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Instabilities and pattern formation is the rule in nonequilibrium systems. Selection of a persistent length
scale or coarsening �increase in the length scale with time� are the two major alternatives. When and under
which conditions one dynamics prevails over the other is a long-standing problem, particularly beyond one
dimension. It is shown that the challenge can be defied in two dimensions, using the concept of phase diffusion
equation. We find that coarsening is related to the � dependence of a suitable phase diffusion coefficient,
D11���, depending on lattice symmetry and conservation laws. These results are exemplified analytically on
prototypical nonlinear equations.
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I. INTRODUCTION

Pattern formation �or morphogenesis� is abundant in na-
ture, both in inanimate and living systems. Examples �1� are
encountered in many branches of science: physics �e.g., sand
ripples�, chemistry �chemical spots, reminiscent of those on
animal skins, e.g., jaguar�, biology �asters of macromol-
ecules during cell division�, and so on. Patterns arise often
due to the loss of stability of an initially structureless state.
The diversity and richness of morphogenesis is concomitant
to the nonlinear and nonequilibrium nature of these systems.

A classification of dynamics and patterns that prevail for a
given nonlinear system is a challenging task. For example,
given a system described by nonlinear equations, it is not
obvious to state a priori whether one would observe the
selection of a pattern with a specific length scale during time
or rather coarsening �increase in length scale with time�
would prevail.

Coarsening is also the primary scenario in phase-
separation processes �2� and it attracts a continuous interest
�3–10� motivated by the demand for a deeper understanding.
This goal may be attained following two main directions:
either investigating rigorous solutions to specific models
�4,7� or developing general approaches which are valid for
wide classes of models and/or equations. Regarding the sec-
ond strategy, the only example we are aware of is due to
Bray et al. �2,11�, who analyzed some models which are
derivable from a potential: comparing the global rate of en-
ergy change with the energy dissipation, the temporal growth
law for the typical length scale, ��t�, could be derived. The
present Rapid Communication can be seen as complemen-
tary, in two respects. First, we do not impose to the equations
to be derivable from a potential. Second, we do not assume
that coarsening does occur, we are able to determine if and
when it occurs instead. Note that our study does not address
the other kind of coarsening which consists in an increase in

a domain with a certain orientation �or pattern� and/or length
scale at the expense of another domain �12�.

A few years ago we established a coarsening criterion in
one dimension �8�, for certain classes of nonlinear equations,
generalizations of the celebrated models A and B of the dy-
namics �13�. The criterion demands to analyze the stationary
periodic states, which are found to solve Newton’s equations
where the spatial variable plays the role of time and the
fictitious particle oscillates in a potential well of arbitrary
shape �different equations give rise to different potentials�.
The oscillation period of the particle corresponds, in the me-
chanical analogy, to the wavelength � of the periodic steady
state, and it is a function of the amplitude A, �=��A�. The
criterion simply states that coarsening occurs if and only if
d� /dA�0.

Our analysis anticipated the existence of an “interrupted
coarsening” scenario, which has recently been invoked �14�
in the context of wind driven sand dunes. It is clear that these
physical phenomena �as well as, e.g., mound coarsening at
the nanoscale in crystal growth �15�� demand for the con-
struction of a full two-dimensional �2D� approach, which is
the basic goal of the present Rapid Communication.

However, in our former one-dimensional �1D� criterion,
the spatial variable plays the role of time �see above�. There-
fore, it is obvious that this concept is limited to one spatial
dimensional systems and extensions of the criterion to higher
dimensions seemed to present a significant challenge. It is
shown here that the challenge to find general criteria for
understanding if a two-dimensional model shows coarsening
or not can be defied, following the concept of phase diffusion
equation �16�. Before discussing the details, we give a simple
overview of the method and results.

II. METHOD

A perfectly periodic steady state is defined through a pair
of wave vectors q1 ,q2, and it is a function of the phases
�1,2=q1,2 ·x. Perturbations make q1,2 acquire slow dependen-
cies on time and space, qi=qi�X ,T�. The dynamical response
to perturbations is described by phase equations, which have,
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at the lowest order, the form of linear diffusion equations:

�T�1�X,T� = D11
11�2�1

�X1
2 + D11

12�2�2

�X1
2 + D22

11�2�1

�X2
2 + ¯ ,

�T�2�X,T� = D11
21�2�1

�X1
2 + D11

22�2�2

�X1
2 + D22

21�2�1

�X2
2 + ¯ . �1�

Setting �1,2=�1,2
0 exp��T+ iK ·X�, standard Fourier analysis

allows to determine the stable or unstable character of phase
dynamics. Coarsening is related to instability, which is sig-
naled by a positive �. The requirement ��0 for some K
implies a condition on the diffusion coefficients Dkl

ij , which
are functions of steady-state properties only. The central re-
sult is that the condition ��0 finally takes the form
dA /d��0, where A is some function of the stationary pe-
riodic solution having wavelength �.

In one dimension, A is shown to correspond to the am-
plitude of the stationary solution �8�. In two dimensions, A
takes different expressions, depending on the underlying
symmetry of the periodic stationary solutions, and it does not
seem to have a simple physical interpretation. Nevertheless,
the condition dA /d��0 thus have a simple reading: coars-
ening occurs if and only if A is an increasing function of �.
That is to say the coarsening criterion can still be established
only upon inspecting steady-state solutions. Even more im-
portantly, the coarsening law, ��t�, which describes the time
dependence of the typical size of the pattern, is obtained
through a relation of the form D���t��2 �or equivalently
��1 / t�, where D is a typical diffusion constant. In the limit
of large time, a power-law behavior, �� tn, is expected.

We shall exemplify the method on classical model equa-
tions. For instance, we show that n= 1

2 for the nonconserved
real Ginzburg-Landau �GL� equation �model A� and n= 1

3 for
the conserved Cahn-Hilliard �CH� equation �model B�. As
will be recognized, the interesting message is that the meth-
odology does not evoke whether the model equation are
variational or not. Thus the study should work with any other
equation, be it of potential �i.e., variational� nature or not.

III. GENERALIZED GINZBURG-LANDAU-TYPE
MODELS

We now apply and discuss our method for a nonconserved
class of equations,

�tu = A�u� + �2u , �2�

which reduces, for A�u�=u−u3, to the famous real GL �or
Allen-Cahn� equation. This equation is known to exhibit per-
petual coarsening, with n= 1

2 �2�. Here we only require
A�u��u for small u, otherwise A�u� can be any function of
u.

A steady periodic state u0�x� depends on the fast spatial
variables x= �x1 ,x2�, or equivalently �1,2=q1,2 ·x which are
the fast �constant� phases. Phase modes are studied by per-
turbing the perfectly periodic steady state. The perturbations
of interest depend on slow spatial and temporal variables.
The slow character of relevant perturbations reflects the
property of the Goldstone mode �if u0�x� is a periodic solu-

tion, so is u0�x+R0��, which has infinite relaxation time and
is a quasidangerous mode, making slowly varying perturba-
tions to be most persistent. Let us encode the slow modula-
tion by a dimensionless parameter ��1. We define slow spa-
tial and time scales as

X1 = �x1, X2 = �x2, T = �2t , �3�

where the factor �2 is an ansatz dictated by the fact that phase
rearrangement occurs via diffusion. We introduce the slow
phases �1,2=��1,2 so that qi=�x�i=�X�i, where X
= �X1 ,X2�=�x.

In general terms, at order � we can write �8�

�t = �� ��1

�T
��1

+
��2

�T
��2

	 , �4�

�x = q1��1
+ q2��2

+ ��X. �5�

The above expressions for the derivative, along with the
standard expansion u=u0+�u1, are substituted into Eq. �2�.
The zeroth-order problem yields the differential equation
obeyed by the two-dimensional profile of steady states,

N�u0� 
 A�u0� + �0
2u0 = 0, �6�

where the subscript in the �2 operator is taken to mean that it
is evaluated for �=0 in Eq. �5�.

The next order in 	 has the form �16,17�

L�u1� = g�u0,�T�i,�XiXj
�k� , �7�

where L=L0= �A��u0�+�0
2� is the linear operator obtained as

Frechét derivative of N and

g =
��1

�T

�u0

��1
+

��2

�T

�u0

��2
− �2�q1��1

+ q2��2
� · �Xu0

+ ��X · q1���1
u0 + ��X · q2���2

u0� . �8�

The expression for g can be rewritten as

g = ��T�1�v1 + ��T�2�v2 − 2qki��l�ij
�vk

�qlj
− ��l�iivl, �9�

where vi=��i
u0, qki is the ith component of qk, and ��l�ij

=�2�l /�Xi�Xj.
In order to avoid secular terms in Eq. �7�, if the homoge-

neous equation L0
†�w�=0 has a nonvanishing solution, w

must be orthogonal to g �18�, �w ,g�=0 �the precise definition
of the inner product is given below�.

There exist two nonvanishing solutions w1 , w2 in two
dimensions, resulting thus in two solvability conditions.
Since L0

†=L0 for Eq. �2�, we easily get wi=vi. This leads to
the sought-after phase diffusion equations,

�v2��T�1 + �v1v2��T�2 = 

ijl

��l�ijAij
l , �10�

�v1v2��T�1 + �v2��T�2 = 

ijl

��l�ijBij
l , �11�

where �v2�= �v1
2�= �v2

2� and
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Aij
l = 2


k

qki�v1
�vk

�qlj
� + 
ij�v1vl� , �12�

Bij
l = 2


k

qki�v2
�vk

�qlj
� + 
ij�v2vl� . �13�

There are five Bravais lattices in 2D �oblique, rectangular,
centered rectangular, hexagonal, and square�. We have per-
formed explicitly the calculation for squares, hexagons, and
rectangles. Here, we shall focus on the first two symmetries.
For square symmetry, q1=q�1,0�, q2=q�0,1�, and �v1v2�
=0. Finally, we get

��1

�T
= D11

�2�1

�X1
2 +

�2�1

�X2
2 + D12

�2�2

�X1X2
,

��2

�T
=

�2�2

�X1
2 + D11

�2�2

�X2
2 + D12

�2�1

�X1X2
, �14�

with D11=D11
sq =�q�q�v2�� / �v2� and D12=D12

sq =D11
sq −1. A lin-

ear stability analysis is performed by setting �1,2
=�1,2

0 exp��T+ iK ·X� in Eqs. �14�, which yields

�2 + ��1 + D11�K2 + D11K
4 = 0, �15�

whose roots are �1=−K2 and �2=−D11K
2.

While �1�0, the sign of �NC=�2 depends on the sign of
�qA=�q�q�v2��. Therefore, �2 is positive, implying phase in-
stability if and only if A=q�v2� is an increasing function of
the wavelength �.

For hexagonal symmetry, q1,2=q� 1
2 , �

�3
2 � and �1,2 must

be linearly combined in order to get Eqs. �14�, with a differ-
ent

D11 = D11
hex =

�q�q�v2�2�
�v2�2 , �16�

albeit the relation D12
hex=D11

hex−1 still holds.

IV. CAHN-HILLIARD-TYPE MODELS

Let us now consider a conserved equation, a generalized
form of the well-known CH equation,

�tu = − �2�A�u� + �2u� . �17�

We only provide the result. We formally obtain Eq. �7�, but
now L=−�0

2L0 and g= ��T�1�v1+ ��T�2�v2+�0
2�1

2u0, where
�1

2u0 is a shorthand notation for the expression in square
parentheses in Eq. �8�. L is not self-adjoint because L†

=−L0�0
2 and its kernel wi is such that L†wi=0=−L0�0

2wi so
that �0

2wi=vi=�u0 /��i.
The orthogonality conditions �wig�=0 are a bit more chal-

lenging to analyze and will be discussed elsewhere. Suffice it
here to say that the relevant eigenvalue reads as

�C = IC�NC, �18�

where �C and �NC are the eigenvalues associated with the
unstable mode for the conserved and nonconserved versions
of a given model, and IC= �v2� / �wv� is the factor taking into
account the conservation law.

V. COARSENING EXPONENT

The coarsening law is determined on the basis of the re-
lation ���q���1 / t, where �=�NC=−D11q

2 or �=�C
= IC�NC. A major role is played by the quantity

�v2� =
1

�2
�2�
0

2


d�1�
0

2


d�2� �u0

��1
�2

=
1

�2
�2�
0

�

dx1�
0

�

dx2� �u0

�x1
�2

. �19�

Consider first the Ginzburg-Landau �nonconserved� equa-
tion. In this case, u0 is a constant except along domain walls
so �v2� scales linearly with �. More precisely, �v2�=a /q+b.
Reporting this expression into D11 yields n= 1

3 for square
symmetry and n= 1

2 for hexagonal symmetry. Preliminary
analysis for rectangular symmetry leads to n= 1

2 as well. In
general had �v2� scaled as 1 /q� ���1� we would have ob-
tained n= 1

2 for all symmetries. Therefore, GL scaling ��v2�
�1 /q� obtained for the square symmetry seems to be singu-
lar: all other cases provide n= 1

2 .
The computation of the coarsening exponent for con-

served models requires estimation of IC= �v2� / �wv�. Since
�2w=v, we infer �after integration by parts� IC��v2� / �u0

2�
�q. Therefore, for the standard Cahn-Hilliard model, we get
n= 1

4 for square symmetry and n= 1
3 for other symmetries.

Table I summarizes the results. Note that standard GL and
CH refer to A�u�=u−u3 so that �v2��q−1. In contrast, modi-
fied GL equation means �v2��q−�, with ��1.

VI. DISCUSSION

We have found that the 2D coarsening exponent for the
standard GL and CH equations is the expected one �n= 1

2 and
n= 1

3 , respectively� for all symmetries but the square one,
which exhibits a slower coarsening. The peculiar behavior of
square symmetry is at present not understood. It must be
noted, however, that if �v2��q−� ���1, as occurs with the
modified GL� then n= 1

2 for any symmetry. It seems thus that
the peculiar behavior of square symmetry is quite specific to
the considered equation rather than general. Nonetheless, a
deeper understanding of this fact merits higher attention in
the future.

It is worth stressing once again that our approach allows
us to reduce the study of dynamical properties �coarsening�
to the behavior of quantities �D11,D12� depending on steady-
state properties only. Our analysis has been, for ease of pre-
sentation, exemplified on the two classical equations,

TABLE I. Summary of coarsening exponents for different mod-
els and base symmetries.

Square Other symmetries

Standard GL 1/3 1/2

Modified GL 1/2 1/2

Standard CH 1/4 1/3
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namely, the GL and CH ones, but the method can be applied
to other equations. In particular, our approach �as it is evi-
dent in Ref. �17�� does not require that the equation is deriv-
able from a potential.

While for the GL and CH equations we could extract ana-
lytically the coarsening exponent, it may prove necessary
that for other equations there would be a need for numerical
solutions of the steady-state problem in order to evaluate the
diffusion constants. This is a quite simple task numerically
even at higher dimensions �where full time-dependent stud-
ies are difficult or even unfeasible if the asymptotic regime is
to be ascertained�.

The amplitude branch is stable, in contrast to the phase
one when coarsening is to take place. There are five different
branches corresponding to different symmetries �five Bravais
lattices�. The coarsening of the square branch is slower �only
for the classical GL and CH equations� than that of the other
symmetries. It is natural to expect the fastest growing struc-
ture to prevail. Symmetries other than the square one offer,
for these classical equations, a faster channel toward coars-
ening.

A particularly important question concerns relevance of
slower coarsening peculiar to square symmetry. A possibility
might be offered �19� by the Rayleigh-Bénard convection,
which may develop either rolls or hexagons, with different
local symmetries in different spatial regions. These regions
coarsen in time and the coarsening rate might be different for
domains of rolls and hexagons.

We have investigated steady-state periodic solutions,
while during coarsening, even in 1D, no long-range order is
observed. The questions thus arises about importance of pe-

riodic solutions. Locally in space the amplitude is adiabati-
cally slaved to the phase so that �for a given wave vector� it
reaches the quasisteady solution. If steady-state solutions
were stable �no coarsening�, then the system would generi-
cally choose the periodic solution �possibly with defects�, as
is known for many pattern forming systems. Thus, having
shown here that the periodic solutions are unstable with re-
spect to phase fluctuations, we expect that the pattern should
coarsen. One cannot exclude, however, the existence of non-
periodic �such as disordered� stable solutions for nonlinear
extended systems with an average wavelength which does
not grow in time. We are not aware of any such scenario,
however.

Finally, it is noteworthy that the phase diffusion equations
share the same structures as those for the displacement field
of 2D crystals �20� �see also the supplementary materials
�21��. Conservation law imposes �t�i=−�kJik �this is the ana-
log of the dynamical equation in continuum media� where Jik
is the phase current. Jik is proportional to the gradient of the
phase, �l�m, and the proportionality coefficient is a rank four
tensor, Jik=�kilm�l�m �this is the analog of Hooke’s law�. �
should be invariant under the symmetry group of the consid-
ered crystal. The phase equations has thus the same structure
as the elasticity problem of crystals.
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