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We propose a polymer growth model, in which propagating radicals can grow through propagation processes
or annihilate through termination �disproportionation or combination� processes. Considering a simple case in
which the propagation and termination rates of each polymer chain are both independent of its length, we then
investigate analytically the kinetics of the model by means of the rate-equation approach. The propagating
radicals will be exhausted eventually and only the inert polymers �the termination products of propagating
radicals� can survive in the end. Moreover, the size distribution of propagating radicals can always take the
form of the Poisson distribution at a given time, while that of inert polymers is dependent strongly on the
details of the reaction-rate kernels. For the case in which the propagation rate constant J1 is less than the
termination rate constant J2, the size distribution of inert polymers can always take a power-law form ck�t�
�k−2−J1/�J2−J1�, in the region of t�1 and k�1. For the J1�J2 case, the kinetic evolution of inert polymers is
very complex and ck�t� can take one of the three forms: monotone decreasing, single peak �Poisson-like
distribution�, and double peak. For the special J1=J2 case, ck�t� exhibits an exponential decay in size.
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I. INTRODUCTION

The phenomenon of aggregation, in which small aggre-
gates merge irreversibly to form large aggregates, has been
investigated extensively in the last few decades �1–6�. The
real-world examples include the process of crystal growth,
the formation of cloud in atmosphere, and the growth of
droplet. It is thus of theoretical and practical significance to
understand the kinetics of aggregate growth. A lot of effort
has been devoted to investigating the kinetic behavior of
irreversible aggregation through the binary coalescence
mechanism Ai+Aj→Ai+j �7–9�. Here, Ai denotes an aggre-
gate consisting of i monomers, and two aggregates sponta-
neously combine into a larger aggregate Ai+j. With the help
of the Smoluchowski rate equation �10�, most of these inves-
tigations, which are related with aggregate growth, have
been performed effectively. It is found that the size distribu-
tion of aggregates in irreversible aggregation processes may
approach a scaling form at large times �11–13�.

Recently, much attention has been paid to a great diversity
of aggregate growth mechanisms. Leyvraz and Redner pro-
posed an exchange-driven model for the evolution of city
population �14�. Oshanin et al. investigated the equilibrium
properties of a lattice-gas model with catalytic mechanism
�15�. Laurenzi and Diamond studied the aggregation-
fragmentation mechanism in a multiple component system
�16�, and so on �17–21�. Practically, there exist other growth
mechanisms in chemical systems such as the free-radical po-
lymerization. As we know, the free-radical polymerization
has become an important polymerization method as far as its
industrial utilization is concerned in the last century �22–25�.

The free-radical polymerization in many actual industrial
processes mainly consists of three stages: initiation, propa-
gation, and termination. For example, the polymerization of
ethylene can be well understood by a free-radical reaction

kinetics model illustrated in Table I �see also the kinetic
scheme for methyl methacrylate polymerization in Refs.
�26,27��. In the initiation stage, the initiator I is dissociated
into two primary radicals R at the dissociation rate constant
kd and then the primary radical R is attached to a monomer
M to form an initiated propagating radical P1 at the associa-
tion rate constant ki. In the propagation process, an additional
monomer M will be adsorbed to the propagating radical Pn at
the rate constant kp, namely, Pn becomes a larger propagating
radical Pn+1 �here, Pn denotes a propagating radical consist-
ing of n repeating units�. Such propagation processes can
proceed continuously, while some termination processes take
place. There are two different termination manners: dispro-
portionation and combination. When two propagating radi-
cals Pm and Pn meet, they can transform into two inert poly-
mers, respectively, with m and n repeating units �i.e., Dm and
Dn� due to disproportionation. Termination can also be
caused by a combination reaction, in which two propagating
radicals Pm and Pn meeting at their free-radical ends will
produce one inert polymer Dm+n consisting of m+n units.

With the development of the polymerization industry,
more and more attention has been paid to the molecular
weight distribution �MWD� of polymers �26–28� because the
polymer’s end-use properties are strongly dependent on its
MWD. Crowley and Choi proposed a novel method for the
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TABLE I. The scheme of free-radical polymerization.

Process Scheme

Initiation �i� I→
kd

2R

�ii� R+M→
ki

P1

Propagation �i� Pn+M→
kp

Pn+1

Disproportionation �i�Pm+ Pn→
ktd

Dm+Dn

Combination �i� Pm+ Pn→
ktc

Dm+n
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calculation of the molecular weight distribution in free-
radical polymerization of methyl methacrylate �27�. This
method can compute the weight fraction of polymer in any
molecular weight ranges but cannot deduce the explicit ana-
lytical expression of the MWD.

Motivated by these theoretical and experimental investi-
gations on free-radical polymerization processes, we propose
a simplified kinetics model for polymer growth through
propagation and termination, which can be used to analyti-
cally investigate the properties of the MWD. Initially, the
system consists of initiated propagating radical polymers �for
instance, benzoyl peroxide initiation� and additional mono-
mers �for instance, styrene monomers�. A radical polymer
with n repeating units is denoted as An, while an additional
monomer is denoted as B1. The scheme of our model is
defined as follows. When a propagating radical meets with
B1, a propagation reaction takes place, i.e., the length of the
propagating radical increases by one unit. The propagation

process can be described as the reaction Ai+B1 →
J1�i�

Ai+1,
where the propagation rate kernel is denoted as J1�i� �equiva-
lently, kp in Table I�. On the other hand, the termination
process may also take place when two propagating radicals
meet together. Let Ci denote the resulting inert polymer of a
termination reaction that contains i units. The termination

process can then be described as Ai+Aj →
J2�i,j�

Ci+Cj �dispro-

portionation� and Ai+Aj →
J3�i,j�

Ci+j �combination�. Here, the
disproportionation rate kernel is denoted as J2�i , j� �equiva-
lently, ktd in Table I� and the combination rate kernel is de-
noted as J3�i , j� �equivalently, ktc in Table I�. As compared to
the above general three-stage polymerization mechanism,
our model neglects the initiation stage and is therefore ap-
plied only to such polymerization systems that the initiation
rate is by far greater than the propagation �termination� rate.

We then investigate the size distribution �i.e., the MWD�
of propagating radicals and that of inert polymers by means
of the rate-equation approach. For the system with constant
rate kernels, our results show that the size distribution of
propagating radicals can always take the form of the Poisson
distribution, while that of inert polymers can exhibit the
monotone decreasing, single-peak, or double-peak structure
in different cases. Intriguingly, these analytical results are in
qualitative agreement with some experimental observations
�29–31�. Thus, we believe that our model could provide
some theoretical predictions for the size distribution of poly-
mers in free-radical polymerization processes.

The rest of this paper is organized as follows. In
Sec. II, we investigate the free-radical propagation-
disproportionation model by using the rate-equation ap-
proach and then determine the analytical expressions of the
polymer size distributions. In Sec. III, we discuss the kinetics
of the free-radical propagation-combination model. In Sec.
IV, we propose a general propagation model with both dis-
proportionation and combination, and we then analyze the
evolution behavior of the model at large times. A brief sum-
mary is given in Sec. V.

II. ANALYTICAL SOLUTION OF FREE-RADICAL
PROPAGATION-DISPROPORTIONATION PROCESSES

In this work, we aim to analytically investigate the size
distribution of radicals in free-radical polymerization sys-
tems. We shall study our model in the framework of the
mean-field theory. The mean-field approximation neglects
the spatial fluctuations in reactant concentrations and as-
sumes that the polymerization reaction proceeds at a rate
proportional to the concentration of each reactant. Assume
that the free-radical polymerization system has spatial homo-
geneity. As a result, the polymers are considered to be dis-
tributed equably in the space throughout the whole process.
Thus, we can analytically discuss the kinetics of the free-
radical polymerization model with the help of the mean-field
rate-equation approach. At time t, the concentration of the
propagating radicals with k repeating units is defined as ak�t�
and that of the inert polymers containing k units is denoted as
ck�t�, while the concentration of B1 is denoted as b1�t�. The
governing rate equations for this model can then be written
as

dak

dt
= J1�k − 1�b1ak−1 − J1�k�b1ak − ak�

i=1

�

J2�k,i�ai, �1�

db1

dt
= − b1�

i=1

�

J1�i�ai, �2�

dck

dt
= ak�

i=1

�

J2�k,i�ai. �3�

In Eq. �1�, the first two terms on the right-hand side account
for the gain and loss in ak�t� due to the propagation reactions
Ak−1+B1→Ak and Ak+B1→Ak+1, respectively; while the
third term represents the loss in ak�t� due to the dispropor-
tionation reactions Ak+Ai→Ck+Ci �i=1,2 ,3 , . . .�. Similarly,
the term on the right-hand side of Eq. �2� accounts for the
loss in b1�t� due to propagation reactions, while the term on
the right-hand side of Eq. �3� represents the gain in ck�t� due
to disproportionation reactions. On the other hand, it should
be pointed out that the mean-field approximation can apply
only to the system whose spatial dimension d is equal to or
greater than an upper critical dimension dc �9�.

Here, we consider a special chain-shaped polymer system,
in which the reaction abilities of a radical chain are indepen-
dent of its length, namely, the rate kernels are time indepen-
dent and size independent J1�i�=J1 and J2�i , j�=J2 for all i
and j �J1 and J2 are two constants�. It is sound because each
propagating chain-shaped polymer has and only has two en-
ergetic and reactive ends, independent of its length. Mean-
while, constant rate kernels also imply that the polymers’
diffusivities should follow the Stokesian dependence on their
sizes �see, e.g., Ref. �32��. As Oshanin and Moreau pointed
out, if the dependence of polymers’ diffusivities on their
sizes is non-Stokesian, the polymerization rate kernels at
large times may be size dependent and the long-time kinetics
of polymerization processes will be diffusion controlled �32�.
As for branched polymers, their polymerization rate kernels
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are also size dependent in most cases. However, since the
above governing rate equations are coupled nonlinear differ-
ential equations, it is very difficult to deduce their explicit
analytical solutions under general conditions. In this work,
we focus only on the case with constant rate kernels.

Moreover, we assume that there only exist initiated propa-
gating radicals and additional monomers at the beginning of
the process and their initial concentrations are equal to A0
and B0, respectively. So, the initial concentration condition
can be described as ak�0�=A0�k1, b1�0�=B0, and ck�0�=0,
k=1,2 ,3 , . . ..

Summing up Eq. �1� over all k, we obtain

dM0
A

dt
= − J2�M0

A�2, �4�

with the shorthand notation M�
A�t�=� j=1

� j�aj�t�. Obviously,
M0

A�t� and M1
A�t� are the total number and the total mass of

propagating radicals at time t, respectively. Under the mono-
disperse initial condition, we solve Eq. �4� to obtain

M0
A�t� = A0�J2A0t + 1�−1. �5�

Equation �5� indicates that the total number of propagating
radical chains will decay as t−1 at large times. By using Eq.
�4�, we then obtain the concentration of B1,

b1�t� = B0�J2A0t + 1�−J1/J2. �6�

So, the concentration of B1 decreases as t−J1/J2 in the long-
time limit.

Multiplying Eq. �1� with k and then summing up over all
k, we can deduce the following differential equation:

dM1
A

dt
= J1b1M0

A − J2M0
AM1

A. �7�

Obviously, the solution of Eq. �7� is dependent on the rela-
tion between the rate constants J1 and J2 and, therefore, the
kinetic behavior of the system has relation with the ratio of
J1 to J2. We then investigate the kinetic behavior of the sys-
tem in three distinct cases of J1�J2, J1�J2, and J1=J2.

A. J1�J2 case

We first consider the J1�J2 case, in which the propaga-
tion of polymers dominates over the corresponding dispro-
portionation. In this case, Eq. �7� can be solved accurately to
yield

M1
A��� = A0�C1�1 − �1−J1/J2� + 1��−1, �8�

where �=J2A0t+1 is the rescaled time variable and C1
=J1B0 / �A0�J1−J2��. Equation �8� shows that the total mass
of propagating radicals decreases with time and will decay to
zero at t→� due to the continuing termination processes.

We then determine the size distribution ak�t� of propagat-
ing radicals. Substituting Eqs. �5� and �6� into Eq. �1�, we
can deduce the exact solution of a1��� as follows:

a1��� = A0�−1 exp�− C1�1 − �1−J1/J2�� . �9�

Again inserting Eqs. �5�, �6�, and �9� into Eq. �1�, we can
obtain the exact solution of a2���. The rest can be deduced by

analogy. By employing this technique, one can obtain the
exact expression

ak��� =
A0

�k − 1�!
�−1������k−1exp�− ����� , �10�

with the shorthand notation ����=C1�1−�1−J1/J2�. Equation
�10� shows that the size distribution of propagating radicals
will decay to zero eventually. On the other hand, Eq. �10�
also indicates that at a given time the radical size distribution
can approach the famous Poisson distribution. Such an inter-
esting phenomenon was also discovered by Lee and his co-
workers �29�, and their experimental result showed that the
MWD of the polystyrenes approaches the Poisson distribu-
tion in the late stage of the anionic polymerization, and there
are some similar results that the MWD may exhibit the Pois-
son distribution �30,31�. Thus, it might be reasonable that in
some practical systems, free-radical propagation and dispro-
portionation both proceed at constant rates. Moreover, Osha-
nin and Moreau investigated the effect of transport limita-
tions on the homopolymerization kinetics and found that, in
the early stage of polymerization, the MWD of the system
with size-dependent rate kernels can also take the form of the
Poisson distribution �32�. Thus, we could make a conjecture
that the size distribution of propagating radicals in our model
with size-dependent rate kernels might also approach the
Poisson distribution in an early stage. We will defer the veri-
fication of this conjecture to a future work.

Since eventually all the free radicals will transform into
inert polymers �the disproportionation products of free radi-
cals�, it is also of interest to investigate the evolution behav-
ior of inert polymer chains. We first determine the total num-
ber and the total mass of inert polymer chains M0

C�t�
=� j=1

� cj�t� and M1
C�t�=� j=1

� jcj�t�. Summing up Eq. �3� over

all k, we can obtain Ṁ0
C�t�=J2�M0

A�t��2, with the exact solu-
tion M0

C���=A0�1−�−1�. This indicates that M0
C�t� will re-

main at the value A0 in the long-time limit. Similarly, multi-
plying Eq. �3� with k and then summing up over all k, the
total mass of inert polymer chains can be obtained approxi-
mately as

M1
C��� � A0�1 + C1��C2 − �−1� , �11�

where C2 is an integration constant. Equation �11� indicates
that the total mass of inert polymer chains will asymptoti-
cally remain at a certain quantity at large times.

By inserting Eqs. �5� and �10� into Eq. �3�, we can
straightforwardly determine the analytical solution of the
size distribution ck�t� of inert polymer chains. It is found that
the expression of ck�t� depends crucially on the relation be-
tween the rate constants J1 and J2. We then deduce the ana-
lytical expression of ck�t� in three subcases of J2�J1�2J2,
J1=2J2, and J1�2J2.

1. J2�J1�2J2 subcase

Substituting Eqs. �5� and �10� into Eq. �3�, we can obtain
the exact expression of the size distribution of inert polymer
chains as follows:

POLYMER GROWTH THROUGH RADICAL POLYMERIZATION… PHYSICAL REVIEW E 80, 031114 �2009�

031114-3



ck��� =
J2A0

C1�J1 − J2�k!
�J1/J2−2������kexp�− �����

+
C3

k!
C1

kk−J2/�J1−J2��
k�1−J1/J2

k

dy	�y�y�2J2−J1�/�J1−J2�

+
C4

k!
C1

k−1k�J1−2J2�/�J1−J2��
k�1−J1/J2

k

dy	�y�y�3J2−2J1�/�J1−J2�,

�12�

where C3=J2A0 / �J1−J2�, C4=C3�2J2−J1� / �J1−J2�, and
	�y�= �1−yk−1�kexp�−C1�1−yk−1��. It can be readily verified
by numerical computations that 	0

kdy	�y�y
 will converge to
a finite constant for k�1 if 
�−1. In the long-time limit,
the size distribution of large inert polymers �k�1� can be
asymptotically expressed as

ck��� �
C4

k!
C1

k−1k�J1−2J2�/�J1−J2��
k�1−J1/J2

k

dy	�y�y�3J2−2J1�/�J1−J2�.

�13�

Thus, the size distribution of inert polymer chains can evolve
to a steady-state form after a sufficiently long time. More-
over, for 1�k��J1/J2−1, Eq. �13� can be further rewritten as

ck��� �
C1

k

k!
k�J1−2J2�/�J1−J2� exp�− C1� . �14�

Obviously, Eq. �14� takes the form of a Poisson-like distri-
bution with power-law correction. Since �J1−2J2� /
�J1−J2��0 for this subcase, the peak position of this cor-
rected distribution will shift to smaller k as compared to the
standard Poisson distribution. Furthermore, based on the
Stirling formula, ��k+1��
2k
kke−k, Eq. �14� can be re-
duced to ck����exp�−k ln k+k+k ln C1�. Thus, in the case
of J1B0�A0�J1−J2�, ck��� asymptotically increases exponen-
tially with k for relatively small k, then reaches a peak value
at a certain size kc, and finally decreases rapidly with k for
k�kc. In other words, ck��� can approach a single-peak
Poisson-like distribution. As for the case of J1B0
�A0�J1−J2�, ck��� always decreases monotonically with in-
creasing k.

2. J1=2J2 subcase

In this special subcase, from Eq. �3� we obtain the exact
solution of the size distribution of inert polymers as follows:

ck��� =
A0

C1
exp�− C1�1 − �−1���

j=k

�
�C1�1 − �−1�� j

j!
. �15�

Equation �15� shows that after a sufficiently long time, the
size distribution of inert polymers can evolve to a nonzero
steady-state distribution,

ck��� �
A0

C1
exp�− C1��

j=k

�
C1

j

j!
. �16�

Moreover, � j=k
� C1

j / j ! �C1
k /k! for k�C1. Thus, the size dis-

tribution of large inert polymers can asymptotically exhibit
the Poisson-like distribution at large times.

3. J1�2J2 subcase

In this subcase, the size distribution of inert polymer
chains satisfies

ck��� = −
A0

�k − 1�!
�−1������k−1exp�− �����

+
A0

�k − 1�!
C1

k−1k−J2/�J1−J2��
k�1−J1/J2

k

dy��y��1 −
1 + C1

k

+
C1

k2 y�yJ2/�J1−J2�, �17�

where ��y�= �1−yk−1�k−2exp�−C1�1−yk−1��. In the region of
��1 and k�1, Eq. �17� can be asymptotically rewritten as

ck��� �
A0

�k − 1�!
C1

k−1k−J2/�J1−J2��
k�1−J1/J2

k

dy��y�yJ2/�J1−J2�.

�18�

Furthermore, Eq. �18� indicates that for 1�k��J1/J2−1 the
size distribution of inert polymers also takes the form of Eq.
�14�, namely, the Poisson-like distribution with power-law
correction. Similar to the above-discussed subcase of J2
�J1�2J2, the large-time size distribution of inert polymers
may abnormally increase along with k for a certain value
range of k under the initial condition of J1B0�A0�J1−J2�,
while it decays consistently with k in the case of J1B0
�A0�J1−J2�. Moreover, since �J1−2J2� / �J1−J2��0 for this
subcase, the peak position of this corrected distribution will
shift to larger k as compared to the standard Poisson distri-
bution.

B. J1�J2 case

We then investigate the system in which the dispropor-
tionation of polymers dominates over the corresponding
propagation, namely, J1�J2. Equation �10� is also valid for
this case. In the long-time limit, Eq. �10� can be approxi-
mately reduced to

ak��� �
A0

�k − 1�!
exp�− g����g���k−1�−1, �19�

where g���=C1�1−J1/J2. Equation �19� also indicates that for
the J1�J2 case the radical size distribution can take the form
of the Poisson distribution. This theoretical result is in quali-
tative agreement with the experimental results �see, e.g.,
Refs. �29–31��.

Then we deduce the analytical expression of the size dis-
tribution of inert polymers in the region of ��1 and k�1,

ck��� �
J2A0

�J2 − J1�
�− C1�J2/�J2−J1�k−2−J1/�J2−J1� − f1��� ,

�20�

with the shorthand notation f1����J2A0�−C1�J2/�J2−J1���J2
−J1��k−1�!�−1exp�−g�����g����k−3−J1/�J2−J1�. Obviously, f1���
will tend to zero at �→�. Thus, the size distribution of inert
polymer chains can evolve to a nonzero steady-state form
eventually; moreover, it can take the scale-free power-law
form ck����k−2−J1/�J2−J1� for large k.
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For this case, the expression of the total number of inert
polymer chains is the same as that in the J1�J2 case,
M0

C���=A0�1−�−1�, and the total mass of inert polymer
chains can be determined asymptotically at large times
M1

C����J2A0C1�C5−�−J1/J2� /J1, where C5 is an integration
constant. This indicates that the total mass of inert polymers
increases with time in the beginning of the process and then
remains asymptotically at the value J2A0C1C5 /J1 in the long-
time limit.

C. J1=J2 case

Finally, we study the special case with the rate constant of
radical disproportionation equal to the corresponding propa-
gation rate constant. In this case, the expressions of M0

A�t�
and M0

C��� are both the same as those in the above J1�J2
cases, and the concentration of B1 is b1�t�=B0�J2A0t+1�−1,
which decays as t−1 at large times. Substituting the above
expression of M0

A�t� into Eq. �7�, we can determine the total
mass of propagating radicals,

M1
A��� = �B0 ln � + A0��−1. �21�

Equation �21� indicates that all the propagating radicals will
die out at t→�. Then we analyze the total mass of inert
polymer chains. Multiplying Eq. �3� with k and then sum-
ming up over all k, we derive the expression M1

C���=A0
+B0− �B0�ln �+1�+A0��−1. Obviously, the total mass of inert
polymer chains can remain at a finite quantity at large times
M1

C����A0+B0.
Introducing the generating function G�z , t�=�k=1

� zkak�t�,
we recast Eq. �1� into

dG

dt
= J1b1G�z − 1� − J2GM0

A. �22�

Equation �22� can be solved exactly to yield G�z ,��
=A0z�B0�z−1�/A0−1. Expanding the expression of G�z ,�� in
powers of z, one can obtain the exact expression of ak���,

ak��� =
A0

�k − 1�!
�−�−1�� ln ��k−1, �23�

with the shorthand notation �=B0 /A0. Equation �23� shows
that at a given time, the radical size distribution can also
approach the Poisson distribution ak���
�e−� ln ��� ln ��k−1 / �k−1�!.

Substituting Eq. �23� into Eq. �3�, we can deduce the size
distribution of inert polymer chains as follows:

ck��� � A0�−1�1 + �−1�−k − f2��� , �24�

with the shorthand notation f2����A0���k−1�!�−1�1
+�−1�−kexp�−�1+��ln ����1+��ln ��k−1. It is obvious that
f2����0 at ��1. Equation �24� shows that the size distribu-
tion of inert polymers can evolve to a steady state after a
sufficiently long time. Moreover, ck��� decays exponentially
with size k at large times ck����exp�−k ln�1+�−1��. Thus, at
large times, there hardly exist long inert polymer chains in
the system.

To sum up, in radical propagation-disproportionation pro-
cesses with constant rate kernels, the size distribution of radi-

cal chains always takes the form of the famous Poisson dis-
tribution, while that of inert polymers depends crucially on
the ratio of the propagation rate constant J1 to the dispropor-
tionation rate constant J2. We can conclude that �i� in the
case of J1�J2, the size distribution of inert polymers ck���
can approach the Poisson-like distribution with power-law
correction; �ii� in the case of J1=J2, ck��� has an exponential
decay in size; and �iii� in the case of J1�J2, ck��� exhibits a
power-law decay in size.

III. ANALYTICAL SOLUTION OF FREE-RADICAL
PROPAGATION-COMBINATION PROCESSES

We now investigate the propagation-combination model,
in which, once two propagating radicals touch each other,
they will combine into one inert polymer chain. We also
assume the propagation and combination abilities of a radical
are independent of its chain length. For simplicity, we also
set J1�i�=J1 and J3�i , j�=J2 for all i and j. The governing rate
Eqs. �1� and �2� are also valid for this model, while the rate
equation for inert polymer chains can be written as

dck

dt
=

J2

2 �
i+j=k

aiaj . �25�

The evolution behavior of propagating radicals in this model
is the same as that in the above model with propagation and
disproportionation. In this section, we only present the evo-
lution properties of inert polymer chains.

Summing up Eq. �25�, we can obtain the exact expression
of the total number of inert polymer chains M0

C���=A0�1
−�−1� /2. This indicates that M0

C��� will remain at the value
of A0 /2 in the long-time limit.

Since the solution of Eq. �25� depends on the relation
between the rate constants J1 and J2, we then determine,
respectively, the analytical expression of ck�t� in the follow-
ing five cases.

A. J1�2J2 case

We first consider the J1�2J2 case, in which the propaga-
tion of polymers overwhelmingly dominates over the corre-
sponding combination. Substituting Eq. �10� into Eq. �25�,
we can obtain the exact expression of ck���,

ck��� = −
A0

�k − 2�!
2k−3�−1������k−2exp�− 2�����

+
A0�2C1�k−2

2�k − 2�!
k−J2/�J1−J2��

k�1−J1/J2

k

dy��y�

��1 −
2�C1 + 1�

k
+

2C1

k2 y�yJ2/�J1−J2�, �26�

where ��y�= �1−yk−1�k−3exp�−2C1�1−yk−1��. In the region
of ��1 and k�1, the size distribution of inert polymer
chains asymptotically approaches
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ck��� �
A0

2�k − 2�!
�2C1�k−2k−J2/�J1−J2��

k�1−J1/J2

k

dy��y�yJ2/�J1−J2�.

�27�

For 1�k��J1/J2−1, the long-time size distribution of inert
polymer chains follows the Poisson-like distribution with
power-law correction,

ck��� �
�2C1�k

k!
k�2J1−3J2�/�J1−J2�exp�− 2C1� . �28�

Obviously, under the initial condition of 2J1B0�A0�J1−J2�,
ck��� abnormally increases along with k for relatively small
k, then reaches a peak value at a certain size kc, and finally
decreases consistently with k for k�kc. While in the 2J1B0
�A0�J1−J2� case, ck��� is a monotone decreasing function of
k.

B. J1=2J2 case

In this case, one can deduce the exact solution of the size
distribution of inert polymer chains as follows:

ck��� =
A0

4C1
exp�− 2C1�1 − �−1�� �

j=k−1

�
�2C1�1 − �−1�� j

j!
.

�29�

Thus, each ck��� can remain at a nonzero value eventually. In
the region of ��1 and k�2C1, Eq. �29� can be rewritten as

ck��� �
A0

4C1�k − 1�!
exp�− 2C1��2C1�k−1. �30�

So, the size distribution of inert polymer chains in this case
exhibits a steady-state Poisson-like distribution.

C. J2�J1�2J2 case

In this case, by substituting Eq. �10� into Eq. �25�, we can
obtain

ck��� =
A0

�k − 1�!
C1

−12k−3�J1/J2 − 1�−1�J1/J2−2������k−1

�exp�− 2����� +
C4

2�k − 1�!
�2C1�k−2k�J1−2J2�/�J1−J2�

��
k�1−J1/J2

k

dy��y�y�3J2−2J1�/�J1−J2�

+
C3

2�k − 1�!
�2C1�k−1k−J2/�J1−J2�

��
k�1−J1/J2

k

dy��y�y�2J2−J1�/�J1−J2�, �31�

where ��y�= �1−yk−1�k−1exp�−2C1�1−yk−1��. Obviously,
�3J2−2J1� / �J1−J2��−1 in this case. Thus, in the region of
��1 and k�1, the size distribution of inert polymer chains
can be expressed as

ck��� �
C3

2�k − 1�!
�2C1�k−2k�J1−2J2�/�J1−J2�

��
k�1−J1/J2

k

dy��y�y�3J2−2J1�/�J1−J2�. �32�

Furthermore, for 1�k��J1/J2−1, the size distribution of inert
polymers also takes the form of Eq. �28�. Thus, the evolution
behavior of this case is mathematically similar to the above
J1�2J2 case in this section.

D. J1=J2 case

Substituting Eq. �23� into Eq. �25�, we can determine the
size distribution of inert polymer chains for the special case
of J1=J2,

ck��� � A02k−3�−1�2 + �−1�1−k − f3��� , �33�

with the shorthand notation f3����A02k−3���k−2�!�−1�2
+1 /��1−kexp�−�2�+1�ln ����2�+1�ln ��k−2. Obviously,
f3����0 in the long-time limit. Thus, the size distribution of
inert polymer chains will evolve to a steady state, finally.
Moreover, ck��� decreases exponentially with k in the region
of ��1 and k�1, ck����exp
−k ln�1+ �2��−1��.

E. J1�J2 case

In this case, substituting Eq. �19� into Eq. �25� yields

ck��� �
J2A0

�J2 − J1�
�− C1�J2/�J2−J1�2J1/�J2−J1�k−2−J1/�J2−J1� − f4��� ,

�34�

with the shorthand notation

f4��� � J2A0�− C1�J2/�J2−J1�2J1/�J2−J1���J2 − J1��k − 2�!�−1

�exp�− 2g�����2g����k−4−J1/�J2−J1�.

The value of f4��� will decay to zero at �→�. Equation �34�
indicates that the size distribution of inert polymers can take
the form of a steady-state power law at ��1, ck���
�k−2−J1/�J2−J1�.

To sum up, in radical propagation-combination processes
with constant rate kernels, the size distribution of radical
chains always approaches the Poisson distribution at any
time, while that of inert polymers exhibits three distinct re-
gimes: the Poisson-like distribution with power-law correc-
tion in the J1�J2 case, the exponential form in the J1=J2
case, and the power-law form in the J1�J2 case.

IV. ANALYTICAL SOLUTION OF FREE-RADICAL
PROPAGATION PROCESSES WITH BOTH

DISPROPORTIONATION AND COMBINATION

Finally, we study the propagation model with both dispro-
portionation and combination, in which two propagating
radical chains can form one inert polymer chain �i.e., com-
bination� or two inert chains �i.e., disproportionation� when
they come across. The kind of termination reaction depends
mainly on the B-monomer’s property and the reaction tem-
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perature �24�. For simplicity, we assume that the rate con-
stant of the disproportionation reaction is pJ2, while the rate
constant of the combination reaction is �1− p�J2, where 0
� p�1. It is obvious that this model will reduce to the
propagation-disproportionation model if p=1 and the
propagation-combination model if p=0. Similarly, the rate
equation for the propagating radical chains is the same as Eq.
�1�. Thus, the evolution behavior of propagating radicals in
this model is identical with that in the above-discussed mod-
els, and the rate equation for inert polymer chains can be
written as

dck

dt
= pJ2ak�

i=1

�

ai +
�1 − p�J2

2 �
i+j=k

�

aiaj . �35�

By usings Eqs. �5� and �35�, we determine the total number
of inert polymer chains,

M0
C��� =

A0�1 + p�
2

�1 − �−1� . �36�

Equation �36� indicates that the total number of inert poly-
mers increases with time in the beginning of the process and
remains at a nonzero quantity after a sufficiently long time.

Obviously, the solution of Eq. �35� depends on the ratio of
the rate constant J1 to J2. We then determine, respectively,
the analytical solution of ck�t� in the following five cases.

A. J1�2J2 case

Using Eqs. �10� and �35�, we deduce the following exact
solution of ck���:

ck��� = −
A0p

��k − 1�!
������k−1exp�− �����

−
A0�1 − p�
��k − 2�!

2k−3������k−2exp�− 2�����

+
A0pC1

k−1

kJ2/�J1−J2��k − 1�!�k�1−J1/J2

k

dy��y��1 −
1 + C1

k

+
C1

k2 y�yJ2/�J1−J2� +
A0�1 − p��2C1�k−2

2kJ2/�J1−J2��k − 2�!�k�1−J1/J2

k

dy��y�

��1 −
2�C1 + 1�

k
+

2C1

k2 y�yJ2/�J1−J2�. �37�

In the long-time limit, the first two terms in the right-hand
side of Eq. �37� can be ignored as compared to the other two
terms. So, the size distribution of inert polymers will evolve
to a steady-state distribution after a sufficiently long time. It
follows from Eq. �37� that ck����0 for k��J1/J2−1.

We then analyze the properties of the size distribution of
relatively small inert polymers, which may be of more inter-
est. For 1�k��J1/J2−1, we have ck����k�J1−2J2�/�J1−J2�

��pC6C1
k exp�−C1�+k�1− p��2C1�kexp�−2C2�� /k! �C6 is a

constant�. Thus, we can conclude that �i� under the condition
of 2J1B0�A0�J1−J2�, the steady-state size distribution ck���
decays rapidly with k; �ii� under the condition of 2J1B0
�A0�J1−J2��J1B0, the evolution of inert polymers is as-

ymptotically dominated by the combination of propagating
radicals and ck��� also decays consistently with k; and �iii�
under the condition of A0�J1−J2��J1B0, the disproportion-
ation and combination of propagating radicals both play im-
portant roles and ck��� exhibits a fairly complex and inter-
esting distribution. Obviously, if J1B0�A0�J1−J2�, both the
third term and the fourth term in the right-hand side of Eq.
�37� increase with k for relatively small k and then, respec-
tively, reach a peak value nonsynchronously, and, thus, the
steady-state size distribution of inert polymers may approach
a double-peak form. Of course, in some cases �e.g., p→0�,
the fourth term in the right-hand side of Eq. �37� may domi-
nate over the third term and, hence, ck��� will exhibit a
single-peak structure. These arguments can be verified by
numerical computations, which are illustrated in Fig. 1. As
shown in Fig. 1, the size distribution of inert polymer chains
can approach the interesting double-peak distribution in
some cases. Moreover, we find that the size distribution of
inert polymers also depends crucially on the value of p �see
also Fig. 1�.

B. J1=2J2 case

In this case, we can obtain the exact solution of the size
distribution of inert polymers as follows:

ck��� =
A0p

C1
exp�− C1�1 − �−1���

j=k

�
�C1�1 − �−1�� j

j!

+
A0�1 − p�

4C1
exp�− 2C1�1 − �−1�� �

j=k−1

�
�2C1�1 − �−1�� j

j!
.

�38�

In the region of ��1 and k�2C1, Eq. �38� can be rewritten
as the superposition form of two Poisson distributions,

FIG. 1. �Color online� Plots of the size distribution of inert
polymers ck�t� vs size k. At large times, ck�t� can take a single-peak
or double-peak form for a different value of p. Here, all numerical
computations have the same initial condition: A0=100, B0=700,
and J1 /J2=3.0.
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ck��� �
A0p

k!
exp�− C1�C1

k +
A0�1 − p�

4C1�k − 1�!
exp�− 2C1��2C1�k−1.

�39�

Thus, the evolution of inert polymers mainly depends on the
details of the initial condition such as the values of p, A0, and
B0.

C. J2�J1�2J2 case

In this case, the long-time size distribution of inert poly-
mer chains is

ck��� �
C4p

k!
C1

k−1k�J1−2J2�/�J1−J2��
k�1−J1/J2

k

dy	�y�y�3J2−2J1�/�J1−J2�

+
C4�1 − p�
2�k − 1�!

�2C1�k−2k�J1−2J2�/�J1−J2�

��
k�1−J1/J2

k

dy��y�y�3J2−2J1�/�J1−J2�. �40�

For 1�k��J1/J2−1, Eq. �40� can be rewritten asymptotically
as ck����k�J1−2J2�/�J1−J2��pC1

k exp�−C1�+k�1− p�C7�2C1�k

�exp�−2C1�� /k! �C7 is a constant�. Thus, the evolution be-
havior of this case is mathematically the same as the above
J1�2J2 case in this section. Of course, provided that all the
other parameters �except for the two rate constants J1 and J2�
are the same, the ratio of J1 to J2 will play an important role
in the evolution behavior of ck��� �see Fig. 2�.

D. J1=J2 case

We then investigate the J1=J2 case. Substituting Eq. �23�
into Eq. �35�, we can obtain the analytical expression of ck���
as follows:

ck��� � A0p�−1�1 + �−1�−k + A0�1 − p�2k−3�−1�2 + �−1�1−k

− f5��� , �41�

with the shorthand notation

f5��� � A0p���k − 1�!�−1�1 + �−1�−kexp�− �1 + ��ln ��

���1 + ��ln ��k−1 + A0�1 − p�2k−3���k − 2�!�−1

��2 + �−1�1−kexp�− �2� + 1�ln ����2� + 1�ln ��k−2.

The value of f5��� is asymptotically equal to zero at ��1.
Thus, the size distribution of inert polymers ck��� will evolve
to a steady state after a sufficiently long time. Moreover,
ck��� decreases exponentially with size at large times

ck��� � p exp�− k ln�1 + �−1�� + �1 − p��2 + �−1�

�exp
− k ln�1 + �2��−1��/8.

E. J1�J2 case

In this case, we can obtain the size distribution of inert
polymer chains by substituting Eqs. �5� and �19� into Eq.
�35�,

ck��� �
J2A0�− C1�J2/�J2−J1�

�J2 − J1�
k−2−J1/�J2−J1���1 − p�2J1/�J2−J1�

+ p − f6���� , �42�

with the shorthand notation

f6��� � 2J1/�J2−J1���1 − p�/�k − 2�!�exp�− 2g����

��2g����k−4−J1/�J2−J1� + �p/�k − 1�!�

�exp�− g�����g����k−3−J1/�J2−J1�.

Obviously, f6����0 at ��1, and the size distribution of inert
polymers has a steady-state power-law decay at large times
ck����k−2−J1/�J2−J1�.

To sum up, in racial propagation processes with both dis-
proportionation and combination, the size distribution of
radical chains always exhibits the Poisson distribution, while
that of inert polymers depends strongly on the relation be-
tween the rate constants J1 and J2 as well as initial condition
�the values of p, A0, and B0�. If J1�J2, the size distribution
of inert polymers ck��� always takes the power-law form. If
J1=J2, ck��� decays exponentially with size. If J1�J2, ck���
can approach one of the three distinct forms: monotone de-
creasing, single peak �Poisson-like distribution�, and double
peak, which depends on the details of initial condition.

V. SUMMARY

We have proposed a simple kinetics model for free-radical
polymerization processes, in which propagating radicals can
grow via propagation and can also be annihilated by termi-
nation �disproportionation or combination�. Considering the
case in which each polymer’s propagation and termination
abilities are independent of its length, we then studied the
kinetic behavior of the model on the basis of the mean-field
rate equations. The results showed that the size distribution
of propagating radicals and that of inert polymer chains are
dependent strongly on the details of the reaction-rate kernels.

For the model with propagation and disproportionation,
the size distribution of propagating radicals approaches the
Poisson distribution, while that of inert polymers ck�t� can

FIG. 2. �Color online� Plots of the size distribution of inert
polymers ck�t� vs size k. For different ratio of J1 to J2, ck�t� can take
one of the three forms: monotone decreasing, single peak, and
double peak. Here, all numerical computations have the same initial
condition: A0=100, B0=700, and p=0.1.
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evolve to a steady state after a sufficiently long time. At large
times, ck�t� has the form of a power law in the J1�J2 case,
while it decreases exponentially with size in the J1=J2 case.
Most intriguingly, in the J1�J2 case, ck�t� can take the form
of a single-peak Poisson-like distribution or has a monotonic
rapid decay in size, which depends crucially on the details of
the initial condition including initial concentrations and re-
action rates. For the propagation and combination model, we
have found similar results for propagating radicals and inert
polymers.

Finally, we have also studied the propagation-termination
model, in which two different termination reactions can si-
multaneously occur. The results for propagating radicals are
the same as those in the model only with disproportionation

or combination, while inert polymers have more complex
evolution behaviors. The size distribution of inert polymers
can take a power-law form in the J1�J2 case and can ap-
proach an exponential decay in the J1=J2 case, while it can
also exhibit a double-peak structure or a single-peak
Poisson-like distribution in the J1�J2 case �see Figs. 1 and
2�.

ACKNOWLEDGMENTS

This project was supported by the National Natural Sci-
ence Foundation of China under Grants No. 10775104 and
No. 10305009.

�1� R. L. Drake, in Topics of Current Aerosol Research, edited by
G. M. Hidy and J. R. Brock �Pergamon, New York, 1972�.

�2� S. K. Friedlander, Smoke, Dust and Haze: Fundamental of
Aerosol Behavior �Wiley, New York, 1977�.

�3� A. Pimpinelli and J. Villain, Physics of Crystal Growth �Cam-
bridge University Press, Cambridge, 1998�.

�4� P. Meakin, Phys. Rev. Lett. 51, 1119 �1983�; Rep. Prog. Phys.
55, 157 �1992�.

�5� A. J. Bray, Adv. Phys. 43, 357 �1994�.
�6� T. Vicsek, Fractal Growth Phenomena, 2nd ed. �World Scien-

tific, Singapore, 1992�.
�7� P. L. Krapivsky and S. Redner, Phys. Rev. E 54, 3553 �1996�.
�8� T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1669 �1984�.
�9� K. Kang and S. Redner, Phys. Rev. A 30, 2833 �1984�.

�10� P. L. Krapivsky, Physica A 198, 135 �1993�.
�11� M. H. Ernst and P. G. J. van Dongen, Phys. Rev. A 36, 435

�1987�.
�12� M. Rusanen, I. T. Koponen, and J. Asikainen, Eur. Phys. J. B

36, 567 �2003�.
�13� E. K. O. Hellen, T. P. Simula, and M. J. Alava, Phys. Rev. E

62, 4752 �2000�.
�14� F. Leyvraz and S. Redner, Phys. Rev. Lett. 88, 068301 �2002�.
�15� G. Oshanin, M. N. Popescu, and S. Dietrich, Phys. Rev. E 68,

016109 �2003�.
�16� I. J. Laurenzi and S. L. Diamond, Phys. Rev. E 67, 051103

�2003�.

�17� Z. Lin, J. Ke, and G. Ye, Phys. Rev. E 74, 046113 �2006�.
�18� Z. Cheng and S. Redner, Phys. Rev. Lett. 60, 2450 �1988�.
�19� B. M. Letfulov, Eur. Phys. J. B 14, 19 �2000�.
�20� B. Bonnier, Phys. Rev. E 58, 5424 �1998�.
�21� J. Ke and Z. Lin, Phys. Rev. E 66, 062101 �2002�.
�22� J. Fried, Polymer Science and Technology �Prentice-Hall, Up-

per Saddle River, NJ, 1995�.
�23� P. Rempp and E. W. Merrill, Polymer Synthesis �Hüthig &

Wepf Verlag, Basel, 1986�.
�24� H. R. Allcock, F. W. Lampe, and J. E. Mark, Contemporary

Polymer Chemistry �Pearson Education, Upper Saddle River,
NJ, 2003�.

�25� K. Takenaka, K. Hanada, and T. Shiomi, Macromolecules 32,
3875 �1999�.

�26� T. J. Crowley and K. Y. Choi, Ind. Eng. Chem. Res. 36, 1419
�1997�.

�27� T. J. Crowley and K. Y. Choi, Chem. Eng. Sci. 53, 2769
�1998�.

�28� E.-H. P. Wolff and A. N. R. Bos, Ind. Eng. Chem. Res. 36,
1163 �1997�.

�29� W. Lee, H. Lee, J. Cha, T. Chang, K. J. Hanley, and T. P.
Lodge, Macromolecules 33, 5111 �2000�.

�30� P. J. Flory, J. Am. Chem. Soc. 62, 1561 �1940�.
�31� J. Ryu, K. Im, W. Yu, J. Park, T. Chang, K. Lee, and N. Choi,

Macromolecules 37, 8805 �2004�.
�32� G. Oshanin and M. Moreau, J. Chem. Phys. 102, 2977 �1995�.

POLYMER GROWTH THROUGH RADICAL POLYMERIZATION… PHYSICAL REVIEW E 80, 031114 �2009�

031114-9


