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The problem of thermally activated escape over a potential barrier is solved by means of path integrals for
one-dimensional reaction dynamics with very general time dependences. For a suitably chosen but still quite
simple static potential landscape, the net escape rate may be substantially reduced by temporally increasing the
temperature above its unperturbed constant level.
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Thermally activated escape over potential barriers is of
relevance in a large variety of physical, chemical, and bio-
logical contexts �1�. In the most common case, a potential
barrier �U much larger than the thermal energy kT yields an
escape rate exponentially small in �U /kT. A first major gen-
eralization, of importance for conceptual reasons as well as
due to numerous applications, are periodically modulated po-
tentials �2–6�, resulting in a renormalization of �U which
depends in a very complicated manner on the details of the
model. In all these cases the rate is thus a very rapidly in-
creasing function of the temperature T. In our present work,
the main focus is on the complementary case of a static po-
tential and a time-dependent temperature �6,7�. In particular,
we will demonstrate that in a suitably chosen but still fairly
simple and generic potential landscape, the escape rate of the
unperturbed system at constant temperature may decrease
upon temporally increasing the temperature. In view of the
above-mentioned results for constant temperature, this is a
quite unexpected and counterintuitive result. Indeed, given
that thermal noise is indispensable to escape, one would ex-
pect that an “extra dose” of noise should always enhance
escape. Somewhat reminiscent previous findings always con-
cern quite different types of systems: dissipative quantum
tunneling in the deep cold �8�, activationless electron transfer
�9�, complex protein dynamics near the solvent glass transi-
tion �10�, models without a barrier against deterministic es-
cape �11�, or nondynamical systems �12�.

As our main tool, we put forward a path integral ap-
proach, which unifies and extends several related approxima-
tions �2–6,13,14�. Briefly, in different parameter regimes of
the temporal modulations, the most relevant escape paths are
of quite different character. Therefore, each regime was so
far treated separately and the crossover omitted. Here, all
potentially relevant paths are represented in terms of a suit-
able one-dimensional �1D� parametrization and are kept till
the final rate formula via an integral over all of them.

We consider the overdamped 1D Langevin equation

��t�ẋ�t� = − U��x�t�,t� + �2��t�kT�t���t� , �1�

with time-dependent friction ��t��0, temperature T�t��0,
and potential U�x , t�. Dot and prime indicate temporal and
spatial derivatives, k is Boltzmann’s constant, and thermal
fluctuations are modeled as usual �1� by �-correlated Gauss-
ian noise ��t�. For T→0, the deterministic dynamics is re-
quired to exhibit exactly one stable orbit �attractor� xs�t� and

one unstable orbit �repeller� xu�t��xs�t�. Our main interest
concerns the noise-induced transitions of x�t� across xu�t� for
small but finite temperatures T�t� quantified by the rate
��t�ª−ṅ�t� at which the probability n�t� that x�t��xu�t�
changes in time.

To avoid unnecessary complications, we focus on initial
conditions x�t0�=xs�t0�, and we require the existence of
Dª limt→	�0

t d

t b�
� with b�t�ªkT�t� /��t�. Next, we divide

Eq. �1� by ��t� and employ transformed times
t̃�t�ª�0

t d
 b�
� /D, positions x̃�t̃�ªx�t�t̃��, and forces

F̃�x , t̃�ª−DU��x , t�t̃�� /kT�t�t̃��, yielding, after dropping
again the tildes,

ẋ�t� = F�x�t�,t� + �2D��t� . �2�

In the general formalism, we will work with Eq. �2�, while
specific examples will refer to Eq. �1�. The corresponding

�back�transformation of the rates ��t�=b�t��̃�t̃�t�� /D readily
follows from the obvious transformation of the probabilities
ñ�t̃�=n�t�t̃��.

We first recall some basics, previously derived and dis-
cussed in detail in Ref. �5�: for any given initial condition
x�t0�=x0, the probability density to find the stochastic pro-
cess �2� at any “final” time tf � t0 at the position xf can be
represented as path integral

��xf,tf�x0,t0� = �
x�t0�=x0

x�tf�=xf

Dx�t� e−S�x�t��/D, �3�

with action S�x�t��ª�t0
tf dt	ẋ�t�−F�x�t� , t�
2 /4. Once this for-

mal integral is evaluated, the rate follows as

��t� = − D � ��xu�t�,t�xs�t0�,t0�/�xu�t� . �4�

For small D, the integral �3� is dominated by the path q�t�
which minimizes the action S�x�t�� and thus satisfies the
Euler-Lagrange equation

ṗ�t� = − p�t�F��q�t�,t�, p�t� ª q̇�t� − F�q�t�,t� , �5�

with boundary conditions q�t0�=x0 and q�tf�=xf. Accounting
for all paths x�t� “close” to q�t� by means of a functional
saddle-point approximation in Eq. �3� yields

��xf,tf�x0,t0� = �4�DQ�tf��−1/2e−S�q�t��/D, �6�

where Q�t� satisfies Q�t0�=0, Q̇�t0�=1, and
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Q̈�t� =
d

dt
	2Q�t�F��q�t�,t�
 − Q�t�p�t�F��q�t�,t� . �7�

Equations �4� and �6� yield an approximation to the rate ��t�,
which in principle becomes asymptotically exact as D→0
for any given t� t0 with a unique absolute minimum of
S�x�t��, which generically is the case. But under many cir-
cumstances of foremost interest �e.g., relatively large t− t0�
even fairly small D are still far from this asymptotic regime,
i.e., the saddle-point approximation �Eq. �6�� does not prop-
erly account for all relevant paths in Eq. �3�: Basically, a
typical escape path x�t� spends almost all its time near xs�t�,
then crosses over into the vicinity of xu�t�, and remains there
for the rest of its time. Any other behavior would yield a
much larger action S�x�t�� and thus is negligible in Eq. �3�.
However, rather different crossover “time windows” may
still lead to almost equal S�x�t��, and a simple saddle-point
approximation is unable to properly account for such quite
remote regions in path space. In some cases, there may exist
further local minima of S�x�t�� and additional saddle-point
approximations around each of them may save the case �3,5�.
The remaining problem is to keep track of all relevant
minima and not to double count their neighborhoods if they
get too close in path space. In other cases, e.g., for t inde-
pendent �, T, and U in Eq. �1�, there is a continuous “soft
direction” in path space, invalidating plain saddle-point
methods altogether �13�.

To overcome these problems we impose on top of the
boundary conditions x�t0�=xs�t0� and x�tf�=xu�tf� the extra
condition that x�t� arrives at some intermediate point xi at a
given time ti, and in the end integrate over all ti� �t0 , tf� �15�.
The pertinent formal relation, satisfied by the conditional
probability density �Eq. �3��, is

��xf,tf�x0,t0� = �
t0

tf

dti ��xf,tf�xi,ti�
xi
�ti�x0,t0� , �8�

where 
x�t �x0 , t0� denotes the first passage time density
across x, given x�t0�=x0. For simplicity only, we assume
from now on that xi is located well in between xs�t� and xu�t�
and is t independent. Then, all non-negligible paths in Eq. �3�
starting from x�ti�=xi must immediately cross over to xu�t�
and thus admit for ��xf , tf �xi , ti� in Eq. �8� a saddle-point
approximation �Eq. �6�� free of all the above-mentioned
problems. Focusing on x0=xs�t0� according to Eq. �4�, an
analogous approximation �6� holds for ��xi , ti �x0 , t0� since all
relevant paths in Eq. �3� now may leave the vicinity of xs�t�
only in the very end. By definition, ��xi , ti �x0 , t0�dxi is the
probability that x�t� from Eq. �2� is encountered within
�xi ,xi+dxi� at time ti, given x�t0�=x0=xs�t0�. Most such x�t�
closely resemble the most probable path q�t� connecting
q�t0�=x0 with q�ti�=xi. On the other hand 
xi

�ti �x0 , t0�dti is
the probability that x�t� crosses xi for the first time during
t� �ti , ti+dti�. It seems reasonable to guess that most such
x�t� once again closely resemble q�t�. Hence,
��xi , ti �x0 , t0�dxi will essentially account for the same
“events” as 
xi

�ti �x0 , t0�dti provided we relate the considered
intervals dxi and dti via dxi= q̇�ti�dti. Up to finite-D correc-
tions we thus obtain


xi
�ti�x0,t0� = q̇�ti���xi,ti�x0,t0� , �9�

where q�t� satisfies q�t0�=x0=xs�t0�, q�ti�=xi, and Eq. �5�.
More rigorously, our key relation �9� follows by adapting
Ref. �16� to evaluate the derivative by xf of Eq. �8� in the
limit xf →xi. Details will be given elsewhere.

The evaluation of the escape rate �Eq. �4�� by means of
Eqs. �6�, �8�, and �9� is the first main result of our present
work. Similarly as in �3–6�, closed analytical solutions of the
concomitant differential Eqs. �5� and �7� are only possible for
special F�x , t�. To this end, we focus on piecewise parabolic
potentials U�x , t� in Eq. �1�, corresponding to piecewise lin-
ear force fields in Eq. �2� of the form

F�x � 0,t� = �s�t��x − ys�t�� + f�t� ,

F�x � 0,t� = �u�t��x − yu�t�� + f�t� , �10�

with �s�t�ys�t�=�u�t�yu�t� �continuity at x=0�. Further, the
existence of stable and unstable orbits with xs�t��xi and
xu�t��xi is required, in particular ys�t� ,�s�t��0,
yu�t� ,�u�t��0. For the natural choice xi=0, a straightfor-
ward but somewhat tedious calculation �5,6� then yields for
the rate �Eq. �4�� the result

��t� = �
t0

t

d

Z�t,
,t0�

D
e−��t,
,t0�/D, �11�

��t,
,t0� ª
xu

2�
�
4Iu�
,t�

+
xs

2�
�
4Is�
,t0�

, �12�

Z�t,
,t0� ª
�Y�
,t0� − xs�
��xu�
�
8��Iu�
,t�Is�
,t0��3/2 e�u�
,t�, �13�

Y�
,t0� ª Is�
,t0��f�
� − ys�
��s�
�� , �14�

�s,u�t, t̃� ª 2�
t̃

t

d
 �s,u�
� , �15�

Is,u�t, t̃� ª ��
t̃

t

d
 e�s,u�t,
�� . �16�

We have verified that previous findings for time-periodic
�3,5,6� and time-independent systems �Eq. �1�� �13� are re-
covered as special cases. Those from �4� are formally similar
but contain quantities �called E and s���� which are not ex-
plicitly available in general.

As a first example we consider the dynamics �Eq. �1��
with constant friction ��t��1, a temperature pulse T�t� ac-
cording to Fig. 1�a�, and a static piecewise parabolic poten-
tial U�x�, see Fig. 1�b�. Already for the moderately small
temperatures from Fig. 1�c�, the accuracy of the analytical
approximation �Eq. �11�� is quite good. We found that it
quickly improves even further upon decreasing temperatures.
After initial transients �omitted in Fig. 1�c��, Kramers rate is
recovered until the temperature pulse sets in at t=0. Then,
the rate rapidly increases and approaches the Kramers rate
corresponding to T0+�T, provided the pulse lasts suffi-
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ciently long. Finally, an analogous relaxation back to the
original Kramers rate follows. Discontinuities of T�t� entail
jumps of ��t�. While the initial transients are well under-
stood �14�, to the best of our knowledge no previously exist-
ing analytical approximation would be able to faithfully de-
scribe the “perturbed and interfering transients” for largely
arbitrary pulses and pulse sequences.

Next, we consider Eq. �1� with a periodically pulsating
temperature T�t� and a piecewise parabolic potential U�x�
exhibiting two barriers and two wells, see Fig. 2. Transitions
from x1

s to x2
s are described by the rate �1→2�t�, those from x2

s

to x1
s by �2→1�t�, and those from x2

s toward x=	 by �2→	�t�.
After suitable time and space transformations �cf. Eq. �2��,
each rate can be approximated according to Eq. �11�. Since
they are small �transitions are rare�, it is sufficient—as far as
the populations n1�t� and n2�t� of the two wells are
concerned—to consider their averages over one period T,

denoted by �̄1→2, �̄2→1, and �̄2→	. Then, the populations
n��t�ª �n1�t� ,n2�t�� are governed by the master equation �1�
n�̇�t�=−Mn��t� with matrix elements M11=−M21= �̄1→2,

M12=−�̄2→1, and M22= �̄2→1+ �̄2→	. The smallest eigen-

value of M is denoted by �̄ and represents the ultimate rate
of escape toward 	 after initial relaxation processes, gov-
erned by the other eigenvalue of M, have died out. Since the
two eigenvalues differ by a huge, Boltzmann-Arrhenius-type
factor, the total probability n1�t�+n2�t� that x�t��x2

u is ex-
pected and numerically observed to actually exhibit a prac-

tically perfect exponential decay e−�̄t for all t�0. The ana-

lytical results for �̄ are depicted in Fig. 2�c�. Their agreement
with our numerical findings for the decay rate �not shown� is
comparable to Fig. 1�c�.

The most striking feature of Fig. 2�c� is a substantial re-

duction in the net escape rate �̄ upon superimposing tem-
perature pulses of suitable duration 
 and amplitude �T to
the “unperturbed” temperature T0. Roughly speaking, ��t� in
Fig. 1�b� approaches the instantaneous Kramers rate the
quicker, the larger the curvatures in Fig. 1�b� are �14�. Since

the curvatures relevant for �̄2→1 are larger than those for

�̄1→2 and �̄2→	 �see Fig. 2�b��, sufficiently small 
 mainly

affect �̄2→1 and thus lead to a reduction in the net decay rate

�̄. We verified that already a single temperature pulse �Fig.
1�a�� indeed yields an analogous reduction in escapes events.
Figure 2�c� further shows that the effect is overruled by com-
peting secondary effects when 
 and/or �T become too
small. Finally, we have obtained very similar results also for
U�x1

s��U�x2
s�, but from the viewpoint of equilibrium rates

�1�, the case U�x1
s��U�x2

s� shown in Fig. 2 seems even more
surprising to us.
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FIG. 1. �a� Temperature pulse with parameters T0, �T, and 
. �b�
Piecewise parabolic potential with a well at xs=0, a barrier at
xu=1, curvatures U��xs�=4, U��xu�=−4, and barrier height
�U=U�xu�−U�xs�=1. �c� Time dependent escape rates for
kT0=k�T=0.1, ��t��1, and 
=0.05, 
=0.1, 
=0.2, 
=0.4, 
=0.8
�bottom up�. Squares: precise numerical solutions of Eq. �1� with
seed x�t0=−5�=xs. Solid lines: analytical approximation �11� for the
equivalent transformed dynamics �Eqs. �2� and �10��. Dashed lines:
Kramers rates �1� for T=T0 �bottom� and T=T0+�T �top�.

FIG. 2. �Color online� �a� Periodic temperature pulses with pa-
rameters T0, �T, 
, and T. �b� Piecewise parabolic potential with
wells at x1

s =0, x2
s =2.04, barriers at x1

u=1.41, x2
u=3.6, curvatures

U��x1
s�=1, U��x1

u�=−10, U��x2
s�=10, U��x2

u�=−1, and barrier
heights �U1→2=0.9, �U2→1=1, �U2→	=1.1. �c� Dependence of

the effective rate �̄ across x2
u on 
 and �T /T0 in units of the rate

�̄0=9.11�10−11 for T�t��T0. Shown are analytical results for
T=30, kT0=0.05, and ��t��1 obtained as detailed in the main text.
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Experimentally, potentials like in Fig. 2�b� are ubiquitous
in the context of chemical reactions. For example, in the
modified case U�x1

s��U�x2
s� these are reactions proceeding

in two steps via an intermediate �metastable state x2
s�. Tem-

perature pulses could be generated, among others �7�, by
means of a flashing black body radiator. More realistic are
short laser pulses �17�, whose basic effects �on the reacting
molecules and their environment� may still be roughly mod-
eled by a temperature pulse. On the other hand, we expect
that our above-mentioned main finding will be qualitatively
robust against various modifications of the pulsed perturba-
tion, including more realistic models for tailored laser pulses.
A further experimental playground are colloidal particles in a
suitably designed potential landscape by exploiting light
�18�, dielectrophoretic �19�, or magnetic �20� forces. Tem-

perature pulses in the form of acoustomechanical white noise
may be generated by means of piezoelements �21�.

Since temperature pulses in Eq. �1� are basically equiva-
lent to potential modulations in Eq. �2�, we arrive at yet
another quite astonishing conclusion: the escape rate for a
t-independent temperature and a potential landscape as in
Fig. 2�b� may decrease if the amplitude �multiplicative fac-
tor� of the potential is temporally reduced without any other
change in its “shape.” This effect should be readily observ-
able with colloidal systems �18–20� and possibly also with
cold atoms in laser-induced optical lattices �22� or in com-
plex reaction networks �23�.

We thank B. Gentz for stimulating discussions. This work
was supported by DFG under SFB 613.
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