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The suprachiasmatic nucleus (SCN) pacemaker shows a free-running period ranging from 20 to 28 h for
different species, which was usually explained from the angle of coupling strength. Based on the assumption
of nonidentical coupling strengths in SCN, we find an alternative mechanism that the diversity of free-running
period can be also caused by the distribution of coupling strengths. The free-running period is proportional to
the average coupling strength and inverse proportional to the dispersion of couplings. Moreover, we present an
analytic phase model to confirm our finding, which shows a solid foundation of our finding and opens a
window to study the collective behaviors of SCN oscillators.
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It is well known that almost all the plants and animals
have rhythms which can be detected by five senses: sight,
sound, touch, smell, and taste [1]. Most of the rhythms are
closely related to the 24 h circadian period of sunlight such
as the insect emergence, roosters crowing, and sleep-waking
behavior. A desire to understand the rhythms has motivated
extensive experimental and theoretical works [1-6]. It is
found that in the absence of daily light-dark cycle, the free-
running periods are different for different species. For ex-
ample, the free-running period is about 21.5 h in Neurospora,
about 28 h in Phaseolus, close to 24.4 h in Drosophila, close
to 25.6 h in Zebrafish, between 23.5 and 24.5 h for Bat,
between 23.5 and 24 h for Squirrel, and 24.2 h for people
living in carefully controlled lighting conditions [3—6]. Thus,
the free-running period differs from 24 h for most species
and scatters roughly in the range between 20 and 28 h. Based
on the population genetics models, Daido suggested that the
reason for different free-running periods is because it is ben-
eficial for species [7]. However, it remains unclear how the
difference of free-running periods show up.

The mammal’s rhythm is controlled by the suprachias-
matic nucleus (SCN) of the hypothalamus, i.e., a central cir-
cadian clock in mammals, and has been well studied [8—15].
The SCN is composed of about 20 000 neurons and can be
anatomically and functionally divided into two regions: ven-
trolateral SCN or “core” and dorsomedial SCN or “shell”
with the shell largely surrounding the core. The SCN re-
ceives light signals from the retina and then controls circa-
dian rhythms in peripheral tissues and behavioral activity.
The shell oscillators are entrained by the core ones to form a
single integrated oscillator. The shell has a shorter period
than the core.

There are a lot of neurons in both the core and shell re-
gions. The neurons in the two regions would synchronize
each other to form a single integrated oscillator. When the
daily light-dark cycle is added, all the neurons are entrained
to the 24 h day. A key important question here is how such a
regulatory network of heterogeneous circadian oscillators
achieves a synchronous and coherent output rhythm
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[2,7,16-18]. For answering this question, several models
have been presented [2,16,19-21], which are based on the
Goodwin oscillator with three variables [22], i.e., a negative
transcription-translation feedback loop. For example, Gonze
et al. considered a global coupling strength depending on the
concentration of neurotransmitter into the Goodwin oscilla-
tor and made them be influenced under a mean field [2,16].
Locke et al. modified the system to coupled damped oscilla-
tors [ 17]. Other closely related models were presented for the
circadian clock in Neurospora [19-21].

It has been pointed out that the individual neurons in SCN
are not identical with the same period but exhibit circadian
firing rhythms with different periods ranging from 20 to 28 h
and distributed normally [9,10,23]. To consider this fact, a
factor 7,/ 7; was multiplied into the modified Goodwin model
to represent the distinct periods of individual oscillators
[2,4,16,17]. Tt was also suggested that for a specific species,
the strength of neurotransmitter feedback appears to vary
from neuron to neuron in SCN [17]. However, the influence
from nonidentical coupling strengths in individual neurons
has not been discussed so far. In this Rapid Communication,
we will consider the case with distributed coupling strengths
to replace the previous constant coupling. We find that the
distribution can significantly influence the output period of
coupled neurons, which shows an alternative mechanism for
the scattering periods of various species and sheds light on
the mechanism of the free-running period of SCN clock. Fur-
thermore, we present an analytic phase model to show a solid
foundation of our finding and open a window to study the
collective behaviors of SCN oscillators.

The coupled Goodwin oscillators can be represented as
follows [2,16,17]:
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where F =1lefilVi,x,-, v, z; constitute a negative feedback
loop in the clock cell —i, x represents a clock gene messenger
Ribonucleic Acid (mRNA) , y represents a clock protein, and
z represents a transcriptional inhibitor. V is a neuropeptide
induced by the activation of the clock gene x and can syn-
chronize clock cells. The intercellular coupling is imple-
mented through the global neurotransmitter F, which acts as
a mean field. The coupling strength g describes the sensitiv-
ity of the individual circadian oscillator to the neurotransmit-
ter and L denotes the light. Following Ref. [17] we take the
parameters as a1=6.8355 nM/h,

k,=2.7266 nM,  n=5.6645, ,=8.4297 nM/h, k,
=0.2910 nM,  k3=0.1177/h,  a,=1.0841 nM/h, Kk,
=8.1343 nM,  ks=0.3352/h,  as=4.6645 nM/h, kg
=9.9849 nM, k;=0.2282/h, @g=3.5216 nM/h, kg
=74519 nM, @,=6.7924 nM/h, and k.=4.8283 nM.

Different periods of individual oscillators are implemented

by rescaling rate constants, i.e., by dividing
@y, a5, ks, a4,ks, a6,k7, and ag by a scaling factor 7,
i=1,...,N. The values of 7; are taking randomly from a

normal distribution [2,4,16,17].

We are here interested in its free-running period. Thus, we
consider the case of absence of light, L=0. Considering that
the strength of neurotransmitter feedback appears to vary
from neuron to neuron [17], we use g; to reflect this feature
and let it satisfy a normal distribution with average (g) and
variance o. Therefore, the first equation of Eq. (1) can be
rewritten as
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and the other equations in Eq. (1) remain unchanged. Our
numerical simulation shows that the coupled system (2) will
be in an oscillatory state only when the average coupling
strength is larger than a minimum (g),, and in a fixed point
otherwise. For investigating the influence of the distribution
of g; we first focus on the case of 7;=1 for all the oscillators,
i.e., identical oscillators with different g;. We find that the
results obtained from the constant 7;=1 also work for the
case with distributed 7;.
The overall degree of synchrony over a specific time pe-
riod can be measured by an order parameter
2 2
R T 5 .

S (-

where (.) denotes average over time [16]. This parameter
measures the distribution of phases of the oscillators. R will
be O for unsynchronized oscillators and 1 for perfect syn-
chronization. In the synchronized state, all the oscillatory V;
has the same period 7. For a given distribution of g;, part of
g; will be greater than the average (g) and the other will be
less than (g). The final status of the coupled oscillators is
determined by the competition between the oscillators with
g;>(g) and that with g;<(g). The system will show an o0s-
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FIG. 1. (Color online) (a) The order parameter R versus the
average coupling strength (g) for different dispersions o=0, 0.05,
0.1, 0.15, 0.2, 0.25, and 0.3, respectively. (b) The minimum cou-
pling strength to sustain oscillation, {g),,, versus o. The number of
coupled oscillators is N=1001.

cillatory behavior when (g)>(g),, and gradually decay to a
fixed point otherwise. We are interested in the region of
oscillation. Figure 1(a) shows how R changes with (g) for
a=0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, respectively, where
the left ending point on each curve denotes the (g),,. From
Fig. 1(a) it is easy to see that all the R are almost larger than
0.8, indicating that once the coupled oscillators are in the
oscillatory state, they are approximately synchronized. On
the other hand, Fig. 1(a) tells us that (g),, is different for
different o. Figure 1(b) shows how (g),, changes with o.
From Fig. 1(b) we see that {(g),, is linearly proportional to o,
indicating that large o needs larger (g),, to make the system
be oscillatory.

For the synchronized oscillators, they will have an output
period 7, i.e., the free-running period. We find that 7" gener-
ally increases with (g), which is consistent with the results in
Refs. [2,16]. Figure 2(a) shows how T changes with (g) for
different o. Obviously, T is not sensitive to o for larger (g)
but very sensitive to o for smaller (g). This is an interesting
result as it shows that the output period depends also on the
dispersion o. Figure 2(b) shows how T changes with the
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FIG. 2. (Color online) (a) Output period versus the average cou-
pling strength (g) for different dispersions =0, 0.05, 0.1, 0.15, 0.2,
0.25, and 0.3, respectively. (b) Output period versus the dispersion
o for (g)=1. The number of coupled oscillators is N=1001.
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FIG. 3. (Color online) Dependence of output period on the av-
erage coupling strength (g) in (a) and the dispersion ¢ in (b) where
the parameters are N=1001, wy=0.35, b=0.1, the triangles and
circles represent the theoretical and numerical results, respectively,
and 0=0.2 in (a) and {(g)=1 in (b).

dispersion o for fixed (g)=1. It is easy to see that T de-
creases monotonously with o, indicating that the distribution
of coupling strengths will influence the output period. We
have observed the similar result for the case of uniform ran-
dom distribution of g;. Thus, this result is robust to the dis-
tributions and may be significant in understanding the diver-
sity of free-running periods. That is, the diversity of free-
running periods may also come from the different
distributions of coupling strengths in different species. We
expect this prediction will be confirmed by experiments in
the near future.

To explain our finding theoretically, we present an ana-
lytic phase model as follows. From Fig. 2(a) we see that the
period T is approximately proportional to (g), implying that
larger g; corresponds to larger T or equivalently small fre-
quency w; for individual oscillators. This observation sug-
gests us that the intrinsic frequency of the ith oscillator can
be assumed as w;=wy—bg; with constants w, and b. To con-
sider the dispersion of coupling, we assume that the number
of oscillators with the same coupling g; satisfy a normal
distribution with average (g) and standard variation o. Thus,
we obtain a phase model

6, = wy— bg, + —2 sin(6; - 6), (4)
1 1

with 1=i,j=N.

When the coupled oscillators are synchronized, they will
have a common frequency (). Letting =0 be the time for the
oscillators to be synchronized, the solution of Eq. (4) can be
expressed as

6i=Qt+ 0i0’ (5)

where 6, is the phase of the oscillator-i right before synchro-
nization. Substituting Eq (5) into Eq. (4) we find that the
couphng term g,/NEl ; sin(6,—6;) becomes a constant
g/ N=Y, sin(0 o~ 0y), i.e., 1ndependent of time. Thus, we
may assume El | sin(6,— 6;) depend only on the coupling g;

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 80, 030904(R) (2009)

and can be denoted as f(g;). Substituting it into Eq. (4) and
considering Eq. (5) we have

—b&+%ﬂ&) ©6)

It is easy to see that f(g,)/N=b+(Q-wy)/g;=b+c/g;.
Considering the condition EN lElem(& 0,)=0 we
obtain =N f(g,)/N= ENl(b+C/g,) 0,  which gives
c=—Nb/=Y 1/g;=—b/(1/g). Thus, we have

szo—b/<l>. (7)
8

As the number of g; satisfies the normal distribution, in the
limit of N— o we have
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where x,=(g)?/20>. Obviously, ( ) decreases with the in-
crease in {(g) but increases with the increase in o. Hence, the
output period

2 27T

wo—b/\ —
4

will increase with (g) but decreases with the increase in o.
Our numerical simulations from Eq. (4) have confirmed this
prediction [Eq. (9)]. Figure 3 shows the results where the
parameters are N=1001, w,=0.35, b=0.1, the “triangles”
and “circles” represent the theoretical and numerical results,
respectively, and 0=0.2 in (a) and {(g)=1 in (b). From Fig. 3
it is easy to see that the numerical simulations perfectly con-
firm the theoretical results.

Except the Gaussian distribution, we find that similar re-
sults can be also obtained by other distributions of g; such as
the uniform random distribution. For this distribution, we
may rearrange g; by ascending order and let gy—g;=Ne
=J,i.e., g;=g,+Iie, with & being the interval of two consecu-
tive g; and 6 being the total width of the coupling strength. In
the limit of N— oo, the factor (1/g) in Eq. (7) can be calcu-
lated as follows:

1+N€

1 | 1 g
- )= ——dx=—In—7
g o &1 +Nex Ne g1

= lln<1 + (10)
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FIG. 4. (Color online) Dependence of output period on the av-
erage coupling strength (g) in (a) and the width of distribution & in
(b) where the parameters are N=1001, wy=0.35, b=0.1 the aster-
isks and circles”\ represent the theoretical and numerical results,
respectively, and 8=1 in (a) and (g)=1 in (b).

2ar

T= (11)

6
N b5/ln<1 + @ - 5/2>
From Eq. (11) it is easy to see that 7 will increase with (g)
for fixed &. For finding the relationship between 7" and J, we
may let In(1+ 6/ ({g)—56/2))= 6/({g)—5/2) and then substi-
tute it into Eq. (11). We find that T decreases with the in-
crease in 6. Figure 4 shows the numerical simulations of the
uniform random distribution where the parameters the “as-
terisks” and circles represent the results from Egs. (4) and
(11), respectively, and 8=1 in (a) and {g)=1 in (b). Obvi-
ously, the numerical simulations in both Figs. 4(a) and 4(b)

are consistent with the theoretical prediction [Eq. (11)].
Comparing Fig. 4 with Fig. 3 we see that they are quali-
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tatively similar, indicating that the phenomenon of dispersion
reducing output period are independent of the specific distri-
butions. We have also made numerical simulations on the
case of nonidentical 7; such as a Poisson distribution of 7;
and found a similar phenomenon. Therefore, the dispersion
reducing output period is probably a characteristic feature of
the SCN oscillators and might have significant contribution
to the diversity of free-running periods in different species.

The diversity of free-running periods is a fundamental
problem in biological rhythms. Many efforts have been paid
to this topic, which are mainly focused on the aspect of ex-
periments. Based on a mass of experimental data, a basic
task is to form some theoretical models to reveal the under-
lying mechanism. Our phase model of SCN oscillators is
nothing but one approach to implement the task. A charac-
teristic feature of our model is that the intrinsic frequency is
related to the coupling strength.

In conclusions, we have further modified the Goodwin
model to include the feature of nonidentical coupling
strengths of individual oscillators in SCN, which is based on
the observation that the strength of neurotransmitter feed-
back appears to vary from neuron to neuron. For emphasiz-
ing on the contribution of distribution, we have ignored the
influence from the aspects of different kinetic parameters and
molecular mechanisms from one organism to another and
also the different molecules of intercellular coupling. We find
that for the cases of both identical and nonidentical oscilla-
tors, the free-running period depends on the dispersion of
coupling strengths and decrease with the increase in disper-
sion. An analytic phase model is presented to reveal the
mechanism of our finding, which provides insight to the di-
versity of free-running periods of SCN clock.
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