 near the walls, but
Ap<0 everywhere in the middle of the system, i.e., in the
middle of the system the equilibrium profile for the finite
film is gas like. This has to be compared with case (a) when
Ap>0 for all 0=z=L. Finally, part (d) of Fig. 11 presents
the density profile for a system with L=8000 layers at
T=T, and Apu=Ap,,,, for which the susceptibility reaches its
maximum. Note that, contrary to the case L=1000, when the
gravity is not important, Az, > 0.

V. BEHAVIOR OF THE SUSCEPTIBILITY
FOR T>T, AND T<T,

The behavior of the susceptibility away from the critical
point is summarized in Figs. 12-14. More precisely, Fig. 12
presents the behavior of the finite-size susceptibility as a
function of the scaling variable x,=AuL*"” for a film with
thicknesses L=1000 and L=8000 for t=0,t==*10"% and
t==+107. When t=—1075 and at a negative value of x, the
system undergoes a second-order phase transition for
L=1000, while for L=8000 it undergoes first-order phase
transitions for both r=—107° and t=-1075. We further note
that when L=1000, the gravity effects being negligible, the
critical point T,(L) of the finite system is at Au,.; <0, see
Fig. 1. In general it is quite difficult to determine the location
of this point with good precision [20]. Inspecting Fig. 12 one
discovers, however, that for L=1000 the curve with
t=—107° is very close to the corresponding one that charac-
terizes the behavior of the system at the true critical tempera-
ture of the finite system. In the context of the behavior dis-
played in this figure, it is useful to refer to Fig. 14, which
illustrates the behavior of the excess normalized density Ap
as a function of the scaling variable xﬂzA,uLA/ ¥ for the same
values of L and for the same fixed values of 7 as chosen in
Fig. 12.

The behavior of the finite-size susceptibility as a function
of Ap for a film with thicknesses L=1000 and for
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FIG. 11. (Color online) (a) The density profile for a system with L=1000 layers at T=T, and u= .. (b) The density profile for a system
with L=1000 layers at 7=T, and Ap=Apu,., for which the susceptibility reaches its maximum. (c) The density profile for a system with
L=8000 layers at T=T, and u=pu,. (d) The density profile for a system with L=8000 layers at T=T, and Au=Ap,,,, for which the
susceptibility reaches its maximum. In all the figures the bold (red) curve shows the profile of the local susceptibility normalized by L? for
the system with size L. In order to have a better visibility of the order-parameter profile simultaneously with the profile of the local
susceptibility, the magnitude of the local susceptibility has been further reduced eight times for L=1000 and 16 times for L=38000.

t=0,t=+10"%and r= + 107 is shown in Fig. 13. Finally, the
behavior of Ap as a function of the scaling variable
XM=A,LLLA/V for a film with thicknesses L=1000 and
L=8000 for t=0,==107% and =+ 107> is shown in Fig.
14. Again, one observes that when L=1000 and t=-107° the
system undergoes a second-order phase transition at a nega-
tive value of x,, while when L=8000 it undergoes a first-
order transition for both t=—1073 and t=—107° as X, is var-
ied. We note that near 7. the position of the vapor-liquid
coexistence line shifts (see Fig. 1) when L increases, from a
position characterized by Au<<0 to a position with Au>0.
The same is also true for the position of the true critical point
of the finite system. For L=8000 the critical point
T.(L=8000) is at Au.;>0. The larger L the narrower the
region in # and A in which one has rounding of the second-
order phase transition around the bulk critical point. Further-
more, we note that the larger L is stronger the gravity effects
will be in the system; this in turn stimulates the phase sepa-
ration within the system.

These general remarks are intended to provide the reader
with guidance regarding general trends of behavior as the
system size L varies between 1000 and 8000. We also stress
that the effects of van der Waals interactions as well as those
of gravity are not universal, in that they depend on the
strength of two parameters: the value of the effective surface

potential A, ; and the value of the effective gravity constant
g; see Appendix A. Thus, detailed predictions for the finite-
size behavior of the susceptibility in a particular fluid
bounded by specific substrates require that one perform nu-
merical calculations following the general prescriptions pre-
sented in this article.

VI. DISCUSSION AND CONCLUDING REMARKS

We have studied the behavior of the finite-size suscepti-
bility in fluid nonpolar films governed by van der Waals
interactions and subjected to the influence of the gravita-
tional field of the Earth. We focused on the situation in which
the film is bounded by solid substrate plane boundaries
which both strongly prefer the liquid phase of the fluid (i.e.,
we considered the so-called “plus-plus” boundary condition).

Figure 15 summarizes the behavior of the susceptibility
for such films as exemplified with films with thicknesses
L=1000, 2000, 4000, and 8000 layers. The susceptibility is
shown for temperature equal to that the bulk critical tempera-
ture, T=T,, plotted as a function of the scaling variable
x#=A,u,LA/ ¥, The quantity A is the excess chemical poten-
tial where Au>0 stabilizes the liquid phase of the fluid.
Both the intrinsic van der Waals pair interactions between the
molecules of the fluid and the van der Waals interaction be-
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FIG. 12. (Color online) The behavior of the finite-size suscepti-
bility as a function of the scaling variable xM=A,u,LA/ Y for a film
with thicknesses L=1000 and L=8000 for t=0,t=+10"° and
1=+107.

tween the fluid and the constituents of the two substrate
plates are taken into account. For comparison, the behavior
of the finite-size susceptibility of a system with completely
short-ranged interactions is also presented. We conclude that
the behavior of the susceptibility in realistic nonpolar fluid
systems, in which both van der Waals interactions and grav-
ity are present, will always differ from the corresponding
behavior of short-ranged systems, which constitute the stan-
dard theoretical model for such systems. As might have been
expected, for realistic films with moderate film thickness L,
the van der Waals interactions lead to noticeable differences
in the behavior of the susceptibility from what one finds for
a short-ranged system. For large L, gravity gives rise to the
dominant effect. For the system studied here, consisting of

y L~
g
X

19 2 2.2 23 24

2.1 5
Ap [%]

FIG. 13. (Color online) The behavior of the finite-size suscepti-
bility as a function of Ap for a film with thickness L=1000 and for
t=0,t==*107% and r= = 107°.
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FIG. 14. (Color online) The behavior of Ap as a function of the
scaling variable x#=A,u,LA/ Y for a film with thicknesses L=1000
and L=8000 for t=0,7=+107% and r= = 107°.

He films bounded by Au surfaces it turns out that “moderate”
thickness is a width of up to L=4000 layers; the smaller the
thickness the stronger the effect due to van der Waals inter-
actions. It turns out that L=8000 represents a “thick” film,
for which the principal effects giving rise to the deviation
from the short-ranged behavior of the susceptibility are due

0.14
T=T.
0.12
—— L=1000,v#0,g# 0
0.1 ——— L=2000,v#0,g+0
N —a— L=4000,v+0,g+0
< 008
.IJ a L=8000,v+#0,g#0
< 0.06 o short—ranged, v=0, g=0] ~
0.04 /‘A
o A
0.02 ak A
AAAAA‘AA‘A * ey 1
“AAA‘AA‘AAAAAAAAAA 1
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(B Ap) LAY

FIG. 15. (Color online) Finite-size behavior of the susceptibility
for a film with L=1000, 2000, 4000, and 8000 layers as a function
of the scaling variable xﬂ=A,u,LA/ Y in the case in which both the
intrinsic van der Waals interactions as well as the presence of grav-
ity are taken into account. For a comparison the behavior of a
system with completely short-ranged interaction is also presented.
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to the presence of a gravitational field in the region occupied
by the fluid. At the bulk critical point 7=T, and Apu=0 for
L=8000 layers gravity gives rise to the appearance of a very
large gaslike region that includes the middle of the film,
which splits the two liquidlike regions near the solid sub-
strate planes that bounds the film; see Fig. 11. This gaslike
region occupies the greater part of both the upper and the
lower half of the fluid system, but is larger near the upper
bounding surface. This leads to the result that at 7=T7, and
Ap=0 and for L large enough, the average density of the
finite system is less than the critical density of the bulk sys-
tem. Thus, in order to achieve coexistence between the fluid
and the gaslike states of the system one needs to apply a
positive excess chemical potential. This in turn leads to a
new finite-size coexistence line in thin films; see the topmost
line in Fig. 1, which is different from the ones obtained on
the basis of studies of fluid systems with no gravity present
[17-20] where such a shift of the coexistence line is always
in the direction of negative Apu.

Finally, we mention that in order to verify our lattice
model approach we have in the case of a fully short-ranged
system derived analytically and compared with numerical
calculations on a lattice model the behavior of the local and
total susceptibilities. We find excellent agreement between
the two models. The details are given in Appendix B.
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APPENDIX A: ESTIMATION OF THE GRAVITY
CONSTANT IN TERMS OF THE PARAMETERS
OF THE MODEL

As we see from Egs. (3.7) and (3.14), gravity introduces a
fieldlike contribution into the grand canonical potential nor-
malized per area. This contribution is reflected by the term

1 < K| <
BHG = 3 Be 2 29(2)= 73| B2 2d(@) |- (AD

z=0

Here we measure z from the bottom of the fluid layer, which
is positioned perpendicularly to the gravitational force. We
work in units in which |¢(z)| <1 is a dimensionless number,
with ¢(z)=1 corresponding to one atom of *He or “He oc-
cupying a unit cell with volume ag, where ay is the average
distance between the helium atoms at the critical point. One
can think of @, as being the lattice spacing of the lattice
model. In [6] we estimated ay=4.9 A for *He and
ay=4.2 A for *He; the basic material specific characteristics
of the two isotopes of the helium needed for the current
estimations are summarized in Table I. Thus, the actual
physical density, corresponding to ¢(z)=1, is equal to
p=nu/ ag, where n is equal to 3 for 3He and 4 for 4He, and u
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is the atomic mass unit; 1u=1.6605X 10727 kg. Next, with
2=9.81 m/s*=9.81 J/(kgXm) and with z=Lay107'" m,
where [, is an integer that denotes the layer occupied by the
corresponding particle is, one obtains

k
Bpgz=(22x10% I x (3 X 1.66054 X 10-27—5)
a

X (9.81 ) X (I, X 49X 1079 m)

kg X m

e~

=0.527 X 107122

(A2)

IS
[=X08)

for 3He, and

k
Bepgz=(1.4x10% T x (4 X 1.66054 X 10-27—§>
a

X (9.81 ) X (I, X 42X 10719 m)

kg X m

!
=0.383 X 10712
)

(A3)

for “He. In the above estimates we have taken into account
the fact that [6]

B.=22%x10%2 J!
for *He and
B.=14x10%2 J!

for “He (see Table I). We thus conclude that in our units one
has to take the gravitational constant (times 3,) to be

(B.g) =g3=0527x 1072 for °>He,
and
(B.g) =g4=0383 X 1072 for “He.

Note, however, that in the equation for the order-parameter
profile (3.1), as well as in the excess grand potential (3.14),
which are written in terms of ¢ one always has a factor of
1/2 in front of gravitational constant. This should not be
forgotten when performing a numerical evaluation of the
gravity effect.

Taking into account the fact that the critical part of the
free energy near T, behaves as 1*%, with a=0 within the
mean-field approximation, it is clear that gravitational effects
can be felt in the thermodynamic behavior of the system
when 2~ 107'2, This implies that one must explore relative
temperature deviations of the order of t~ 107° in order to be
able to observe severe gravitational effects in the finite-size
behavior of thermodynamic quantities. Obviously, the larger
L, the stronger will be those effects. However, in such a case
the observation of the finite-size properties of the studied
quantities will be more challenging since they emerge when
tL""=0(1). Thus, one needs to find a proper balance in the
size of the system in order to observe both finite-size and
gravity effects. In [7] the conclusion has been made that the
gravity has a much more pronounced effect near liquid-gas
critical points than for the *He lambda transition. One can

031119-13



DANTCHEYV, RUDNICK, AND BARMATZ

also compare the strength of the expected gravity effects in
different substances near their respective critical points—see,
e.g., [26] and Table I in [7]. There such a comparison is
performed for 3He, SF¢, Xe, and CO, in terms of the so-
called “gravity scale height in a fluid” H, with
Hy=P_./(p.g), where P, is the critical pressure of the fluid
[26]. The smaller H, the larger the gravity effect. It turns out
that H, is smallest for *He, i.e., the gravity effect there is the
strongest. H, steadily increases for the sequence SFg, Xe,
and CO,, i.e., the strength of the gravity effects diminishes in
these substances in the sequence they are ordered in the cur-
rent text. Our own estimates support this observation; we
predict that the gravity effects in the critical behavior of *He
will be stronger than in “He, since the corresponding effec-
tive parameter reflecting the strength of the gravity in the
model g5 is larger than g4; see above.

APPENDIX B: RESPONSE OF THE SYSTEM WITH
SHORT-RANGE INTERACTIONS—GINZBURG LANDAU
APPROACH

In the case in which all the interactions in the system are
short ranged and in the absence of gravity, Eq. (3.15) for the
order-parameter profile in a continuum system can be written
in the standard form

d .
-—‘f+&¢+u¢3=h, (B1)
dz

=
I

= and
nn -’ nn
3c5'K cy

(B2)
With the substitution

$(2) = \ﬁm@ (B3)
u

the above equation becomes
d’ -
-l ame2mi =T, (B4)
dz

h= \/gh (B5)

The equations for the layer response function

where

dp(z) am(z)
xx= ——| = - (B6)
dh |2 dh |
then reads
d2
-d—’§’+(d+6m2)x,=1. (B7)
Z

Introducing the scaling variables
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x,=al? x,=hL3, (=z/L, (B8)
one can rewrite the Egs. (B4) and (B7) for the order param-
eter m(z) and of the local susceptibility y,(z) into equations

for the scaling functions

}(m(Z xt7-xh) = Lm(Z 'xt7-xh) (Bg)
and
X2l x) = L7 xexx,) (B10)
of these quantities. One obtains
d’X,, s
- +xX,+2X, =x,, (B11)
e
and
d’X 5
— 4 (x,+ 6X,)X, =1, (B12)

i

respectively. Because boundary conditions are identical at
both surfaces of the film system, the solutions of the above
equations have to satisfy ¢'(L/2)=0 and x'(L/2)=0 or,
equivalently, X, ({=1/2)=0 and X,({=1/2)=0, ie., the
middle of the system will be an inflection point for all physi-
cal quantities which depend on the distance from the bound-
aries. Note that despite the fact that there is no explicit de-
pendence of Eq. (B12) on x), the scaling function, X,, does
depend on x;, because X,,, which is a solution of Eq. (B11),
depends on that parameter and X,, enters into Eq. (B12).

In the remainder of this appendix we will be interested in
the behavior of X, on z and x, for x,=0. Then, the solution
X,,(z|x,) of Eq. (B11) is known. From Egs. (3.22) and (3.24)
one has

(a) when x,= -7

dn[2K(k){;k]

X,(¢lx,) = 2K (k) 2K K]

(B13)

where 0=(¢=1, and ke R is to be determined form Eq.
(3.23).
(b) when x,=-7°

2K (k)

B — (B14)
sn[2K(k){:k]

Xm(§|xt) =

where 0=(=1, and keR is to be determined form Eq.
(3.25).

In order to utilize the symmetry of the problem it is help-
ful to move the coordinate frame so that the origin of the
system is at the midpoint of the film. Taking into account that
[24]

dn[u + K(k) ;k] K
sn[u+K(Kk);k] ~ cn(uzk)’

(B15)

and that
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FIG. 16. (Color online) Plot of the profile function

X,,(£|x,)—see Eq. (B17).

cn(iusk') = 1/en(uk), (B16)
we obtain
X, (Lx) = X0 enli2K(k) k'], (B17)
where {e[-1/2,1/2] and
X0 =2k'K(k) = 2K (k). (B18)
Since ¢n(0;k)=1, one has
X,0.0=X,,(0lx,). (B19)

A typical behavior of X,,({|x,) is shown on Fig. 16.

Given the scaling function X,, all that one has to do to
determine X,({ |x,) is to solve Eq. (B12) with the boundary
conditions X,(*+1/2)=0 and dX,({)/d{=0 for {=0.

According to the general theory of differential equations
of second order

XX(§|Xt) = Cl‘ﬂl(ﬁxt) + 52¢2(§|xz) + Ci¢i(§|xt)7

where ¢, ¢,, and ¢; are constants, ¢; and ¥, are linearly
independent solutions of the homogeneous equation

(B20)

2

- —+ (x,+6X,)X, =0, (B21)

and ¢; is a particular solution of the inhomogeneous Eq.
(B12). It is easy to check that

£|xz) X (§|xt) Xm(dxt) (B22)
is a solution of Eq. (B21). Explicitly, one has
2
() = = =20l DK K Tanl 2K (2K
2
l%sn[ mogf k' ] [l%g;k']
(B23)

A typical behavior of the solution of the homogeneous equa-
tion #,(|x,) is shown on Fig. 17. Because of the symmetry
of the problem,
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FIG. 17. (Color online) Plot of the function #,(¢|x,)—see Eq.
(B23).

X\ (= Zx) =X, (L)) (B24)
Since, see Eq. (B23),
‘ﬁl(‘ §|xr) == ¢1(§|xt)v (B25)

one concludes that ¢;=0; see Eq. (B20).
Following Abel [27,28], we construct i,({|x,) via

(dlx,) = ¢1(§|x;)f [l//1(§| N (B26)

Obviously, #,(|x,) is an even function with respect to {.
Again, because of the symmetry of this system, one has

di,

Wronskian of the solutions of ¢; and ¢,

%(D dng,(g)

—ih()— = (B27)

W= ()——

is equal to one, i.e., the two solutions ¢; and ¢, are linearly
independent. Explicitly, performing the integration for i,

one obtains
k, d ( X g k ) ( ’"0§ k >
n l_
kzX

X
X [k’(l - 2k'2)E(am<ik—”’;"g;k’> ;k’) - ikszyog}

.XmO
+k’cn t—k,’ Lk

¢2(§|xr) =

X{k’2+(1—2k'2)dn<i%§;k/)2]}- (B28)

A typical behavior of the solution of the homogeneous equa-
tion ¢({|x,) is shown on Fig. 18.
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FIG. 18. (Color online) Plot of the function ,({|x,)—see Eq.
(B29).

Again following Abel [27,28], one finds the particular so-
lution of the inhomogeneous equation expressed in terms of

¢, and ¢, via

l//i(glxt) = ‘pl(ﬁxz)f ¢2(§|x1)d§— $2(§|xt)f ¢1(§|xt)d§~

(B29)
Taking into account Eq. (B22), one can show that
X,,,(dx,)
r xX) | ———=d{. B30

Using this result and that fact that ¢ is a solution of the
homogeneous Eq. (B21), one can show that ¢; is indeed a
solution of Eq. (B12). Furthermore, since the constant on the
right-hand side of Eq. (B12) is equal to one, we have ¢;=1.
One can explicitly determine ,({|x,). Performing the inte-
gration in Eq. (B30), one obtains

k/2 X 0 2
% 1-2dn ik—,’é';k' , (B31)

with di({|x,)/d{=0 at ¢=0. A typical behavior of
the particular solution of the inhomogeneous equation
#(¢|x,) is shown on Fig. 19. Since ¢;=1 and ¢;=0
from X (1/2x,=0) we determine that

cz(x,)——hmb el (&l x) /(L |x,)]. Explicitly, after series
of manipulations one can show that

‘/fi(dxr) ==

0.09
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_0.06
=005
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0.03
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¢

FIG. 19. (Color online) Plot of the function i;(¢|x,)—see Eq.
(B31).
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FIG. 20. (Color online) Plot of the function x;({).

4k"?K*K (k)
k2K(k) + (K> =k'?)E(k)

colx) = (B32)

The behavior of the scaling function X, at T=T, obtained
from the continuum approach described above is shown on
Fig. 5 in the main text. One can also calculate the local
susceptibility profile from the lattice model approach. The
result for L=1000 is shown on Fig. 20. One can easily check
that the curves in both figures completely overlap each other
if L2y, calculated via the lattice model, is multiplied by
¢,=0.212. The last is very close to what one theoretically
predicts from the mapping of the lattice model onto the con-
tinuum one. Inspection shows that ¢,=(3¢5"K,.)~'=0.198.
The above demonstrates that the lattice model correctly re-
produces the universal scaling function in the case in which
that function can be calculated exactly and, thus, is trustwor-
thy for predicting properties of the local and total suscepti-
bility in cases when no analytical results are available. Such
an instance, considered in the main text, is one of a system in
which both gravity and van der Waals interactions are
present.

In addition to the scaling function of the local susceptibil-
ity one can also derive in an analytic closed form the scaling
function X of the total susceptibility. Starting from

12
X(x,) = 2f X\ (¢x)de, (B33)
0

one derives

c2(x)/K (k) + K(k) — 2E(k)
4K3(k)

X(x,) = (B34)

The behavior of this function is illustrated in Fig. 4 in the
main text.

In order to compare with the corresponding result from
the lattice calculations one must take into account the fact
that, due to the difference in definitions of the field variable,
X must be rescaled by 1/c,. Additionally, taking into account
the fact that (1-K/K,)L""=c,x, [see Egs. (B2) and (B8)] one
obtains the result shown in Fig. 6 in the main text. We are
thus able to conclude that the lattice model produces a result
in a perfect agreement with the analytic solution in Eq. (B34)
for the behavior of the total susceptibility.
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