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Generalized synchronization of complex networks

Yun Shang,l Maoyin Chen,” and Jiirgen Kurths®
Unstitute of Mathematics, AMSS, Academia Sinica, Beijing 100080, China
2Departmem‘ of Automation, TNlist, Tsinghua University, Beijing 100084, China
3Institute of Physics, Humboldt University, 10099 Berlin, Germany
(Received 16 April 2009; published 12 August 2009)

We consider generalized synchronization of complex networks, which are unidirectionally coupled in the
drive-response configuration. The drive network consists of linearly and diffusively coupled identical chaotic
systems. By choosing suitable driving signals, we can construct the response network to generally synchronize
the drive network in a predefined functional relationship. This extends both generalized synchronization of
chaotic systems and synchronization inside a network. Theoretical analysis and numerical simulations fully

verify our main results.
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In the past decades, an increasing interest has been fo-
cused on complex networks [1,2]. Recently, one of the most
interesting topics is to study network synchronization [3-7].
Network synchronization can be considered in two ways. (i)
Synchronization arises inside a network composed of
coupled dynamical systems. Complete synchronization and
phase synchronization are two typical types of synchroniza-
tion phenomena. (ii) Synchronization occurs between two
coupled complex networks in the drive-response configura-
tion [8,9]. In this case, one network is the drive network, and
the other network is the response network. The driving signal
should be chosen suitably such that the drive and response
networks are synchronized.

Generally speaking, synchronization of chaotic systems in
the drive-response configuration is one special kind of syn-
chronization of networks [10-13]. As far as we know, except
for complete synchronization, there exists another well-
known phenomenon, namely, generalized synchronization
[12,13]. Tt implies that there exists a functional relationship
between the drive and response systems.

Recently, researchers began to study synchronization of
networks. Li et al. considered synchronization of two unidi-
rectionally coupled networks by the control strategy [8].
Complete synchronization can be ensured if controllers are
applied to the response network. Even the drive network is
uncertain, Yu et al. utilized the adaptive filtering strategy to
construct the response network (to estimate the unknown
drive network), and two networks can be also completely
synchronized [9]. However, the above methods can only en-
sure complete synchronization, and cannot realize general-
ized synchronization.

Compared with complete synchronization, generalized
synchronization leads to richer behavior. Though the auxil-
iary system approach developed for chaos synchronization
can be directly applied to analyze whether there exists the
phenomenon of generalized synchronization of networks
[13], the auxiliary system approach is only one sufficient
condition. It cannot provide us the detailed functional rela-
tionship between the drive and response networks.

In this Brief Report, we also consider generalized syn-
chronization of networks in the drive-response configuration.
We first use a simple chaotic system, namely, Genesio-Tesi
system, to construct the drive network. By choosing special
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driving signals, we then construct the response network to
generally synchronize the drive network in a predefined
functional relationship. At last, we extend our main results
using the the Lie derivative operator.

Suppose that the drive network consists of N linearly and
diffusively coupled identical nodes, with each node being an
n-dimensional chaotic system, in the following form

N
Xi=fx)+o E GijL(yj_yi) (1)

J=lj#i

for 1=i=<N, where x;=(x;1,....x;,)T € R" is the state, y,
e R is the scalar output variable, L € R" is the inner coupling
matrix, f: R”— R” is a smooth nonlinear vector-valued func-
tion, and o is the global coupling strength. Matrix G=(G))
e RM*N represents the network topology. G;; is defined as
follows: If there is a connection between nodes i, j, then
G;;=G;=1; otherwise G;;=G;=0, and the diagonal elements
are G,-,»:—E?;]#iG,»j.

Here a simple Genesio-Tesi system represents the node
dynamics: x;=f(x;), given by

X1 =X Xip = X3k == oxyy — bxpp —axp + (x;)* (2)

for 1 =i=N, where a,b,c are positive parameters. When a
=0.44, b=1.1, c=1, Genesio-Tesi system behaves chaotically
[14]. Genesio-Tesi system is first proposed in Ref. [14]. It is
used to illustrate the novel harmonic balance method, which
is effective to analyze chaotic dynamics in nonlinear sys-
tems. In this Brief Report, we first use Genesio-Tesi system
to explain our approach. Then we extend our approach to
other chaotic systems.

In order to realize generalized synchronization of net-
works, we assume that (i) the driving signal is chosen to be
y;=Xp+wx;; with a positive parameter w; (ii) L=[001]7; (iii)
there exists no isolate cluster in the drive network [Eq. (1)],
and G is symmetrical and irreducible; (iv) the drive and re-
sponse networks have the same topology and the same labels
of nodes; and (v) all nodes in the drive network [Eq. (1)] are
chaotic, which ensures that the driving signal y; is bounded.

In the following, by the driving signal y,=x;,+wx;;, we
can easily construct the response network, and analyze the
condition for generalized synchronization of the drive and
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response networks. We first transform Genesio-Tesi system
[Eq. (2)] using the driving signal y,. From the viewpoint of
control, y;, can be regarded as an input of equation x;
+wx;;=y; [12]. Thus

t

x; =€ ""x;;(0) + e‘wf e y(ndr
0

Differentiating x;; for 1, 2 and 3 times, together with
Genesio-Tesi system [Eq. (2)], we get

t
Vit Bryi+ Boyi+ e_wz(f e"y(ndT+ xi1(0)>[A -x1]=0,
0
where A=(-w)3+a(-w)>+b(-w)+c, Bi=(-w)+a, and S,
=(-w)?+a(-w)+b. Let p=e"[(e"Ty(7)d7. So the above
equation becomes [12]

Vit Biyi+ Boyi+ mA = 77 = Oe™),

where Ode™)=e2"x7,(0)+2e72"x,;1 (0) [ e" ™y T)dT
—e™x; 1 (0)A.
Owning to the boundedness of the driving signal y;, we

have lim,_,..[O;(e™")]=0. Hence we approximately get

Ji+ Biyi+ Boyi+ mA— 7, =0
From #,=—w,+y;, Genesio-Tesi system [Eq. (2)] is trans-
formed into the dynamics: x;=g(¥;) where x,=(y;,y;,7;)"

[12]
i = XX = — By — BiXin — AX + ()%,

Xi3=— WX+ ;. (3)

The parameter w is chosen by (i) w € (0,a), if a>~b<0; (ii)
we(0,a/2)U(al2,a), if a*-4b=0; (i) we(0,(a
—\a?=4b)/2)U (a+a>—=4b/2,a), if a>~4b>0. Hence we
can choose w such that 8, and 3, are positive.

In this Brief Report, the response network is constructed
as follows:

N

Y=gE@) +o X Giji(fjl - X)), 4)
j=lj#i

where L=[010]". Now we show that the drive network [Eq.
(1)] and the response network [Eq. (4)] are generally syn-
chronized in the sense that lim,_ . (x;+wx;;—X;)=0 for 1
=i=N.

The detailed dynamics the drive and response network are
described by

Xj1 = Xp,
Xp=Xj3,
N
. 2 E 5
Xi3==—cxy —bxp—axs+ (x;) +o Gi(y;=y) (5)
=1 j#i
and
Xi1 =X,
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N
- —_ — —_ p— 2 —_ —_
X == BoXii — BiXn— Axz+ (Xp) " + 0o 2 Gij(le - Xi1)»
j=1.j#i
X3 == WX;3 + i, (6)

where the driving signal y; can be directly injected into the
response network [Eq. (6)].
Define the error g;,=y,—X;;=x;+wx;; —X;;. Hence we get

N
B+ Biei+ Bosi—0 2 Gijlej—e)=0(e™)
j=li#i

where Ofe™)=e2"x7,(0)+2e~2"x;1 (0) [1e" ™y (7)
Xdr — e™'x;;(0)A - e_ZW’fl-z3(0) - 2e7x5(0) [oe" Ty (dT
+e™"%5(0)A. Note that O;(e™") approaches zero as time ¢

tends to infinity. Hence the stability of the above equation is
equivalent to the stability of the following equation:

N
Eit Pigj+ Poei— 0o 2 Gilej—e)=0 (7)
j=1j#i

for I=Si=N.
Obviously, Eq. (7) can be transformed into

é 0 1 e | N e
€ -Bo —Billen j=1 €
for | =i=N, where ¢;=¢;, ¢,,=¢;, and

{0 0]
r= .
1 0]

Note that there exists no isolate cluster in the drive and re-
sponse networks, and G is symmetrical and irreducible.
From Refs. [3,4,6], the stability of Eq. (8) can be trans-
formed into the following N—1 subsystems:

S PP o] S
Min =Bot+oN; =B ||l un

where \; are eigenvalues of G, and O=N{>N, = =\,
Hence the drive network [Eq. (5)] and the response network
[Eq. (6)] are generally synchronized (namely, the limit
lim,_,, &,(r)=0 for 1 =i=N) if ¢ and \; make the polyno-
mial

A(s) =N+ BN+ (By— o\) (10)

be Hurwitz stable. The Hurwitz stability means that \(s)=0

has two roots \; and \, with Re(\;) <0 and Re(\,) <0.
Since eigenvalues \;=0, 0=0, B,>0, and B,>0, the

drive network [Eq. (5)] and the response network [Eq. (6)]

can be generally synchronized if o and nonzero A; satisfy

Bo— o\; > 0. (11)

Thought condition (11) holds for arbitrary value o, the value
o should not be large. This is because states of the drive
network [Eq. (5)] should be bounded, which further ensures
the driving signal is bounded. One case is to require all
nodes in the drive network [Eq. (5)] are chaotic. Accordingly,
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the coupling strength o should be sufficiently small.

From Eq. (2), Genesio-Tesi system is somewhat special.
This may restrict the application of the proposed approach.
Fortunately, under certain conditions, many chaotic systems
can be transformed into equation like Eq. (2). Consider cha-
otic systems given by

i(1) = Flx(1)],s(1) = h[x(1)],

where F:R"— R" is a smooth nonlinear vector-valued func-
tion, x € R" is the state and s € R is the scalar output signal.
From the scalar signal s and its derivatives of successively
higher order, we get the following state:

Z=[5(0),5(0), ....s" V(O] = [h(x),Lp(h(x)), ... Ly h(x)]"
=H(x),

where L denotes the Lie derivative operator [15,16], that is,
. g1

L’Fh(x):E,’.’zla(L;h)F :(x). Further, as long as m is sufficiently

large (for example, m >2n), H is an embedding and dH/ dx is

of full rank [16]. It is easy to show that the state Z satisfies

[17]

ZI=ZZ’Z.»2=Z37 ”"Z.m—lzzm’z.m=(P(Z)’ (12)

where ¢(z)=L}h(x)=L}(H™'(Z)). Similar to the above
analysis, we can choose some parameters a;, ... ,a,, >0 such
that Z.mz_alzl = =0yt (ﬁ(z) and Q_D(Z)Z @(Z)"'alzl +-
+a,,z,,- If we choose y=z,+wz,, we can transform Eq. (12).
Hence, based on Eq. (12) and its transformation, we can
construct the drive network (1) and the response network (4),
where L=[0,0,...,0,1]7 and L=[0, ...,0,1,0]". If &(z) sat-
isfies the Liptchitz condition and parameter w is chosen suit-
ably, we also ensure the stability of N—1 subsystems by the
Lyapunov stability.

Our analysis and simulation are based on Barabasi-Albert
(BA) networks [2]. The drive and response networks have
the same topology generated by the standard algorithm. Ini-
tially M nodes with labels i=1, ..., M are fully connected. At
every time step a new node is introduced to be connected to
M existing nodes. The probability that the new node is con-
nected to node i depends on degree k;, i.e., I;=k;/ 2 k;. In
order to measure generalized synchronization, we define the
average error as E(f)= %,Eﬁlb)i(t) —X;(1)].
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FIG. 1. The average error E(r) versus the time 7 when there
exists no channel disturbance. All estimates are the results of aver-
aging over 100 realizations.
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FIG. 2. The average error E(r) versus the time t. Here E (1)
=1% N xi(H)=%(1)| and ,ei(t)=11v2?ilx,-(t). All estimates are the re-
sults of averaging over 100 realizations.

Throughout our simulations, the number of nodes in net-
works are N=500, and M=3. In addition, the parameter w
=0.2. Hence parameters B,=1.0520, B,=0.24, and A
=0.7896. For BA networks, we can compute eigenvalues of
matrix G, and the coupling o is determined by Eq. (11).
After many realizations, we assign the coupling by o
=0.005 [satisfying Eq. (11)]. In the drive network [Eq. (5)]
and the response network [Eq. (6)], initial states, x;;(0) and
X;1(0), x;2(0) and X;,(0), and x;3(0) and X;5(0), are uniformly
distributed in [-0.2,-0.1], [-0.5,-0.4], and [0.8, 0.9], re-
spectively. When there exists no channel disturbance, the av-
erage error E(f) versus the time 7 is plotted in Fig. 1. It shows
that the drive network and the response network are gener-
ally synchronized in the sense that lim,_.,(x;+wx; —X;;)=0
for 1 =i=N. However, synchronization insider the drive net-
work cannot be ensured (please refer to Fig. 2).

In order to show the effectiveness of our approach, we
further consider the robustness to the disturbance in channel
(such as channel noise), which often happens during the tran-
sition of the driving signal y,. Suppose that the disturbance
d(t) satisfies |d()| < 8, where & is a positive constant. Hence
the transmitted signal becomes y’(r)=y(¢)+d(¢), and it is di-
rectly injected into the response network. Here parameters N,
M, w, By, By, and I" are chosen as above. The disturbance is
chosen to be the white noise with 6=0.5. The average error
E(t) versus the time ¢ is plotted in Fig. 3. It shows that the
drive network and the response network are almost generally
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FIG. 3. The average error E(r) versus the time ¢ when there
exists channel disturbance. All estimates are the results of averaging
over 100 realizations.
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synchronized. Therefore, our approach is robust to distur-
bance in channel.

In this Brief Report, we consider generalized synchroni-
zation of complex networks, which are unidirectionally
coupled in the drive-response configuration. For the drive
network, we choose suitable driving signals and construct the
response network, such that the drive and response networks
are generally synchronized in a predefined functional rela-
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tionship. This can be regarded as the extension of both gen-
eralized synchronization of chaotic systems and chaos syn-
chronization inside a network.
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