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We introduce a model which integrates the complex Ginzburg-Landau equation in two dimensions �2Ds�
with the linear-cubic-quintic combination of loss and gain terms, self-defocusing nonlinearity, and a periodic
potential. In this system, stable 2D dissipative gap solitons �DGSs� are constructed, both fundamental and
vortical ones. The soliton families belong to the first finite band gap of the system’s linear spectrum. The
solutions are obtained in a numerical form and also by means of an analytical approximation, which combines
the variational description of the shape of the fundamental and vortical solitons and the balance equation for
their total power. The analytical results agree with numerical findings. The model may be implemented as a
laser medium in a bulk self-defocusing optical waveguide equipped with a transverse 2D grating, the predicted
DGSs representing spatial solitons in this setting.
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I. INTRODUCTION AND THE MODEL

Equations of the complex Ginzburg-Landau �CGL� type
are universal asymptotic models to describe the nonlinear
pattern formation in dissipative media �1�. They also find
direct �rather than asymptotically derived� realizations in
nonlinear optics as models of laser cavities �2�. Objects of
fundamental interest predicted by the CGL equations are
solitary pulses �SPs�, alias dissipative solitons. They repre-
sent, in particular, temporal pulses generated by fiber lasers
�2–4� and, in an altogether different physical context, patches
of traveling-wave thermal convection in narrow channels �5�.

The simplest CGL equation is based on the cubic nonlin-
earity. Exact one-dimensional �1D� SP solutions are known
in that case �6�, but they are unstable, as the respective equa-
tion includes the linear gain, compensating the cubic loss,
which destabilizes the zero background around the pulses
and leads to the formation of a chaotic “gas” of SPs �7�. A
well-known modified equation that can support stable SPs
includes a combination of linear and quintic loss terms and
cubic gain; therefore, it is called the cubic-quintic �CQ� CGL
equation. This equation was introduced �in the two-
dimensional �2D� form� in Ref. �8�. Stable SP solutions to
the 1D version of the CQ-CGL equation were first predicted
by means of an analytical approximation based on the
power-balance analysis for solitons of the nonlinear
Schrödinger �NLS� equation �9�. Then, these solutions were
explored in detail by means of numerical methods �10�.
More general models, such as linearly coupled systems of
CQ-CGL equations �11� and the complex Swift-Hohenberg
equation with the CQ nonlinearity �12�, were introduced too.

In addition to the solitons of the NLS type, a generic
species of solitary waves in conservative media is repre-
sented by gap solitons. They are well known in nonlinear
optics, as temporal solitons in fiber Bragg gratings, and in
Bose-Einstein condensates �BECs� with repulsion between
atoms, which are loaded into in optical-lattice trapping po-
tentials. A fundamental feature, from which the name of the

gap soliton derives, is that its wave number �in terms of
optical models� must belong to a finite band gap induced by
the effective periodic potential. In the context of both the
fiber gratings �13–15� and matter waves �BEC� �16,17�, gap
solitons were predicted theoretically, including 2D gap soli-
tons in BEC �18,19�, and 2D solitons with embedded vortic-
ity �20�. The creation of optical and matter-wave gap solitons
was reported in the 1D geometry—in short fiber gratings
�21�, and in the condensate loaded into an optical lattice
combined with a strong transverse trap �22�, respectively.

A generalization of the above concepts, aiming to predict
dissipative gap solitons �DGSs�, was proposed recently �23�.
The respective version of the CGL equation combines a pe-
riodic potential and the set of the CQ loss and gain terms,
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Here, � may be considered as the local amplitude of the
electromagnetic wave �in the case of an optical model�, A
and � /q0 are the strength and period of the potential
�x=L /2 is the midpoint of the system�, and coefficients ��1,
��3, and ��2 represent the linear and quintic dissipation and
cubic gain, respectively. The conservative cubic term in Eq.
�1� is defined with the self-defocusing sign, which is relevant
to gap solitons.

A physical realization of Eq. �1� pertains to a planar self-
defocusing optical waveguide, in which the periodic poten-
tial may be induced by a transverse grating �periodic modu-
lation of the refractive index�. In particular, a self-defocusing
nonlinearity, in the combination with photoinduced trans-
verse lattices, can be implemented in photorefractive crystals
�24�. As concerns the CQ loss/gain terms, they may actually
represent a combination of the linear amplification and satu-
rable absorption, which is a common setting in laser cavities
�4,25�. In terms of this interpretation, variable t in Eq. �1�
designates the propagation distance, while x is the transverse
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coordinate �hence, the SP solutions to be produced by Eq. �1�
will be spatial solitons �23��. It is also relevant to mention
the model combining the standard fiber-Bragg-grading part
and the CQ combination of dissipative terms, in which tem-
poral DGSs were investigated �26�, including interactions
between them �27�.

The analysis reported in Ref. �23� revealed, by means of
approximate analytical and direct numerical methods, the ex-
istence of three families of stable DGSs in the first finite
band gap of the respective linear spectrum: loosely and
tightly bound static solitons and a family of breathers be-
tween them. All the families were found close to the border
between the finite band gap and Bloch band separating it
from the semi-infinite gap, the tightly and loosely bound
DGSs being located in spectral regions where the Bloch band
is, respectively, very narrow or relatively wide. Stable dark
solitons were also found in the model, and the mobility of
dark and loosely bound bright solitons was demonstrated in
it �collisions between mobile solitons are quasielastic�.

The objective of the present work is to introduce funda-
mental and vortical DGSs in two dimensions. To this end, we
consider the 2D extension of Eq. �1�,
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This equation may be interpreted as governing the propaga-
tion of electromagnetic waves in a bulk medium with the
self-defocusing nonlinearity and other ingredients included
in Eq. �1�, assuming that the potential periodic in x and y is
induced by the 2D transverse grating, with t again having the
meaning of the propagation distance. In Sec. II, solutions for
fundamental gap solitons are found, in parallel, in a numeri-
cal form �as attractors of Eq. �2��, and by means of an ana-
lytical approach, which combines a variational approxima-
tion �VA� for the shape of the solitons and the balance
equation for their total power. In terms of the corresponding
linearized equation, the soliton family belongs to the first
finite band gap. Further, in Sec. III we report the existence of
stable vortex solitons �with topological charge 1� built as

complexes of four peaks, with the phase shift of � /2 be-
tween adjacent ones, and an empty site in the center
�rhombus-shaped vortices �28�, alias on-site ones�. The vor-
tex solitons are constructed as stable numerical solutions and
are also obtained by means of the analytical approximation.
Thus, the results reported in this work predict the existence
of stable spatial solitons, both fundamental and vortical ones,
in laser cavities based on self-defocusing bulk media with
transverse gratings.

II. FUNDAMENTAL SOLITONS

Stable solutions to Eq. �2� in the form of 2D fundamental
�zero-vorticity� solitons can be readily found, in the first fi-
nite band gap, as attractors of the CGL equation, by dint of
direct simulations starting with an appropriate initial con-
figuration. Typical examples of such tightly and loosely lo-
calized gap solitons are displayed in Fig. 1. The 2D solitons
become looser with the decrease in the lattice period � /q0 as
the soliton spreads over a larger number of lattice cells.

The shape of the fundamental solitons is determined by
the equation for complex function ��x ,y� obtained by the
substitution of ��x ,y , t�=e−i�t��x ,y� in Eq. �2�, where −� is
the soliton’s propagation constant, in terms of the optical
model. To approximate the soliton’s shape in an analytical
form, we start with the equation for ��x ,y� without the dis-
sipative terms ��=0�. The latter equation can be derived from
Lagrangian �=��Ldxdy, with density
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In this approximation, ��x ,y� may be assumed real, there-
fore, following the lines of Refs. �29,30�, we adopt the varia-
tional ansatz as

� = B exp
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where amplitude B and width a−1 are free parameters, the
norm of ansatz �4� being

FIG. 1. Numerically generated profiles of stable fundamental tightly and loosely bound 2D gap solitons ���x ,y�� found, respectively, at
�a� q0=1, and at �b� q0=1.75. Other coefficients are �1=0.5, �2=2, �3=1, �=0.05, and A=2.
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N 
� � ���x,y��2dxdy = �B2�4a�−1�1 + e−q2/a�2 �5�

�in terms of the laser-cavity model, N is proportional to the
total power of the light beam�.

Ansatz �4� implies that constant q may be different from
q0 in Eq. �2�. In fact, for the description of tightly bound
�strongly localized� solitons, it will be sufficient to fix q
=q0, which is not surprising, as the mismatch between the
periodic functions in the ansatz and the periodicity of the
potential, accounted for by q�q0, is not crucially important
for the well-localized wave forms. On the other hand, apply-
ing the VA to loosely bound �weakly localized� solitons, we
will treat q not as a variational parameter but rather as a
“phenomenological” fitting constant. We also tried an ex-
tended version of the VA, which subjected q to variation too,
but it yielded essentially less accurate results. This conclu-
sion may be explained by the difficulty in approximating the
complex shape of loosely bound solitons by a simple ansatz.
Similar situation are known in other applications of VA to the
description of complicated wave patterns, where some pa-
rameters should be still treated as variational ones, while
others are reserved for direct fitting �cf., e.g., Ref. �31��.

The substitution of ansatz �4� into Lagrangian density �3�
and the integration yield the effective Lagrangian expressed
in terms of N, a, and q,
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� −
ae−q2/a + a + 2q2

2�1 + e−q2/a�

+ A
e−�q0 − q�2/a + e−�q0 + q�2/a + 2e−q0

2/a

1 + e−q2/a

−
Na

16�

�1 + eq2/�2a��4�e−2q2/a − 2e−3q2/�2a� + 3e−q2/a�2

�1 + e−q2/a�4 � .

�6�

Variational equation �� /�a=0 for fixed q determines a as a
function of N �as said above, q is not a variational parameter;
hence, we do not add equation �� /�q=0�.

At the next stage of the analysis, we restore the dissipa-
tive terms in Eq. �2� and, treating them as small perturba-
tions, derive a straightforward evolution equation for the to-
tal norm,

dN

dt
= 2��− �1N + �2N2 − �3N3� , �7�

where the following coefficients were calculated as per an-
satz �4�:

N2 =� � ���4dxdy =
�B4

128a
e−4q2/a�1 + eq2/�2a��4

��1 − 2eq2/�2a� + 3eq2/a�2, �8�

N3 =� � ���6dxdy

=
�B6

3072a
�10 + e−3q2/a + 6e−4q2/�3a� + 15e−q2/�3a��2. �9�

According to Eq. �7�, the balance condition for the norm in
the stationary state dN /dt=0 yields relation

�2N2 = �1N + �3N3. �10�

Figure 2�a� displays the amplitude of the DGS, B for q0
=1, versus cubic gain �2, as predicted by the analytical ap-
proximation with q=q0, i.e., obtained from a numerical so-
lution of Eqs. �5� and �10�, along with the same dependence
generated by direct simulations. It is seen that the analytical
approximation provides good overall accuracy for the soli-
tons which feature a �relatively� tightly bound shape �there-
fore, it is sufficient to set q=q0, i.e., one does not need an
extra fitting parameter in this case�, although the approxima-
tion predicts the existence of the solitons at �2	2.15, while
the direct simulations yield stable DGSs at �2	2.7. For �2

2.7, the simulations produce delocalized solutions, as the
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FIG. 2. �a� Numerically found amplitude B of tightly bound dissipative gap solitons �diamonds� and the respective analytical prediction
�lines� versus cubic gain �2. Other coefficients are A=2, q0=1, �=0.05, �1=0.5, �3=1, and q=q0=1. �b� The comparison of the numerically
found and analytically predicted cross sections of the soliton profiles ���x ,y=L /2�� for q=q0=1, �=0.05, �1=0.5, �3=1, and �2=2 �the case
of relatively tightly bound profiles�. �c� Numerically found amplitude B of loosely bound dissipative gap solitons and the respective
analytical prediction obtained with fitting parameter q=q0=1.75 or q=0.6q0=1.05, versus cubic gain �2, for q0=1.75. �d� The comparison
of the numerically found and analytically predicted cross sections of loosely bound soliton profiles for q0=1.75, with the choice of
q=1.05.
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loss terms cannot compensate the gain in that region. The
trend to underestimating the existence area for the DGS by
the analytical approximation is generic, persisting throughout
the parameter space.

For the same case of q=q0=1, Fig. 2�b� displays compa-
rison of the soliton’s cross-section profile ���x ,y=L /2��
and the respective analytical approximation. For given
values of the parameters, the latter one is ���x ,y=L /2��
=1.53e−0.413x2

cos�x−L /2� �see Eq. �4��. It is seen that the
analytically predicted and numerically found profiles overlap
well near the soliton’s center, but points at which ��x�
crosses zero are shifted.

Figure 2�c� displays the amplitude of loosely bound
solitons versus �2, for q0=1.75. The plot shows both the
straightforward prediction of the analytical approximation
obtained with q=q0=1.75 and its “phenomenologically”
adjusted modification provided by choosing q=0.6q0=1.05.
In the direct numerical simulations, the respective DGSs
exist for 1.95��2�2.95, while the analytical solution
with q=q0=1.75 exists in the region of 1.64��2�1.75,
which does not overlap at all with its numerical counter-
part. However, choosing the fitting parameter to be q=1.05
allows us to fit the region of the existence of the analytical
solutions to the numerical one fairly well. Accordingly,
the comparison of the numerically found soliton’s cross-
section profile ���x ,y=L /2�� and the respective analy-
tical approximation with q=1.05, which is ���x ,y=L /2��
=1.46e−0.151x2

cos 1.05�x−L /2� in the present case, is dis-
played in Fig. 2�d�.

Figure 3 shows another set of global characteristics of the
DGS family, viz., the amplitude and propagation constant �B
and �� versus the grating’s wave number, as found in the
numerical and analytical forms. In particular, panel 3�b�
clearly shows that the entire DGS family falls into the first
finite band gap of the underlying linear spectrum. The figure
also demonstrates the same trend as mentioned above,
namely, that the analytical approximation, while predicting
generally correct characteristics of the soliton family, under-
estimates its existence range: it does not yield solutions for
q0
1.2, while the direct simulations converge to DGSs up to

q=1.85 �numerically found solutions get delocalized at q0

1.85�.

The existence range for the stable DGSs in the plane of
parameters, which control the linear part of the model, viz.,
loss coefficient �1 and grating strength A, as found from the
numerical results, is displayed in Fig. 4. To the right of the
border shown in Fig. 4 �i.e., if the linear attenuation is too
strong�, numerical solutions decay to zero, while to the left
of the border �if the attenuation is too weak� the solution
undergoes a delocalization transition. It is relevant to men-
tion that unlike DGSs in the 1D counterpart of the present
model �23�, no 2D soliton was found to be mobile �the ap-
plication of the kick, i.e., multiplication by exp�iKx�, fails to
set any 2D soliton in persistent motion�.

III. SOLITARY VORTICES

We have also found dissipative gap vortex solitons with
topological charge 1. To generate the vortex soliton, we have
performed numerical simulation of Eq. �2� starting with the
initial configuration,
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�11�

where the pre-exponential multiplier accounts for topological
charge 1 of the vortex. Typical examples of stable vortices
are displayed in Fig. 5, at the same values of parameters for
which stable fundamental solitons were shown in Fig. 1. Fig-
ure 5�a� displays a rhombus-type vortex soliton for q0=1,
which is composed of four peaks with the phase shift of � /2
between adjacent ones. Figure 5�b� displays a more loosely
bound vortex soliton, for q0=1.6. The solitary vortices fea-
ture a transition from the tightly bound shape to the loose
one with the decrease in the period of the underlying grating
� /q0. In any case, main peaks which form vortices are
located, approximately, at �x ,y�= �L /2+� /q0 ,L /2�, �L /2
−� /q0 ,L /2�, �L /2,L /2−� /q0� and �L /2,L /2+� /q0�. The
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FIG. 3. �a� Amplitude B and �b� propagation constant � of fun-
damental solitons versus the grating’s wave number 2q0 for A=2
and �=0.05, �1=0.5, �2=2, �3=1. Diamonds and bold dashed
curves show, respectively, direct numerical results and predictions
of the straightforward analytical approximation obtained with q
=q0 �no fitting�. The thin dashed curve in �b� is the lower border of
the first finite band gap �as found with �=0, i.e., in the conservative
version of Eq. �2��, to which the soliton family belongs.
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vortex slowly becomes delocalized at still larger values of q0,
for instance, at q0=1.75, if other parameters are fixed as in
Fig. 5.

Getting back to the example of a tightly bound vortex
obtained at q0=1, which is built of the four peaks that are
well localized around four potential minima �x ,y�= �L /2
+� ,L /2�, �L /2−� ,L /2�, �L /2,L /2+�� and �L /2,L /2−��,
one may approximate each peak by ansatz �4� with q=q0.
Then, the entire vortex may be approximated as

��x,y� = B cos�x − L/2�cos�y − L/2�

��exp�− a/2��x − L/2 − ��2 + �y − L/2�2��

+ i exp�− a/2��x − L/2�2 + �y − L/2 − ��2��

− exp�− a/2��x − L/2 + ��2 + �y − L/2�2��

− i exp�− a/2��x − L/2�2 + �y − L/2 + ��2��� ,

�12�

where B and a are taken as predicted by the analytical ap-
proximation for the fundamental soliton.

Figure 6�a� shows the dependence of the vortex’ ampli-
tude on the cubic-gain coefficient �2 as found from the direct
simulations for q0=1, i.e., for the family of relatively tightly
bound vortices. The dashed curve in Fig. 6�a� represents
the corresponding analytical approximation for B in ex-
pression �12�, which is found to agree with the numerical

results. Further, Fig. 6�b� displays a typical example of
the numerically and analytically found cross-section profiles
of the tightly bound vortex, which also demonstrates good
agreement between both �the dashed curve is ���x��
=1.532�cos�x−L /2��exp�−0.413�x−L /2−��2�−exp�−0.413
��x−L /2+��2���, as per Eq. �12��.

Proceeding to loosely bound vortices, Fig. 6�c� shows the
dependence of the vortex’ amplitude on �2 for q0=1.6. The
dashed curve in the same panel represents the respective ana-
lytical approximation for B adjusted by choosing q=0.7q0
=1.12 in ansatz �4�. Further, Fig. 6�d� displays a typical
example of the numerically and analytically found cross-
section profiles of the vortex, also for q0=1.6 and q=0.7q0
=1.12. The dashed �analytical� profile corresponds to ���x��
=B�cos�q�x−L /2−� /q0��exp�−�a /2��x−L /2−� /q0�2�
−cos�q�x−L /2+� /q0��exp�−�a /2��x−L /2+� /q0�2��, where
B=1.461 and a=0.339 are values predicted by the analytical
approximation for the fundamental DGS. Good agreement
between both profiles is observed.

IV. CONCLUSION

In this work, we have introduced a model combining the
CGL equation in two dimensions with the CQ �cubic-quintic�
combination of gain and loss terms, self-defocusing nonlin-
earity, and the 2D periodic potential. The model gives rise to
stable DGSs �dissipative gap solitons�, both fundamental and
vortical ones. The DGS families were found in numerical

FIG. 5. Profiles of vortex gap solitons ���x ,y�� produced by the direct simulations at �a� q0=1 and �b� 1.6 for �1=0.5, �2=2, �3=1, �
=0.05, and A=2.
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FIG. 6. �a� The same as in Fig. 2�a� �at the same values of parameters� but for the amplitude of the rhombus-shaped vortex. �b� The same
as in Fig. 2�b� but for the cross-section profiles of the vortex. �c� The numerically found vortex’ amplitude for q0=1.6 and the respective
analytical approximation �the dashed line� adjusted by choosing q=0.7q0=1.12. �d� The same as in �b� but for q0=1.6 and q=1.12.
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and approximate analytical forms in the first finite band gap
of the model’s linear spectrum. The analytical approximation
based on the VA �variational approximation� for the soliton’s
shape and balance equation for the total power yields results
which turn out to be quite accurate in comparison with the
numerical findings �for the fundamental and vortical solitons
alike�, except for the fact that the analytical approximation
underestimates the region of the existence of stable DGSs.
The model considered in this work can be realized as a laser

cavity in a bulk self-defocusing optical waveguide equipped
with a transverse grating.

The analysis of the model can be developed in other di-
rections. In particular, it may be interesting to construct soli-
tary vortices with multiple values of the topological charge
�stable 2D gap solitons with embedded vorticity 2 were
found in the conservative model�. A challenging problem is
to find DGSs and vortices in higher finite band gaps of the
underlying linear spectrum.
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